Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Cell ; 178(3): 567-584.e19, 2019 07 25.
Article in English | MEDLINE | ID: mdl-31348886

ABSTRACT

The vaccine-mediated elicitation of antibodies (Abs) capable of neutralizing diverse HIV-1 strains has been a long-standing goal. To understand how broadly neutralizing antibodies (bNAbs) can be elicited, we identified, characterized, and tracked five neutralizing Ab lineages targeting the HIV-1-fusion peptide (FP) in vaccinated macaques over time. Genetic and structural analyses revealed two of these lineages to belong to a reproducible class capable of neutralizing up to 59% of 208 diverse viral strains. B cell analysis indicated each of the five lineages to have been initiated and expanded by FP-carrier priming, with envelope (Env)-trimer boosts inducing cross-reactive neutralization. These Abs had binding-energy hotspots focused on FP, whereas several FP-directed Abs induced by immunization with Env trimer-only were less FP-focused and less broadly neutralizing. Priming with a conserved subregion, such as FP, can thus induce Abs with binding-energy hotspots coincident with the target subregion and capable of broad neutralization.


Subject(s)
AIDS Vaccines/immunology , Antibodies, Neutralizing/immunology , HIV Antibodies/immunology , Peptides/immunology , Amino Acid Sequence , Animals , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/classification , B-Lymphocytes/cytology , B-Lymphocytes/metabolism , Crystallography, X-Ray , Female , HEK293 Cells , HIV Antibodies/chemistry , HIV Antibodies/classification , HIV-1/metabolism , Humans , Macaca mulatta , Male , Peptides/chemistry , Protein Structure, Tertiary , env Gene Products, Human Immunodeficiency Virus/chemistry , env Gene Products, Human Immunodeficiency Virus/immunology , env Gene Products, Human Immunodeficiency Virus/metabolism
2.
Small ; 20(26): e2309114, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38233203

ABSTRACT

Deep cracking of bulky hydrocarbons on zeolite-containing catalysts into light products with high activity, desired selectivity, and long-term stability is demanded but challenging. Herein, the efficient deep cracking of 1,3,5-triisopropylbenzene (TIPB) on intimate ZSM-5@AlSBA-15 composites via tandem catalysis is demonstrated. The rapid aerosol-confined assembly enables the synthesis of the composites composed of a continuous AlSBA-15 matrix decorated with isolated ZSM-5 nanoparticles. The two components at various ZSM-5/AlSBA-15 mass ratios are uniformly mixed with chemically bonded pore walls, interconnected pores, and eliminated external surfaces of nanosized ZSM-5. The typical composite with a ZSM-5/AlSBA-15 mass ratio of 0.25 shows superior performance in TIPB cracking with outstanding activity (≈100% conversion) and deep cracking selectivity (mass of propylene + benzene > 60%) maintained for a long time (> 6 h) under a high TIPB flux (2 mL h-1), far better (several to tens of times higher) than the single-component and physically mixed catalysts and superior to literature results. The high performance is attributed to the cooperative tandem catalytic process, that is, selective and timely pre-cracking of TIPB to isopropylbenzene (IPB) in AlSBA-15 and subsequently timely diffusion and deep cracking of IPB in nanosized ZSM-5.

3.
Small ; 19(7): e2204744, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36494189

ABSTRACT

Supported bimetallic nanoparticles (NPs) with ultrasmall sizes and homogeneous alloying are attractive for catalysis. However, facile synthesis of this type of material remains very challenging. Here, the aerosol drying impregnation method for rapid, scalable, and general synthesis of silica-supported bimetallic NPs is proposed. The method relies on aerosol spray drying to promote the mixing and dispersing of binary metal precursors on SiO2 . It is capable of controlling the composition and size of bimetallic NPs and avoids the use of expensive metal complex salts and complicated experiment procedures. Twelve permutations combining a noble metal (Pd, Ru, and Pt) and a base one (Fe, Co, Ni, and Cu) with ultrasmall sizes (1.4-2.2 nm in average size), uniform dispersion, and good alloying are synthesized. Interesting activity and selectivity trends in catalytic semihydrogenation of phenylacetylene over the supported Pd-based NPs can be observed. The silica-supported PdNi NPs deliver both high activity and styrene selectivity. Spectroscopic and density functional theory calculation results reveal the improved chemoselectivity originated from the suitably down-shifted d-band center of the PdNi NPs inducing an increased energy barrier for overhydrogenation and a weakened styrene adsorption.

4.
Powder Technol ; 415: 118168, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36533138

ABSTRACT

Based on the drug repositioning strategy, niclosamide (NCL) has shown potential applications for treating COVID-19. However, the development of new formulations for effective NCL delivery is still challenging. Herein, NCL-embedded dry powder for inhalation (NeDPI) was fabricated by a novel spray freeze drying technology. The addition of Tween-80 together with 1,2-Distearoyl-sn-glycero-3-phosphocholine showed the synergistic effects on improving both the dispersibility of primary NCL nanocrystals suspended in the feed liquid and the spherical structure integrity of the spray freeze dried (SFD) microparticle. The SFD microparticle size, morphology, crystal properties, flowability and aerosol performance were systematically investigated by regulating the feed liquid composition and freezing temperature. The addition of leucine as the aerosol enhancer promoted the microparticle sphericity with greatly improved flowability. The optimal sample (SF- 80D-N20L2D2T1) showed the highest fine particle fraction of ∼47.83%, equivalently over 3.8 mg NCL that could reach the deep lung when inhaling 10 mg dry powders.

5.
AAPS PharmSciTech ; 23(6): 211, 2022 Aug 02.
Article in English | MEDLINE | ID: mdl-35915199

ABSTRACT

Active pharmaceutical ingredient (API)-embedded dry powder for inhalation (AeDPI) is highly desirable for pulmonary delivery of high-dose drug. Herein, a series of spray freeze-dried (SFD) ciprofloxacin hydrochloride (CH)-embedded dry powders were fabricated via a self-designed micro-fluidic spray freeze tower (MFSFT) capable of tuning freezing temperature of cooling air as the refrigerant medium. The effects of total solid content (TSC), mass ratio of CH to L-leucine (Leu) as the aerosol dispersion enhancer, and the freezing temperature on particle morphology, size, density, moisture content, crystal properties, flowability, and aerodynamic performance were investigated. It was found that the Leu content and freezing temperature had considerable influence on the fine particle fraction (FPF) of the SFD microparticles. The optimal formulation (CH/Leu = 7:3, TSC = 2%w/w) prepared at - 40°C exhibited remarkable effective drug deposition (~ 33.38%), good aerodynamic performance (~ 47.69% FPF), and excellent storage stability with ultralow hygroscopicity (~ 1.93%). This work demonstrated the promising feasibility of using the MFSFT instead of conventional liquid nitrogen assisted method in the research and development of high-dose AeDPI.


Subject(s)
Ciprofloxacin , Dry Powder Inhalers , Administration, Inhalation , Aerosols/chemistry , Chemistry, Pharmaceutical/methods , Ciprofloxacin/chemistry , Dry Powder Inhalers/methods , Freeze Drying/methods , Leucine , Particle Size , Powders/chemistry
6.
J Virol ; 94(13)2020 06 16.
Article in English | MEDLINE | ID: mdl-32295908

ABSTRACT

HIV-1 envelope (Env) trimers, stabilized in a prefusion-closed conformation, can elicit humoral responses capable of neutralizing HIV-1 strains closely matched in sequence to the immunizing strain. One strategy to increase elicited neutralization breadth involves vaccine priming of immune responses against a target site of vulnerability, followed by vaccine boosting of these responses with prefusion-closed Env trimers. This strategy has succeeded at the fusion peptide (FP) site of vulnerability in eliciting cross-clade neutralizing responses in standard vaccine-test animals. However, the breadth and potency of the elicited responses have been less than optimal. Here, we identify three mutations (3mut), Met302, Leu320, and Pro329, that stabilize the apex of the Env trimer in a prefusion-closed conformation and show antigenically, structurally, and immunogenically that combining 3mut with other approaches (e.g., repair and stabilize and glycine-helix breaking) yields well-behaved clade C-Env trimers capable of boosting the breadth of FP-directed responses. Crystal structures of these trimers confirmed prefusion-closed apexes stabilized by hydrophobic patches contributed by Met302 and Leu320, with Pro329 assuming canonically restricted dihedral angles. We substituted the N-terminal eight residues of FP (FP8, residues 512 to 519) of these trimers with the second most prevalent FP8 sequence (FP8v2, AVGLGAVF) and observed a 3mut-stabilized consensus clade C-Env trimer with FP8v2 to boost the breadth elicited in guinea pigs of FP-directed responses induced by immunogens containing the most prevalent FP8 sequence (FP8v1, AVGIGAVF). Overall, 3mut can stabilize the Env trimer apex, and the resultant apex-stabilized Env trimers can be used to expand the neutralization breadth elicited against the FP site of vulnerability.IMPORTANCE A major hurdle to the development of an effective HIV-1 vaccine is the elicitation of serum responses capable of neutralizing circulating strains of HIV, which are extraordinarily diverse in sequence and often highly neutralization resistant. Recently, we showed how sera with 20 to 30% neutralization breadth could, nevertheless, be elicited in standard vaccine test animals by priming with the most prevalent N-terminal 8 residues of the HIV-1 fusion peptide (FP8), followed by boosting with a stabilized BG505-envelope (Env) trimer. Here, we show that subsequent boosting with a 3mut-apex-stabilized consensus C-Env trimer, modified to have the second most prevalent FP8 sequence, elicits higher neutralization breadth than that induced by continued boosting with the stabilized BG505-Env trimer. With increased neutralizing breadth elicited by boosting with a heterologous trimer containing the second most prevalent FP8 sequence, the fusion peptide-directed immune-focusing approach moves a step closer toward realizing an effective HIV-1 vaccine regimen.


Subject(s)
AIDS Vaccines/immunology , env Gene Products, Human Immunodeficiency Virus/genetics , env Gene Products, Human Immunodeficiency Virus/immunology , Animals , Antibodies, Neutralizing/immunology , Female , Guinea Pigs , HEK293 Cells , HIV Antibodies/immunology , HIV Seropositivity , HIV-1/immunology , Humans , Immunization, Secondary , Peptides , Vaccines, Subunit
7.
Environ Sci Technol ; 54(6): 3714-3724, 2020 03 17.
Article in English | MEDLINE | ID: mdl-32069034

ABSTRACT

Bimetallic Fe-Mn oxide (BFMO) has been regarded as a promising activator of peroxysulfate (PS), the sustained activity and durability of BFMO for long-term activation of PS in situ, however, is unclear for groundwater remediation. A BFMO (i.e., Mn1.5FeO6.35) was prepared and explored for PS-based in situ chemical oxidation (ISCO) of trichloroethylene (TCE) in sand columns with simulated/actual groundwater (SGW/AGW). The sustained activity of BFMO, oxidant utilization efficiency, and postreaction characterization were particularly investigated. Electron spin resonance (ESR) and radical scavenging tests implied that sulfate radicals (SO4•-) and hydroxyl radicals (HO•) played major roles in degrading TCE, whereas singlet oxygen (1O2) contributed less to TCE degradation by BFMO-activated Oxone. Fast degradation and almost complete dechlorination of TCE in AGW were obtained, with reaction stoichiometry efficiencies (RSE) of ΔTCE/ΔOxone at 3-5%, much higher than those reported RSE values in H2O2-based ISCO (≤0.28%). HCO3- did not show detrimental effect on TCE degradation, and effects of natural organic matters (NOM) were negligible at high Oxone dosage. Postreaction characterizations displayed that the BFMO was remarkably stable with sustained activity for Oxone activation after 115 days of continuous-flow test, which therefore can be promising catalyst for Oxone-based ISCO for TCE-contaminated groundwater remediation.


Subject(s)
Groundwater , Trichloroethylene , Water Pollutants, Chemical , Hydrogen Peroxide , Oxidation-Reduction , Oxides , Sulfuric Acids
8.
Int J Mol Sci ; 20(9)2019 May 10.
Article in English | MEDLINE | ID: mdl-31083348

ABSTRACT

Detrimental health consequences from exposure to space radiation are a major concern for long-duration human exploration missions to the Moon or Mars. Cellular responses to radiation are expected to be heterogeneous for space radiation exposure, where only high-energy protons and other particles traverse a fraction of the cells. Therefore, assessing DNA damage and DNA damage response in individual cells is crucial in understanding the mechanisms by which cells respond to different particle types and energies in space. In this project, we identified a cell-specific signature for radiation response by using single-cell transcriptomics of human lymphocyte subpopulations. We investigated gene expression in individual human T lymphocytes 3 h after ex vivo exposure to 2-Gy gamma rays while using the single-cell sequencing technique (10X Genomics). In the process, RNA was isolated from ~700 irradiated and ~700 non-irradiated control cells, and then sequenced with ~50 k reads/cell. RNA in each of the cells was distinctively barcoded prior to extraction to allow for quantification for individual cells. Principal component and clustering analysis of the unique molecular identifier (UMI) counts classified the cells into three groups or sub-types, which correspond to CD4+, naïve, and CD8+/NK cells. Gene expression changes after radiation exposure were evaluated using negative binomial regression. On average, BBC3, PCNA, and other TP53 related genes that are known to respond to radiation in human T cells showed increased activation. While most of the TP53 responsive genes were upregulated in all groups of cells, the expressions of IRF1, STAT1, and BATF were only upregulated in the CD4+ and naïve groups, but were unchanged in the CD8+/NK group, which suggests that the interferon-gamma pathway does not respond to radiation in CD8+/NK cells. Thus, single-cell RNA sequencing technique was useful for simultaneously identifying the expression of a set of genes in individual cells and T lymphocyte subpopulation after gamma radiation exposure. The degree of dependence of UMI counts between pairs of upregulated genes was also evaluated to construct a similarity matrix for cluster analysis. The cluster analysis identified a group of TP53-responsive genes and a group of genes that are involved in the interferon gamma pathway, which demonstrate the potential of this method for identifying previously unknown groups of genes with similar expression patterns.


Subject(s)
Radiation Exposure , STAT1 Transcription Factor/metabolism , Sequence Analysis, RNA , Signal Transduction , Single-Cell Analysis , T-Lymphocyte Subsets/metabolism , T-Lymphocyte Subsets/radiation effects , Tumor Suppressor Protein p53/metabolism , Cluster Analysis , Gamma Rays , Humans , Immunophenotyping , Reproducibility of Results , Signal Transduction/genetics , Signal Transduction/radiation effects , Up-Regulation/genetics , Up-Regulation/radiation effects
9.
Small ; 13(42)2017 11.
Article in English | MEDLINE | ID: mdl-28940901

ABSTRACT

To maximize the utilizing efficiency of cobalt (Co) and optimize its catalytic activity and stability, engineering of size and interfacial chemical properties, as well as controllable support are of ultimate importance. Here, the concept of coating uniform thin Co/N-doped carbon layers into the mesopore surfaces of mesoporous silica is proposed for heterogeneous aqueous catalysis. To approach the target, a one-step solvent-free melting-assisted coating process, i.e., heating a mixture of a cobalt salt, an amino acid (AA), and a mesoporous silica, is developed for the synthesis of mesoporous composites with thin Co/N-doped carbon layers uniformly coated within mesoporous silica, high surface areas (250-630 m2 g-1 ), ordered mesopores (7.0-8.4 nm), and high water dispersibility. The strong silica/AA adhesive interactions and AA cohesive interactions direct the uniform coating process. The metal/N coordinating, carbon anchoring, and mesopore confining lead to the formation of tiny Co nanoclusters. The carbon intercalation and N coordination optimize the interfacial properties of Co for catalysis. The optimized catalyst exhibits excellent catalytic performance for tandem hydrogenation of nitrobenzene and dehydrogenation of NaBH4 with well-matched reaction kinetics, 100% conversion and selectivity, high turnover frequencies, up to ≈6.06 molnitrobenzene molCo-1 min-1 , the highest over transition-metal catalysts, and excellent stability and magnetic separability.

10.
J Colloid Interface Sci ; 673: 847-859, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38908284

ABSTRACT

Morphology and facet effects of metal oxides in heterogeneous catalytic ozonation (HCO) are attracting increasing interests. In this paper, the different HCO performances for degradation and mineralization of phenol of seven ceria (CeO2) catalysts, including four with different morphologies (nanorod, nanocube, nanooctahedron and nanopolyhedron) and three with the same nanorod morphology but different exposed facets, are comparatively studied. CeO2 nanorods with (110) and (100) facets exposed show the best performance, much better than that of single ozonation, while CeO2 nanocubes and nanooctahedra show performances close to single ozonation. The underlying reason for their different HCO performances is revealed using various experimental and density functional theory (DFT) calculation results and the possible catalytic reaction mechanism is proposed. The oxygen vacancy (OV) is found to be pivotal for the HCO performance of the different CeO2 catalysts regardless of their morphology or exposed facet. A linear correlation is discerned between the rate of catalytic decomposition of dissolved ozone (O3) and the density of Frenkel-type OV. DFT calculations and in-situ spectroscopic studies ascertain that the existence of OV can boost O3 activation on both the hydroxyl (OH) and Ce sites of CeO2. Conversely, various facets without OV exhibit similar O3 adsorption energies. The OH group plays an important role in activating O3 to produce hydroxyl radical (∙OH) for improved mineralization. This work may offer valuable insights for designing Facet- and OV-regulated catalysts in HCO for the abatement of refractory organic pollutants.

11.
World J Mens Health ; 42(1): 148-156, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37652657

ABSTRACT

PURPOSE: Men are increasingly turning toward online direct-to-consumer (DTC) men's health platforms to fulfill their health needs. Research surrounding these platforms is lacking and the motivations and predictors underlying this online health-seeking behavior is largely unknown. This review scopes the existing literature concerning DTC men's health and identifies factors influencing engagement, as well as health outcomes of this platform. MATERIALS AND METHODS: A structured search was performed following PRISMA guidelines. CINAHL via EBSCO, Embase, MEDLINE via Ovid, PsycINFO, PubMed and Web of Science were searched. RESULTS: Peer-reviewed quantitative and qualitative studies with a focus on demographics and characteristics of those using DTC men's health platforms, as well as studies related to patient outcomes using such platforms, were included. Ten of the 3,003 studies identified met the inclusion and exclusion criteria. Four cross-sectional descriptive studies evaluated the motivations behind men's engagement with DTC platforms. Convenience, embarrassment and health motivation were identified as predominant factors associated with DTC platform use. The review identified a lack of qualitative studies, and major limitations were noted in the quantitative studies that impacted the accuracy of findings. Six further quantitative studies explored the quality of care provided by DTC platforms. DTC platforms were found to have a varying level of adherence to established clinical guidelines, but appeared to provide satisfactory patient outcomes with low levels of patient-reported side effects and adverse events. CONCLUSIONS: There is a lack of research within the DTC men's health space given the infancy of the field. Important predictors and motivations underlying men's choices in accessing these platforms have been noted across several studies. However, further studies need to be conducted to investigate the psychosocial underpinnings of this behavior. Studies across a wider variety of male health conditions treated by these platforms will also help to provide insights to guide patient-centered care within the DTC landscape.

12.
Angew Chem Int Ed Engl ; 52(51): 13764-8, 2013 Dec 16.
Article in English | MEDLINE | ID: mdl-24222382

ABSTRACT

Drying to meet you: Using microfluidic jet spray drying technology in conjunction with the evaporation-induced self-assembly strategy gives fast assembly (2 s) of mesoporous carbon microspheres. The key feature of the drying is the formation of a rigid silica crust which locks the particle size and shape.

13.
Asian J Androl ; 25(4): 448-453, 2023.
Article in English | MEDLINE | ID: mdl-36412462

ABSTRACT

In recent years, social research surrounding the consequences of infertility has increasingly focused on the male perspective; however, a gap exists in the understanding of men's experiences of male infertility treatment. This review aims to synthesize the existing evidence concerning the psychological, social, and sexual burden of male infertility treatment on men, as well as patient needs during clinical care. A systematic search identified 12 studies that are diverse in design, setting, and methods. Psychological evaluations have found that urological surgery may have a lasting impact on infertility-specific stress, and treatment failure can lead to feelings of depression, grief, and inadequacy. Men tended to have an avoidant coping mechanism throughout fertility treatment, and their self-esteem, relationship quality, and sexual functions can be tied to outcomes of treatment. Partner bonds can be strengthened by mutual support and enhanced communication; couple separation, however, has been noted as a predominant reason for discontinuing male infertility treatment and may be associated with difficult circumstances surrounding severe male infertility. Surgical treatments can affect the sexual functioning of infertile men; however, the impact of testicular sperm extraction outcomes appears to be psychologically driven whereas the improvements after microsurgical varicocelectomy are only evident in hypogonadal men. Clinically, there is a need for better inclusion, communication, education, and resource provision, to address reported issues of marginalization and uncertainty in men. Routine psychosocial screening in cases of severe male infertility and follow-up in cases of surgical treatment failure are likely beneficial.


Subject(s)
Infertility, Male , Infertility , Humans , Male , Semen , Infertility, Male/therapy , Infertility, Male/psychology , Fertility , Stress, Psychological
14.
J Microencapsul ; 29(7): 677-84, 2012.
Article in English | MEDLINE | ID: mdl-22530685

ABSTRACT

Particulates for pharmaceutical applications require stringent control over their characteristics to realize the optimal therapeutic performance. By generating uniform spray-dried silica particles encapsulating different model drugs via a microfluidic jet spray drying technique, we demonstrated how the effects of formulation and process parameters on the investigated properties could be directly quantified without the complications of wide particle distributions typical of conventional spray drying. The implemented strategies included incorporating lactose to modify the internal microstructures to regulate release, and increasing drying temperature during synthesis to modify the surface features of particles. The physicochemical properties of encapsulated drugs were shown to influence particle morphologies and release profiles, while the pH of initial precursors influenced the particle morphologies with slight effects on the initial release rates. The outcomes would be useful to indentify appropriate formulations and manufacturing parameters in designing spray-dried silica-based microencapsulates with tailor-made controlled release functionalities.


Subject(s)
Capsules/chemical synthesis , Delayed-Action Preparations/chemical synthesis , Silicon Dioxide/chemistry , Capsules/chemistry , Delayed-Action Preparations/chemistry , Hydrogen-Ion Concentration , Microfluidic Analytical Techniques , Particle Size , Surface Properties
15.
Colloids Surf B Biointerfaces ; 217: 112610, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35700565

ABSTRACT

This work aims to prepare uniform spray dried hydroxyapatite-based (SD HAP-based) supraparticles with controllable morphology via micro-fluidic spray drying. Sodium polyacrylate (PAAS) and sodium chloride (NaCl) were used to prepare the precursor suspensions by regulating the inter-particle repulsive forces and electrostatic shielding effect, respectively. The particle size (D50) and zeta potential of the suspension were highly associated with the mass ratio of HAP to PAAS (mH/mP) and the NaCl concentration (CNaCl), which further had significant effect on the permeability (k) of the droplet shell formed during spray drying and ultimately the supraparticle morphology. D50 ˂ 2 µm and absolute zeta potential ˃ 20 mV, obtained when mH/mP ˂ 100 under low CNaCl, rendered ultralow k and consequently deformed supraparticles; Whereas D50 ˃ 2 µm and absolute zeta potential ˂ 20 mV, achieved by decreasing PAAS amount, i.e. mH/mP ≥ 100 or improving CNaCl to efficiently screen surface net charge of HAP, high k and spherical supraparticles were thus preferentially formed.


Subject(s)
Durapatite , Sodium Chloride , Particle Size , Static Electricity , Suspensions
16.
Pharmaceutics ; 14(7)2022 Jun 30.
Article in English | MEDLINE | ID: mdl-35890279

ABSTRACT

This work was aimed to develop levodopa (L-dopa) nasal powder to achieve controllable drug release and high nasal deposition efficiency. A series of uniform microparticles, composed of amorphous L-dopa and excipients of hydroxypropyl methyl cellulose (HPMC), polyvinylpyrrolidone (PVP), or hydroxypropyl-ß-cyclodextrin (CD), were fabricated by a self-designed micro-fluidic spray dryer. The effects of excipient type and drug/excipient mass ratio on the particle size, morphology, density, and crystal property, as well as the in vitro performance of drug release, mucoadhesion, and nasal deposition, were investigated. Increased amounts of added excipient, regardless of its type, could accelerate the L-dopa release to different extent. The addition of CD showed the most obvious effect, i.e., ~83% of L-dopa released in 60 min for SD-L1CD2, compared to 37% for raw L-dopa. HPMC could more apparently improve the particle mucoadhesion than PVP and CD, with respective adhesive forces of ~269, 111, and 26 nN for SD-L1H2, -L1P2, and -L1CD2. Nevertheless, the deposition fractions in the olfactory region for such samples were almost the same (~14%), probably ascribable to their quite similar particle aerodynamic diameter (~30 µm). This work demonstrates a feasible methodology for the development of nasal powder.

17.
Chemosphere ; 307(Pt 2): 135967, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35952795

ABSTRACT

Controllable active site construction, crystal structure regulation and efficient charge separation are core issues in heterogeneous photo-Fenton. Herein, abundant oxygen vacancies and well-dispersed interfacial iron sites are simultaneously constructed in hierarchical nanosheet-assembled BiOCl microflowers. The composites exhibit superior performance in photo-Fenton oxidation of carbamazepine (10 mg L-1) with a low H2O2 concentration (1.3 mM). The high performance highly depends on the synergistic effects between oxygen vacancies and iron species. Rather than modulating the valence band, the involvements of oxygen vacancies and iron species could modify the conduction band of BiOCl. The presence of oxygen vacancies promotes the migration of photo-generated electrons and accelerates the redox cycling of ≡Fe(III)/≡Fe(II) to boost the activation of H2O2 to generate hydroxyl radicals, and oxygen vacancies can be well preserved after cyclic use. This work provides understanding on efficient utilization of oxygen vacancies and interfacial iron sites to assist photo-Fenton and the underlying electron transfer mechanism.


Subject(s)
Iron , Oxygen , Carbamazepine , Catalysis , Ferrous Compounds , Hydrogen Peroxide/chemistry , Iron/chemistry , Oxygen/chemistry
18.
Langmuir ; 27(21): 12910-5, 2011 Nov 01.
Article in English | MEDLINE | ID: mdl-21939243

ABSTRACT

Microencapsulates with defined core-shell structures are of interest for applications, such as controlled release and encapsulation, because of the feasibility of fine-tuning individual functionalities of different parts. Here, we report a new approach for efficient and scalable production of such particles. Eudragit RS (a co-polymer of ethyl acrylate, methyl methacrylate, and a low content of methacrylic acid ester with quaternary ammonium groups) was used as the main shell component, with silica as the core component, formed upon a single-step spray-drying assembly. The method is capable of forming uniform core-shell particles from homogeneous precursors without the use of any organic solvents. Evaporation-induced self-assembly attained the phase separation among different components during drying, resulting in the core-shell spatial configuration, while precise control over particle uniformity was accomplished via a microfluidic jet spray dryer. Direct control over shell thickness can be achieved from the ratio of the core and shell ingredients in the precursors. A fluorescent compound, rhodamine B, is used as a highly water-soluble model component to investigate the controlled release properties of these microencapsulates, with the release behaviors shown to be significantly dependent upon their architectures.


Subject(s)
Capsules/chemistry , Microtechnology/methods , Acrylic Resins/chemistry , Coated Materials, Biocompatible/chemistry , Delayed-Action Preparations , Hydrolysis , Light , Particle Size , Scattering, Radiation , Silanes/chemistry , Water/chemistry
19.
J Colloid Interface Sci ; 581(Pt B): 964-978, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-32956914

ABSTRACT

Supported copper oxides with well-dispersed metal species, small size, tunable valence and high stability are highly desirable in catalysis. Herein, novel copper oxide (CuOx) catalysts supported on defect-rich mesoporous alumina microspheres are developed using a spray-drying-assisted evaporation induced self-assembly method. The catalysts possess a special structure composed of a mesoporous outer layer, a mesoporous-nanosphere-stacked under layer and a hollow cavity. Because of this special structure and the defective nature of the alumina support, the CuOx catalysts are ultrasmall in size (1 ~ 3 nm), bivalent with a very high Cu+/Cu2+ ratio (0.7), and highly stable against sintering and oxidation at high temperatures (up to 800 °C), while the wet impregnation method results in CuOx catalysts with much larger sizes (~15 nm) and lower the Cu+/Cu2+ ratios (~0.29). The catalyst formation mechanism through the spray drying method is proposed and discussed. The catalysts show remarkable performance in catalytic ozonation of phenol wastewaters. With high-concentration phenol (250 ppm) as the model organic pollutant, the optimized catalyst delivers promising catalytic performance with 100% phenol removal and 53% TOC removal in 60 min, and a high cyclic stability. Superoxide anion free radicals (⋅O2-), singlet oxygen (1O2) and hydroxyl radicals (⋅OH) are the predominant reactive species. A detailed structure-performance study reveals the surface hydroxyl groups and Cu+/Cu2+ redox couples play cooperatively to accelerate O3 decomposition generating reactive radicals. The plausible catalytic O3 decomposition mechanism is proposed and discussed with supportive evidences.

20.
Nanoscale ; 13(32): 13764-13775, 2021 Aug 28.
Article in English | MEDLINE | ID: mdl-34477651

ABSTRACT

The synthesis of highly dispersed low-valent copper catalysts is very challenging because they are prone to oxidation and sintering. Herein, scalable synthesis of ultrafine Cu(0)/Cu(i) catalysts supported on mesoporous titania microspheres is enabled by a one-step microdroplet confined assembly method. The extremely fast solute assembly in the microdroplet induces excellent metal precursor dispersion, reduces sol-gel crosslinking, and creates wrinkled microspheres with surface crusts and hollow cavities. This structural architecture allows the generation of an inner reductive gas environment during calcination in air to reduce Cu(ii) and create oxygen vacancy (OV) sites in titania. The obtained catalysts exhibit excellent performance in the photocatalytic activation of peroxymonosulfate (PMS) for pollutant degradation. The Cu(0) species with a surface plasmon resonance effect and OV-rich anatase facilitate efficient solar light utilization and charge separation. The intimate interface between Cu(i)/Cu(0) and anatase enables fast electron transfer and timely copper redox cycling to promote the activation of PMS.

SELECTION OF CITATIONS
SEARCH DETAIL