Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 949
Filter
Add more filters

Publication year range
1.
Immunity ; 56(2): 336-352.e9, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36792573

ABSTRACT

The physiological and immune changes that occur during pregnancy are associated with worsened disease outcomes during infection and sepsis. How these perturbations exacerbate inflammation has not been explored. Here, using antibiotic treatment and fecal microbial transfers, we showed that sepsis susceptibility is driven by pregnancy-induced changes to gut microbiome in mice and humans. Integrative multiomics and genetically engineered bacteria revealed that reduced Parabacteroides merdae (P. merdae) abundance during pregnancy led to decreased formononetin (FMN) and increased macrophage death. Mechanistically, FMN inhibited macrophage pyroptosis by suppressing nuclear accumulation of hnRNPUL2 and subsequent binding to the Nlrp3 promoter. Treatment with FMN or deletion of murine hnRNPUL2 protected against septic inflammation. Intestinal abundances of P. merdae and FMN inversely correlated with the progression of septic patients. Our data reveal a microbe-immune axis that is disrupted in pregnant septic hosts, highlighting the potential of the FMN-hnRNPUL2-NLRP3 axis in providing promising therapeutic strategies for sepsis.


Subject(s)
Gastrointestinal Microbiome , Sepsis , Pregnancy , Female , Humans , Animals , Mice , Gastrointestinal Microbiome/physiology , Pyroptosis/physiology , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Macrophages/metabolism , Sepsis/metabolism , Inflammation/metabolism
2.
Mol Cell ; 82(11): 1992-2005.e9, 2022 06 02.
Article in English | MEDLINE | ID: mdl-35417664

ABSTRACT

Phospholipase A2, group VII (PLA2G7) is widely recognized as a secreted, lipoprotein-associated PLA2 in plasma that converts phospholipid platelet-activating factor (PAF) to a biologically inactive product Lyso-PAF during inflammatory response. We report that intracellular PLA2G7 is selectively important for cell proliferation and tumor growth potential of melanoma cells expressing mutant NRAS, but not cells expressing BRAF V600E. Mechanistically, PLA2G7 signals through its product Lyso-PAF to contribute to RAF1 activation by mutant NRAS, which is bypassed by BRAF V600E. Intracellular Lyso-PAF promotes p21-activated kinase 2 (PAK2) activation by binding to its catalytic domain and altering ATP kinetics, while PAK2 significantly contributes to S338-phosphorylation of RAF1 in addition to PAK1. Furthermore, the PLA2G7-PAK2 axis is also required for full activation of RAF1 in cells stimulated by epidermal growth factor (EGF) or cancer cells expressing mutant KRAS. Thus, PLA2G7 and Lyso-PAF exhibit intracellular signaling functions as key elements of RAS-RAF1 signaling.


Subject(s)
Phospholipids , Proto-Oncogene Proteins B-raf , Phospholipases A2 , Platelet Activating Factor/analogs & derivatives , Platelet Activating Factor/metabolism
3.
Nature ; 623(7989): 1034-1043, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37993715

ABSTRACT

Diet-derived nutrients are inextricably linked to human physiology by providing energy and biosynthetic building blocks and by functioning as regulatory molecules. However, the mechanisms by which circulating nutrients in the human body influence specific physiological processes remain largely unknown. Here we use a blood nutrient compound library-based screening approach to demonstrate that dietary trans-vaccenic acid (TVA) directly promotes effector CD8+ T cell function and anti-tumour immunity in vivo. TVA is the predominant form of trans-fatty acids enriched in human milk, but the human body cannot produce TVA endogenously1. Circulating TVA in humans is mainly from ruminant-derived foods including beef, lamb and dairy products such as milk and butter2,3, but only around 19% or 12% of dietary TVA is converted to rumenic acid by humans or mice, respectively4,5. Mechanistically, TVA inactivates the cell-surface receptor GPR43, an immunomodulatory G protein-coupled receptor activated by its short-chain fatty acid ligands6-8. TVA thus antagonizes the short-chain fatty acid agonists of GPR43, leading to activation of the cAMP-PKA-CREB axis for enhanced CD8+ T cell function. These findings reveal that diet-derived TVA represents a mechanism for host-extrinsic reprogramming of CD8+ T cells as opposed to the intrahost gut microbiota-derived short-chain fatty acids. TVA thus has translational potential for the treatment of tumours.


Subject(s)
CD8-Positive T-Lymphocytes , Neoplasms , Oleic Acids , Animals , Cattle , Humans , Mice , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , Cyclic AMP/metabolism , Cyclic AMP Response Element-Binding Protein/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Dairy Products , Fatty Acids, Volatile/pharmacology , Fatty Acids, Volatile/therapeutic use , Milk/chemistry , Neoplasms/diet therapy , Neoplasms/immunology , Oleic Acids/pharmacology , Oleic Acids/therapeutic use , Red Meat , Sheep
4.
Mol Cell ; 81(18): 3833-3847.e11, 2021 09 16.
Article in English | MEDLINE | ID: mdl-34289383

ABSTRACT

Mutant isocitrate dehydrogenase (IDH) 1 and 2 play a pathogenic role in cancers, including acute myeloid leukemia (AML), by producing oncometabolite 2-hydroxyglutarate (2-HG). We recently reported that tyrosine phosphorylation activates IDH1 R132H mutant in AML cells. Here, we show that mutant IDH2 (mIDH2) R140Q commonly has K413 acetylation, which negatively regulates mIDH2 activity in human AML cells by attenuating dimerization and blocking binding of substrate (α-ketoglutarate) and cofactor (NADPH). Mechanistically, K413 acetylation of mitochondrial mIDH2 is achieved through a series of hierarchical phosphorylation events mediated by tyrosine kinase FLT3, which phosphorylates mIDH2 to recruit upstream mitochondrial acetyltransferase ACAT1 and simultaneously activates ACAT1 and inhibits upstream mitochondrial deacetylase SIRT3 through tyrosine phosphorylation. Moreover, we found that the intrinsic enzyme activity of mIDH2 is much higher than mIDH1, thus the inhibitory K413 acetylation optimizes leukemogenic ability of mIDH2 in AML cells by both producing sufficient 2-HG for transformation and avoiding cytotoxic accumulation of intracellular 2-HG.


Subject(s)
Isocitrate Dehydrogenase/genetics , Leukemia, Myeloid, Acute/metabolism , Acetyl-CoA C-Acetyltransferase/metabolism , Acetylation , Animals , Antineoplastic Agents/pharmacology , Female , Humans , Isocitrate Dehydrogenase/metabolism , Ketoglutaric Acids/metabolism , Leukemia, Myeloid, Acute/genetics , Lysine/genetics , Lysine/metabolism , Male , Mice , Mice, Inbred NOD , Mutation/genetics , NADP/metabolism , Nuclear Proteins/metabolism , Phosphorylation , Polymorphism, Single Nucleotide/genetics , Primary Cell Culture , Protein Binding , Protein Processing, Post-Translational , Protein-Tyrosine Kinases/metabolism
5.
Mol Cell ; 71(1): 142-154.e6, 2018 07 05.
Article in English | MEDLINE | ID: mdl-30008318

ABSTRACT

Nitric oxide (NO) regulates diverse cellular signaling through S-nitrosylation of specific Cys residues of target proteins. The intracellular level of S-nitrosoglutathione (GSNO), a major bioactive NO species, is regulated by GSNO reductase (GSNOR), a highly conserved master regulator of NO signaling. However, little is known about how the activity of GSNOR is regulated. Here, we show that S-nitrosylation induces selective autophagy of Arabidopsis GSNOR1 during hypoxia responses. S-nitrosylation of GSNOR1 at Cys-10 induces conformational changes, exposing its AUTOPHAGY-RELATED8 (ATG8)-interacting motif (AIM) accessible by autophagy machinery. Upon binding by ATG8, GSNOR1 is recruited into the autophagosome and degraded in an AIM-dependent manner. Physiologically, the S-nitrosylation-induced selective autophagy of GSNOR1 is relevant to hypoxia responses. Our discovery reveals a unique mechanism by which S-nitrosylation mediates selective autophagy of GSNOR1, thereby establishing a molecular link between NO signaling and autophagy.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/enzymology , Autophagy , Glutathione Reductase/metabolism , Nitric Oxide/metabolism , Signal Transduction , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Autophagy-Related Protein 8 Family/genetics , Autophagy-Related Protein 8 Family/metabolism , Cell Hypoxia , Glutathione Reductase/genetics
6.
J Am Chem Soc ; 146(20): 13934-13948, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38741463

ABSTRACT

Double perovskite films have been extensively studied for ferroelectric order, ferromagnetic order, and photovoltaic effects. The customized ion combinations and ordered ionic arrangements provide unique opportunities for bandgap engineering. Here, a synergistic strategy to induce chemical strain and charge compensation through inequivalent element substitution is proposed. A-site substitution of the barium ion is used to modify the chemical valence and defect density of the two B-site elements in Bi2FeMnO6 double perovskite epitaxial thin films. We dramatically increased the ferroelectric photovoltaic effect to ∼135.67 µA/cm2 from 30.62 µA/cm2, which is the highest in ferroelectric thin films with a thickness of less than 100 nm under white-light LED irradiation. More importantly, the ferroelectric polarization can effectively improve the photovoltaic efficiency of more than 5 times. High-resolution HAADF-STEM, synchrotron-based X-ray diffraction and absorption spectroscopy, and DFT calculations collectively demonstrate that inequivalent ion plays a dual role of chemical strain (+1.92 and -1.04 GPa) and charge balance, thereby introducing lattice distortion effects. The reduction of the oxygen vacancy density and the competing Jahn-Teller distortion of the oxygen octahedron are the main phenomena of the change in electron-orbital hybridization, which also leads to enhanced ferroelectric polarization values and optical absorption. The inequivalent strategy can be extended to other double perovskite systems and applied to other functional materials, such as photocatalysis for efficient defect control.

7.
Small ; 20(27): e2308416, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38361226

ABSTRACT

Developing efficient oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) bifunctional electrocatalysts is attractive for rechargeable metal-air batteries. Meanwhile, single metal atoms embedded in 2D layered transition metal chalcogenides (TMDs) have become a very promising catalyst. Recently, many attentions have been paid to the 2D ReS2 electrocatalyst due to its unique distorted octahedral 1T' crystal structure and thickness-independent electronic properties. Here, the catalytic activity of different transition metal (TM) atoms embedded in ReS2 using the density functional theory is investigated. The results indicate that TM@ReS2 exhibits outstanding thermal stability, good electrical conductivity, and electron transfer for electrochemical reactions. And the Ir@ReS2 and Pd@ReS2 can be used as OER/ORR bifunctional electrocatalysts with a lower overpotential for OER (ηOER) of 0.44 V and overpotentials for ORR (ηORR) of 0.26 V and 0.27 V, respectively. The excellent catalytic activity is attributed to the optimal adsorption strength for oxygen intermediates coming from the effective modulation of the electronic structure of ReS2 after Ir/Pd doping. The results can help to deeply understand the catalytic activity of TM@ReS2 and develop novel and highly efficient OER/ORR electrocatalysts.

8.
J Transl Med ; 22(1): 525, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822329

ABSTRACT

Acetaminophen (APAP)-induced liver injury (AILI) is a pressing public health concern. Although evidence suggests that Bifidobacterium adolescentis (B. adolescentis) can be used to treat liver disease, it is unclear if it can prevent AILI. In this report, we prove that B. adolescentis significantly attenuated AILI in mice, as demonstrated through biochemical analysis, histopathology, and enzyme-linked immunosorbent assays. Based on untargeted metabolomics and in vitro cultures, we found that B. adolescentis generates microbial metabolite hypaphorine. Functionally, hypaphorine inhibits the inflammatory response and hepatic oxidative stress to alleviate AILI in mice. Transcriptomic analysis indicates that Cry1 expression is increased in APAP-treated mice after hypaphorine treatment. Overexpression of Cry1 by its stabilizer KL001 effectively mitigates liver damage arising from oxidative stress in APAP-treated mice. Using the gene expression omnibus (GEO) database, we verified that Cry1 gene expression was also decreased in patients with APAP-induced acute liver failure. In conclusion, this study demonstrates that B. adolescentis inhibits APAP-induced liver injury by generating hypaphorine, which subsequently upregulates Cry1 to decrease inflammation and oxidative stress.


Subject(s)
Acetaminophen , Bifidobacterium adolescentis , Chemical and Drug Induced Liver Injury , Liver , Mice, Inbred C57BL , Animals , Acetaminophen/adverse effects , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/pathology , Liver/drug effects , Liver/pathology , Liver/metabolism , Male , Humans , Oxidative Stress/drug effects , Mice , Gene Expression Regulation/drug effects , Pyridines
9.
Chemistry ; : e202403316, 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39262303

ABSTRACT

Post-transition state bifurcation (PTSB) has received wide attention in the field of reaction mechanism research due to its role in producing nonstatistical reaction selectivity, which cannot be solely explained by transition state theory. Particularly, even subtle molecular motions such as bond torsion can precipitate PTSB, thereby significantly complicating the quantitative understanding of dynamic selectivity. In this work, we found that the radical addition of allenes is an elementary transformation that generally exhibits PTSB stereoselectivity, where a single radical addition transition state can lead to both Z- and E-allylic radicals via the post-transition state allylic single bond torsion. Interestingly, dynamic Z/E-selectivity favors the Z-allylic radicals, which contrasts the thermodynamic preference. Based on the dynamics study of twenty-five radical additions of mono-substituted allenes with diverse electronic and steric effects, we have identified that this dynamic stereoselectivity is synergistically controlled by the transition state structure and the differential trends within specific dimensions of the bifurcating reaction coordinates, which also holds true for di-substituted allene substrates. This study refines the mechanism of radical addition of allenes and underscores the importance of the differential trend of the reaction coordinates in controlling dynamic selectivity, offering a deeper insight into PTSB selectivity factors.

10.
BMC Cancer ; 24(1): 381, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38528547

ABSTRACT

BACKGROUND: Inaccurate colposcopy diagnosis may lead to inappropriate management and increase the incidence of cervical cancer. This study aimed to evaluate the diagnostic accuracy of colposcopy in the detection of histologic cervical intraepithelial neoplasia grade 2 or worse (CIN2+) in women with transformation zone type 3 (TZ3). METHODS: Records from 764 patients with TZ3 who underwent colposcopy-directed biopsy and/or endocervical curettage in Putuo Hospital China between February 2020 and March 2023 were retrospectively collected. Colposcopy was carried out based on 2011 International Federation of Cervical Pathology and Colposcopy (IFCPC) and Colposcopy nomenclature. The diagnostic performance of colposcopy for identifying CIN2 + was evaluated compared with biopsies. The Kappa and McNemar tests were used to perform statistical analyses. RESULTS: Among the study population, 11.0% had pathologic CIN2+. The relative sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of colposcopy for histologic CIN2 + were 51.2%, 96.5%, 64.2% and 94.1%, respectively. The senior colposcopists (80.6%) had a higher colposcopic accuracy to diagnose histologic CIN2 + than junior colposcopists (68.6%). In subgroup analyses, age group ≥ 60 years (70.3%) showed lowest diagnostic accuracy when compared with age groups of < 45 years (84.4%) and 45-59 years (74.9%). CONCLUSION: Our findings suggest an increased risk of diagnostic inaccuracy of colposcopy in identifying CIN2 + in those ≥ 60 years of age with TZ3, and the accuracy of colposcopy is required to be further improved.


Subject(s)
Squamous Intraepithelial Lesions , Uterine Cervical Dysplasia , Uterine Cervical Neoplasms , Humans , Female , Pregnancy , Middle Aged , Colposcopy , Retrospective Studies , Cervix Uteri/pathology , Uterine Cervical Dysplasia/diagnosis , Uterine Cervical Neoplasms/diagnosis , Uterine Cervical Neoplasms/pathology , Biopsy
11.
BMC Cancer ; 24(1): 353, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38504158

ABSTRACT

NUP155 is reported to be correlated with tumor development. However, the role of NUP155 in tumor physiology and the tumor immune microenvironment (TIME) has not been previously examined. This study comprehensively investigated the expression, immunological function, and prognostic significance of NUP155 in different cancer types. Bioinformatics analysis revealed that NUP155 was upregulated in 26 types of cancer. Additionally, NUP155 upregulation was strongly correlated with advanced pathological or clinical stages and poor prognosis in several cancers. Furthermore, NUP155 was significantly and positively correlated with DNA methylation, tumor mutational burden, microsatellite instability, and stemness score in most cancers. Additionally, NUP155 was also found to be involved in TIME and closely associated with tumor infiltrating immune cells and immunoregulation-related genes. Functional enrichment analysis revealed a strong correlation between NUP155 and immunomodulatory pathways, especially antigen processing and presentation. The role of NUP155 in breast cancer has not been examined. This study, for the first time, demonstrated that NUP155 was upregulated in breast invasive carcinoma (BRCA) cells and revealed its oncogenic role in BRCA using molecular biology experiments. Thus, our study highlights the potential value of NUP155 as a biomarker in the assessment of prognostic prediction, tumor microenvironment and immunotherapeutic response in pan-cancer.


Subject(s)
Breast Neoplasms , Carcinoma , Humans , Female , Breast Neoplasms/genetics , Apoptosis , Breast , Cell Proliferation/genetics , Prognosis , Tumor Microenvironment/genetics , Nuclear Pore Complex Proteins/genetics
12.
FASEB J ; 37(6): e22948, 2023 06.
Article in English | MEDLINE | ID: mdl-37130016

ABSTRACT

Bryostatin-1 (Bryo-1) exerts antioxidative stress effects in multiple diseases, and we confirmed that it improves intestinal barrier dysfunction in experimental colitis. Nevertheless, there are few reports on its action on intestinal ischemia/reperfusion (I/R). In this study, we mainly explored the effect of Bryo-1 on intestinal I/R injury and determined the mechanism. C57BL/6J mice underwent temporary superior mesenteric artery (SMA) obturation to induce I/R, on the contrary, Caco-2 cells suffered to oxygen and glucose deprivation/reperfusion (OGD/R) to establish the in vitro model. RAW264.7 cells were stimulated with LPS to induce macrophage inflammation. The drug gradient experiment was used to demonstrate in vivo and in vitro models. Bryo-1 ameliorated the intestinal I/R-induced injury of multiple organs and epithelial cells. It also alleviated intestinal I/R-induced barrier disruption of intestines according to the histology, intestinal permeability, intestinal bacterial translocation rates, and tight junction protein expression results. Bryo-1 significantly inhibited oxidative stress damages and inflammation, which may contribute to the restoration of intestinal barrier function. Further, Bryo-1 significantly activated Nrf2/HO-1 signaling in vivo. However, the deletion of Nrf2 in Caco-2 and RAW264.7 cells attenuated the protective functions of Bryo-1 and significantly abolished the anti-inflammatory effect of Bryo-1 on LPS-induced macrophage inflammation. Bryo-1 protects intestines against I/R-induced injury. It is associated with intestinal barrier protection, as well as inhibition of inflammation and oxidative stress partly through Nrf2/HO-1 signaling.


Subject(s)
Intestinal Diseases , Reperfusion Injury , Animals , Humans , Mice , Bryostatins/pharmacology , Caco-2 Cells , Inflammation/metabolism , Intestinal Diseases/prevention & control , Ischemia , Lipopolysaccharides/pharmacology , Mice, Inbred C57BL , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Reperfusion , Reperfusion Injury/metabolism
13.
Virol J ; 21(1): 218, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39278908

ABSTRACT

BACKGROUND: In China, the problem of HIV infection among the older people has become increasingly prominent. This study aimed to analyze the pattern and influencing factors of HIV transmission based on a genomic and spatial epidemiological analysis among this population. METHODS: A total of 432 older people who were aged ≥ 50 years, newly diagnosed with HIV-1 between January 2018 and December 2021 and without a history of ART were enrolled. HIV-1 pol gene sequence was obtained by viral RNA extraction and nested PCR. The molecular transmission network was constructed using HIV-TRACE and the spatial distribution analyses were performed in ArcGIS. The multivariate logistic regression analysis was performed to analyze the factors associated with clustering. RESULTS: A total of 382 sequences were successfully sequenced, of which CRF07_BC (52.3%), CRF01_AE (32.5%), and CRF08_BC (6.8%) were the main HIV-1 strains. A total of 176 sequences entered the molecular network, with a clustering rate of 46.1%. Impressively, the clustering rate among older people infected through commercial heterosexual contact was as high as 61.7% and three female sex workers (FSWs) were observed in the network. The individuals who were aged ≥ 60 years and transmitted the virus by commercial heterosexual contact had a higher clustering rate, while those who were retirees or engaged other occupations and with higher education degree were less likely to cluster. There was a positive spatial correlation of clustering rate (Global Moran I = 0.206, P < 0.001) at the town level and the highly aggregated regions were mainly distributed in rural area. We determined three large clusters which mainly spread in the intra-region of certain towns in rural areas. Notably, 54.5% of cases in large clusters were transmitted through commercial heterosexual contact. CONCLUSIONS: Our joint analysis of molecular and spatial epidemiology effectively revealed the spatial aggregation of HIV transmission and highlighted that towns of high aggregation were mainly located in rural area. Also, we found vital role of commercial heterosexual contact in HIV transmission among older people. Therefore, health resources should be directed towards highly aggregated rural areas and prevention strategy should take critical persons as entry points.


Subject(s)
HIV Infections , HIV-1 , Molecular Epidemiology , Humans , HIV-1/genetics , HIV-1/classification , HIV-1/isolation & purification , China/epidemiology , HIV Infections/transmission , HIV Infections/epidemiology , HIV Infections/virology , Female , Male , Middle Aged , Aged , Phylogeny , Genotype , RNA, Viral/genetics , Spatial Analysis , Cluster Analysis , Aged, 80 and over
14.
Am J Geriatr Psychiatry ; 32(9): 1130-1140, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38677962

ABSTRACT

OBJECTIVE: Anxiety superimposed on late life depression (LLD) results in greater changes to prefrontal and medial temporal brain regions compared to depression alone. Yet, the combined impact of anxiety and depression on cognition in LLD has not been thoroughly investigated. The current study investigated whether annual changes in state and trait anxiety were associated with cognitive changes in older adults with major depression. We hypothesized that the presence of anxiety among older depressed adults would be associated with worse cognitive performance in the domains of memory and executive functioning over time. DESIGN: Three-year longitudinal observational study of older adults with LLD who were offered antidepressant treatment. SETTING: Academic Health Center. METHODS: Participants included 124 adults aged 60+ who met criteria for major depression at baseline. The association between anxiety and cognition was examined with separate multilevel linear models that addressed both between-subject and within-person effects of state and trait anxiety on cognitive functioning tests. RESULTS: Individuals who experienced annual increases in anxiety above his/her personal average also experienced cognitive decline. Increases in state anxiety were associated with declines in memory and global cognition. By contrast, increases in trait anxiety were associated with declines in mental flexibility and memory. These findings remained significant even when controlling for changes in depression over time. CONCLUSION: In LLD, individual increases in state and trait anxiety were associated with cognitive declines in different domains.


Subject(s)
Anxiety , Depressive Disorder, Major , Executive Function , Humans , Depressive Disorder, Major/psychology , Aged , Male , Female , Longitudinal Studies , Anxiety/psychology , Middle Aged , Executive Function/physiology , Cognitive Dysfunction/physiopathology , Cognitive Dysfunction/etiology , Cognition/physiology , Memory/physiology , Aged, 80 and over
15.
BMC Infect Dis ; 24(1): 583, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38867161

ABSTRACT

OBJECTIVE: The objective of this study was to conduct a comprehensive analysis of the molecular transmission networks and transmitted drug resistance (TDR) patterns among individuals newly diagnosed with HIV-1 in Nanjing. METHODS: Plasma samples were collected from newly diagnosed HIV patients in Nanjing between 2019 and 2021. The HIV pol gene was amplified, and the resulting sequences were utilized for determining TDR, identifying viral subtypes, and constructing molecular transmission network. Logistic regression analyses were employed to investigate the epidemiological characteristics associated with molecular transmission clusters. RESULTS: A total of 1161 HIV pol sequences were successfully extracted from newly diagnosed individuals, each accompanied by reliable epidemiologic information. The analysis revealed the presence of multiple HIV-1 subtypes, with CRF 07_BC (40.57%) and CRF01_AE (38.42%) being the most prevalent. Additionally, six other subtypes and unique recombinant forms (URFs) were identified. The prevalence of TDR among the newly diagnosed cases was 7.84% during the study period. Employing a genetic distance threshold of 1.50%, the construction of the molecular transmission network resulted in the identification of 137 clusters, encompassing 613 nodes, which accounted for approximately 52.80% of the cases. Multivariate analysis indicated that individuals within these clusters were more likely to be aged ≥ 60, unemployed, baseline CD4 cell count ≥ 200 cells/mm3, and infected with the CRF119_0107 (P < 0.05). Furthermore, the analysis of larger clusters revealed that individuals aged ≥ 60, peasants, those without TDR, and individuals infected with the CRF119_0107 were more likely to be part of these clusters. CONCLUSIONS: This study revealed the high risk of local HIV transmission and high TDR prevalence in Nanjing, especially the rapid spread of CRF119_0107. It is crucial to implement targeted interventions for the molecular transmission clusters identified in this study to effectively control the HIV epidemic.


Subject(s)
Drug Resistance, Viral , HIV Infections , HIV-1 , Humans , HIV-1/genetics , HIV-1/classification , HIV Infections/epidemiology , HIV Infections/transmission , HIV Infections/virology , Male , Female , Adult , China/epidemiology , Middle Aged , Drug Resistance, Viral/genetics , Young Adult , Prevalence , Genotype , Phylogeny , Adolescent , Molecular Epidemiology , pol Gene Products, Human Immunodeficiency Virus/genetics , Aged
16.
Epilepsy Behav ; 151: 109647, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38232558

ABSTRACT

Childhood absence epilepsy (CAE) is a common type of idiopathic generalized epilepsy, manifesting as daily multiple absence seizures. Although seizures in most patients can be adequately controlled with first-line antiseizure medication (ASM), approximately 25 % of patients respond poorly to first-line ASM. In addition, an accurate method for predicting first-line medication responsiveness is lacking. We used the quantitative electroencephalogram (QEEG) features of patients with CAE along with machine learning to predict the therapeutic effects of valproic acid in this population. We enrolled 25 patients with CAE from multiple medical centers. Twelve patients who required additional medication for seizure control or who were shifted to another ASM and 13 patients who achieved seizure freedom with valproic acid within 6 months served as the nonresponder and responder groups. Using machine learning, we analyzed the interictal background EEG data without epileptiform discharge before ASM. The following features were analyzed: EEG frequency bands, Hjorth parameters, detrended fluctuation analysis, Higuchi fractal dimension, Lempel-Ziv complexity (LZC), Petrosian fractal dimension, and sample entropy (SE). We applied leave-one-out cross-validation with support vector machine, K-nearest neighbor (KNN), random forest, decision tree, Ada boost, and extreme gradient boosting, and we tested the performance of these models. The responders had significantly higher alpha band power and lower delta band power than the nonresponders. The Hjorth mobility, LZC, and SE values in the temporal, parietal, and occipital lobes were higher in the responders than in the nonresponders. Hjorth complexity was higher in the nonresponders than in the responders in almost all the brain regions, except for the leads FP1 and FP2. Using KNN classification with theta band power in the temporal lobe yielded optimal performance, with sensitivity of 92.31 %, specificity of 76.92 %, accuracy of 84.62 %, and area under the curve of 88.46 %.We used various EEG features along with machine learning to accurately predict whether patients with CAE would respond to valproic acid. Our method could provide valuable assistance for pediatric neurologists in selecting suitable ASM.


Subject(s)
Epilepsy, Absence , Child , Humans , Epilepsy, Absence/diagnosis , Epilepsy, Absence/drug therapy , Valproic Acid/therapeutic use , Seizures/drug therapy , Electroencephalography/methods , Machine Learning
17.
J Biochem Mol Toxicol ; 38(1): e23581, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38044485

ABSTRACT

Colorectal cancer (CRC) is a common digestive tract tumor with a high incidence and a poor prognosis. Traditional chemotherapy drugs are usually accompanied by unpleasant side effects, highlighting the importance of exploring new adjunctive drugs. In this study, we aimed to explore the role of ursolic acid (UA) in CRC cells. Specifically, HT-29 cells were treated with UA at different concentrations (10, 20, 30, and 40 µM), and the expression of miR-140-5p, tumor growth factor-ß3 (TGF-ß3), ß-catenin, and cyclin D1 was determined by real-time quantitative PCR. The cell cycle and apoptosis were checked by flow cytometry, and cell proliferation was detected by Cell Counting Kit-8 assay. The HT-29 cell model was established through overexpression (miR-140-5p mimics) and interference (miR-140-5p inhibitor) of miR-140-5p. Western blot was used to detect the protein expression of TGF-ß3. We found that UA could inhibit the proliferation of HT-29 cells, block cells in the G1 phase, and promote cell apoptosis. After UA treatment, the expression of miR-140-5p increased and TGF-ß3 decreased. Notably, miR-140-5p downregulated the expression of TGF-ß3, while the overexpression of miR-140-5p exerted a similar function to UA in HT-29 cells. Additionally, the messenger RNA expression of TGF-ß3, ß-catenin, and cyclin D1 was decreased in HT-29 cells after UA treatment. In conclusion, UA inhibited CRC cell proliferation and cell cycle and promoted apoptosis by regulating the miR-140-5p/TGF-ß3 axis, which may be related to the inhibition of Wnt/ß-catenin signaling pathway.


Subject(s)
Colorectal Neoplasms , MicroRNAs , Humans , beta Catenin/metabolism , MicroRNAs/metabolism , Cell Line, Tumor , Cyclin D1/genetics , Cyclin D1/metabolism , Transforming Growth Factor beta3/genetics , Transforming Growth Factor beta3/metabolism , Ursolic Acid , Down-Regulation , Cell Proliferation/genetics , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Gene Expression Regulation, Neoplastic
18.
J Chem Phys ; 161(10)2024 Sep 14.
Article in English | MEDLINE | ID: mdl-39268821

ABSTRACT

In this work, a hollow MoSe2/CuS type-II heterojunction was fabricated using hollow MoSe2 nanospheres as the basis for structural design. UV-Vis-NIR diffuse absorption tests show that MoSe2/CuS has a broad spectral absorption to extend the optical response range from UV-Vis to NIR. The light source utilization rate and interfacial area are increased by the hollow MoSe2/CuS core-shell structure. The broad absorption ability of MoSe2/CuS can facilitate the photocatalysis process. As the electrochemical impedance of MoSe2/CuS is lower than that of the MoSe2, MoSe2/CuS has a good photogenerated carrier separation efficiency. Benefiting from the synergistic facilitation effect of the multi-level 3D hollow nanosphere and the significant space charge region in type-II heterojunction, the RhB degradation efficiency of MoSe2/CuS reached 96.0% in 120.0 min under Xe (350 W) broadband spectrum light irradiation. The photocatalysis mechanism of the hollow MoSe2/CuS core-shell structure was investigated. This work provides an insight into the application of broad spectrum semiconductor heterojunctions to solve environmental problems.

19.
BMC Ophthalmol ; 24(1): 323, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39103779

ABSTRACT

INTRODUCTION: Early prediction and timely treatment are essential for minimizing the risk of visual loss or blindness of retinopathy of prematurity, emphasizing the importance of ROP screening in clinical routine. OBJECTIVE: To establish predictive models for ROP occurrence based on the risk factors using artificial neural network. METHODS: A cohort of 591 infants was recruited in this retrospective study. The association between ROP and perinatal factors was analyzed by univariate analysis and multivariable logistic regression. We developed predictive models for ROP screening using back propagation neural network, which was further optimized by applying genetic algorithm method. To assess the predictive performance of the models, the areas under the curve, sensitivity, specificity, negative predictive value, positive predictive value and accuracy were used to show the performances of the prediction models. RESULTS: ROP of any stage was found in 193 (32.7%) infants. Twelve risk factors of ROP were selected. Based on these factors, predictive models were built using BP neural network and genetic algorithm-back propagation (GA-BP) neural network. The areas under the curve for prediction models were 0.857, and 0.908 in test, respectively. CONCLUSIONS: We developed predictive models for ROP using artificial neural network. GA-BP neural network exhibited superior predictive ability for ROP when dealing with its non-linear clinical data.


Subject(s)
Gestational Age , Neural Networks, Computer , Retinopathy of Prematurity , Humans , Retinopathy of Prematurity/diagnosis , Retinopathy of Prematurity/epidemiology , Retrospective Studies , Infant, Newborn , Female , Male , Risk Factors , Predictive Value of Tests , ROC Curve , Neonatal Screening/methods , Algorithms
20.
Article in English | MEDLINE | ID: mdl-38730558

ABSTRACT

Cyclophilin B (CypB), a significant member of immunophilins family with peptidyl-prolyl cis-trans isomerase (PPIase) activity, is crucial for the growth and metabolism of prokaryotes and eukaryotes. Sporothrix globosa (S. globosa), a principal pathogen in the Sporothrix complex, causes sporotrichosis. Transcriptomic analysis identified the cypB gene as highly expressed in S. globosa. Our previous study demonstrated that the recombinant Escherichia coli strain containing SgcypB gene failed to produce sufficient product when it was induced to express the protein, implying the potential toxicity of recombinant protein to the bacterial host. Bioinformatics analysis revealed that SgCypB contains transmembrane peptides within the 52 amino acid residues at the N-terminus and 21 amino acids near the C-terminus, and 18 amino acid residues within the cytoplasm. AlphaFold2 predicted a SgCypB 3D structure in which there is an independent PPIase domain consisting of a spherical extracellular part. Hence, we chose to express the extracellular domain to yield high-level recombinant protein with PPIase activity. Finally, we successfully produced high-yield, truncated recombinant CypB protein from S. globosa (SgtrCypB) that retained characteristic PPIase activity without host bacterium toxicity. This study presents an alternative expression strategy for proteins toxic to prokaryotes, such as SgCypB. ONE-SENTENCE SUMMARY: The recombinant cyclophilin B protein of Sporothrix globosa was expressed successfully by retaining extracellular domain with peptidyl-prolyl cis-trans isomerase activity to avoid toxicity to the host bacterium.


Subject(s)
Cyclophilins , Escherichia coli , Recombinant Proteins , Sporothrix , Sporothrix/genetics , Sporothrix/enzymology , Sporothrix/drug effects , Sporothrix/metabolism , Cyclophilins/genetics , Cyclophilins/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Gene Expression , Computational Biology , Peptidylprolyl Isomerase/genetics , Peptidylprolyl Isomerase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL