Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Nat Mater ; 23(4): 560-569, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38336868

ABSTRACT

Microactuators provide controllable driving forces for precise positioning, manipulation and operation at the microscale. Development of microactuators using active materials is often hampered by their fabrication complexity and limited motion at small scales. Here we report light-fuelled artificial goosebumps to actuate passive microstructures, inspired by the natural reaction of hair bristling (piloerection) on biological skin. We use light-responsive liquid crystal elastomers as the responsive artificial skin to move three-dimensionally printed passive polymer microstructures. When exposed to a programmable femtosecond laser, the liquid crystal elastomer skin generates localized artificial goosebumps, resulting in precise actuation of the surrounding microstructures. Such microactuation can tilt micro-mirrors for the controlled manipulation of light reflection and disassemble capillary-force-induced self-assembled microstructures globally and locally. We demonstrate the potential application of the proposed microactuation system for information storage. This methodology provides precise, localized and controllable manipulation of microstructures, opening new possibilities for the development of programmable micromachines.

2.
Small ; 20(2): e2304437, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37691013

ABSTRACT

Bioinspired fibrillar structures are promising for a wide range of disruptive adhesive applications. Especially micro/nanofibrillar structures on gecko toes can have strong and controllable adhesion and shear on a wide range of surfaces with residual-free, repeatable, self-cleaning, and other unique features. Synthetic dry fibrillar adhesives inspired by such biological fibrils are optimized in different aspects to increase their performance. Previous fibril designs for shear optimization are limited by predefined standard shapes in a narrow range primarily based on human intuition, which restricts their maximum performance. This study combines the machine learning-based optimization and finite-element-method-based shear mechanics simulations to find shear-optimized fibril designs automatically. In addition, fabrication limitations are integrated into the simulations to have more experimentally relevant results. The computationally discovered shear-optimized structures are fabricated, experimentally validated, and compared with the simulations. The results show that the computed shear-optimized fibrils perform better than the predefined standard fibril designs. This design optimization method can be used in future real-world shear-based gripping or nonslip surface applications, such as robotic pick-and-place grippers, climbing robots, gloves, electronic devices, and medical and wearable devices.

3.
Small ; : e2403254, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38845466

ABSTRACT

Incorporating acoustic and mechanical properties into a single multifunctional structure has attracted considerable attention in engineering. However, effectively integrating these sound absorption properties and damage resistance to achieve multifunctional structural designs remains a great challenge due to imperfect design methods. In this study, the inherent mechanical properties of turtle shells by introducing dissipative pores are leveraged to present a lattice structure that possesses both excellent sound-absorg and high damage-resistant characteristics. To achieve acoustic optimization design, a universal high-fidelity neural network correction model is proposed to address the impedance calculation challenge in complex structures. Building upon this foundation, a multi-cell combination design enables to achieve high absorption through optimization with a low thickness of 50 mm, resulting in average sound absorption coefficients reaching 0.88 and 0.93 within the frequency ranges of 300-600 Hz and 500-1000 Hz, respectively. It is also found that the optimized structures exhibit exceptional damage resistance under varying relative densities via the coupling effect of the shell thickness on the acoustic and mechanical properties. Overall, this work introduces a novel paradigm for designing intricate multifunctional structures with acoustic and mechanical properties while providing valuable inspiration for future research on multifunctional structure design.

4.
Sensors (Basel) ; 20(4)2020 Feb 19.
Article in English | MEDLINE | ID: mdl-32093063

ABSTRACT

Due to increasingly complex factors of image degradation, inferring high-frequency details of remote sensing imagery is more difficult compared to ordinary digital photos. This paper proposes an adaptive multi-scale feature fusion network (AMFFN) for remote sensing image super-resolution. Firstly, the features are extracted from the original low-resolution image. Then several adaptive multi-scale feature extraction (AMFE) modules, the squeeze-and-excited and adaptive gating mechanisms are adopted for feature extraction and fusion. Finally, the sub-pixel convolution method is used to reconstruct the high-resolution image. Experiments are performed on three datasets, the key characteristics, such as the number of AMFEs and the gating connection way are studied, and super-resolution of remote sensing imagery of different scale factors are qualitatively and quantitatively analyzed. The results show that our method outperforms the classic methods, such as Super-Resolution Convolutional Neural Network(SRCNN), Efficient Sub-Pixel Convolutional Network (ESPCN), and multi-scale residual CNN(MSRN).

5.
Biotechnol Lett ; 40(9-10): 1439, 2018 10.
Article in English | MEDLINE | ID: mdl-30039215

ABSTRACT

In the original publication of the article, the Acknowledgement section was published incompletely. The complete Acknowledgement is given in this Correction.

6.
Biotechnol Lett ; 39(10): 1471-1476, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28721587

ABSTRACT

OBJECTIVES: To establish genetically modified cell lines that can produce functional α1-antitrypsin (AAT), by CRISPR/Cas9-assisted homologous recombination. RESULTS: α1-Antitrypsin deficiency (AATD) is a monogenic heritable disease that often results in lungs and liver damage. Current augmentation therapy is expensive and in short of supply. To develop a safer and more effective therapeutic strategy for AATD, we integrated the AAT gene (SERPINA1, NG_008290.1) into the AAVS1 locus of human cell line HEK293T and assessed the safety and efficacy of CRISPR/Cas9 on producing potential therapeutic cell lines. Cell clones obtained had the AAT gene integrated at the AAVS1 locus and secreted approx. 0.04 g/l recombinant AAT into the medium. Moreover, the secreted AAT showed an inhibitory activity that is comparable to plasma AAT. CONCLUSIONS: CRISPR/Cas9-mediated engineering of human cells is a promising alternative for generating isogenic cell lines with consistent AAT production. This work sheds new light on the generation of therapeutic liver stem cells for AATD.


Subject(s)
Genetic Engineering/methods , HEK293 Cells/cytology , alpha 1-Antitrypsin/genetics , CRISPR-Cas Systems , Cell Culture Techniques , Gene Dosage , HEK293 Cells/metabolism , Humans , Transfection , alpha 1-Antitrypsin/metabolism
7.
Nucleic Acids Res ; 41(Database issue): D415-22, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23203870

ABSTRACT

We report here the construction of engineered endonuclease database (EENdb) (http://eendb.zfgenetics.org/), a searchable database and knowledge base for customizable engineered endonucleases (EENs), including zinc finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs). EENs are artificial nucleases designed to target and cleave specific DNA sequences. EENs have been shown to be a very useful genetic tool for targeted genome modification and have shown great potentials in the applications in basic research, clinical therapies and agricultural utilities, and they are specifically essential for reverse genetics research in species where no other gene targeting techniques are available. EENdb contains over 700 records of all the reported ZFNs and TALENs and related information, such as their target sequences, the peptide components [zinc finger protein-/transcription activator-like effector (TALE)-binding domains, FokI variants and linker peptide/framework], the efficiency and specificity of their activities. The database also lists EEN engineering tools and resources as well as information about forms and types of EENs, EEN screening and construction methods, detection methods for targeting efficiency and many other utilities. The aim of EENdb is to represent a central hub for EEN information and an integrated solution for EEN engineering. These studies may help to extract in-depth properties and common rules regarding ZFN or TALEN efficiency through comparison of the known ZFNs or TALENs.


Subject(s)
DNA-Binding Proteins/chemistry , Databases, Protein , Endodeoxyribonucleases/chemistry , Knowledge Bases , DNA Cleavage , DNA-Binding Proteins/genetics , Endodeoxyribonucleases/genetics , Endodeoxyribonucleases/metabolism , Internet , Protein Engineering , Protein Structure, Tertiary
8.
Nucleic Acids Res ; 41(14): e141, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23748566

ABSTRACT

Customized TALENs and Cas9/gRNAs have been used for targeted mutagenesis in zebrafish to induce indels into protein-coding genes. However, indels are usually not sufficient to disrupt the function of non-coding genes, gene clusters or regulatory sequences, whereas large genomic deletions or inversions are more desirable for this purpose. By injecting two pairs of TALEN mRNAs or two gRNAs together with Cas9 mRNA targeting distal DNA sites of the same chromosome, we obtained predictable genomic deletions or inversions with sizes ranging from several hundred bases to nearly 1 Mb. We have successfully achieved this type of modifications for 11 chromosomal loci by TALENs and 2 by Cas9/gRNAs with different combinations of gRNA pairs, including clusters of miRNA and protein-coding genes. Seven of eight TALEN-targeted lines transmitted the deletions and one transmitted the inversion through germ line. Our findings indicate that both TALENs and Cas9/gRNAs can be used as an efficient tool to engineer genomes to achieve large deletions or inversions, including fragments covering multiple genes and non-coding sequences. To facilitate the analyses and application of existing ZFN, TALEN and CRISPR/Cas data, we have updated our EENdb database to provide a chromosomal view of all reported engineered endonucleases targeting human and zebrafish genomes.


Subject(s)
Chromosome Deletion , Chromosome Inversion , Endodeoxyribonucleases/metabolism , Inverted Repeat Sequences , Zebrafish/genetics , Animals , Databases, Genetic , Genetic Engineering/methods , Genetic Loci , Genome , MicroRNAs/genetics , Proteins/genetics , RNA, Small Untranslated
9.
Sci Robot ; 9(88): eadi5155, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38478591

ABSTRACT

Wireless millimeter-scale robots capable of navigating through fluid-flowing tubular structures hold substantial potential for inspection, maintenance, or repair use in nuclear, industrial, and medical applications. However, prevalent reliance on external powering constrains these robots' operational range and applicable environments. Alternatives with onboard powering must trade off size, functionality, and operation duration. Here, we propose a wireless millimeter-scale wheeled robot capable of using environmental flows to power and actuate its long-distance locomotion through complex pipelines. The flow-powering module can convert flow energy into mechanical energy, achieving an impeller speed of up to 9595 revolutions per minute, accompanied by an output power density of 11.7 watts per cubic meter and an efficiency of 33.7%. A miniature gearbox module can further transmit the converted mechanical energy into the robot's locomotion system, allowing the robot to move against water flow at an average rate of up to 1.05 meters per second. The robot's motion status (moving against/with flow or pausing) can be switched using an external magnetic field or an onboard mechanical regulator, contingent on different proposed control designs. In addition, we designed kirigami-based soft wheels for adaptive locomotion. The robot can move against flows of various substances within pipes featuring complex geometries and diverse materials. Solely powered by flow, the robot can transport cylindrical payloads with a diameter of up to 55% of the pipe's diameter and carry devices such as an endoscopic camera for pipeline inspection, a wireless temperature sensor for environmental temperature monitoring, and a leak-stopper shell for infrastructure maintenance.

10.
Sci Adv ; 9(23): eadg3988, 2023 06 09.
Article in English | MEDLINE | ID: mdl-37285426

ABSTRACT

Implanted electronic sensors, compared with conventional medical imaging, allow monitoring of advanced physiological properties of soft biological tissues continuously, such as adhesion, pH, viscoelasticity, and biomarkers for disease diagnosis. However, they are typically invasive, requiring being deployed by surgery, and frequently cause inflammation. Here we propose a minimally invasive method of using wireless miniature soft robots to in situ sense the physiological properties of tissues. By controlling robot-tissue interaction using external magnetic fields, visualized by medical imaging, we can recover tissue properties precisely from the robot shape and magnetic fields. We demonstrate that the robot can traverse tissues with multimodal locomotion and sense the adhesion, pH, and viscoelasticity on porcine and mice gastrointestinal tissues ex vivo, tracked by x-ray or ultrasound imaging. With the unprecedented capability of sensing tissue physiological properties with minimal invasion and high resolution deep inside our body, this technology can potentially enable critical applications in both basic research and clinical practice.


Subject(s)
Robotics , Swine , Animals , Mice , Locomotion , Technology , Equipment Design
11.
Adv Mater ; 35(2): e2207257, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36271730

ABSTRACT

Various functional complex 3D patterned surfaces with micro- or nanostructures have been developed and their superior performances over non-patterned smooth surfaces proven. However, it is challenging to mass-produce such complex micro-/nanopatterned surfaces, which limits their commercialization drastically. Although roll-to-roll (R2R) manufacturing using flexible molds has been implemented for mass-production of such functional surfaces, the poor mold repeatability issue has not been resolved yet. Here, a strategy to significantly improve the repeatability of the micropatterned flexible silicone molds over 1000 cycles against highly adhesive polyurethane acrylates (PUAs) in UV light curing based R2R systems by using a two-step curing process is reported. The mold repeatability is drastically increased from 10s of cycles to over 1000 cycles through the proposed strategy in spite of the complicated 3D undercut geometry and high tackiness of the microstructure. This two-step process would enable scaled-up production of micro-/nanostructured adhesives, such as gecko-inspired microfiber adhesives as demonstrated in this study, as well as various other functional micro-/nanostructured surfaces by enhancing the flexible mold lifetime.

12.
Sci Adv ; 8(21): eabn3431, 2022 May 27.
Article in English | MEDLINE | ID: mdl-35622917

ABSTRACT

Wireless soft-bodied robots at the millimeter scale allow traversing very confined unstructured terrains with minimal invasion and safely interacting with the surrounding environment. However, existing untethered soft millirobots still lack the ability of climbing, reversible controlled surface adhesion, and long-term retention on unstructured three-dimensional (3D) surfaces, limiting their use in biomedical and environmental applications. Here, we report a fundamental peeling-and-loading mechanism to allow untethered soft-bodied robots to climb 3D surfaces by using both the soft-body deformation and whole-body motion of the robot under external magnetic fields. This generic mechanism is implemented with different adhesive robot footpad designs, allowing vertical and inverted surface climbing on diverse 3D surfaces with complex geometries and different surface properties. With the unique robot footpad designs that integrate microstructured adhesives and tough bioadhesives, the soft climbing robot could achieve controllable adhesion and friction to climb 3D soft and wet surfaces including porcine tissues, which paves the way for future environmental inspection and minimally invasive medicine applications.

13.
Sci Robot ; 7(69): eabo4401, 2022 08 31.
Article in English | MEDLINE | ID: mdl-36044558

ABSTRACT

The limited force or torque outputs of miniature magnetic actuators constrain the locomotion performances and functionalities of magnetic millimeter-scale robots. Here, we present a magnetically actuated gearbox with a maximum size of 3 millimeters for driving wireless millirobots. The gearbox is assembled using microgears that have reference diameters down to 270 micrometers and are made of aluminum-filled epoxy resins through casting. With a magnetic disk attached to the input shaft, the gearbox can be driven by a rotating external magnetic field, which is not more than 6.8 millitesla, to produce torque of up to 0.182 millinewton meters at 40 hertz. The corresponding torque and power densities are 12.15 micronewton meters per cubic millimeter and 8.93 microwatt per cubic millimeter, respectively. The transmission efficiency of the gearbox in the air is between 25.1 and 29.2% at actuation frequencies ranging from 1 to 40 hertz, and it lowers when the gearbox is actuated in viscous liquids. This miniature gearbox can be accessed wirelessly and integrated with various functional modules to repeatedly generate large actuation forces, strains, and speeds; store energy in elastic components; and lock up mechanical linkages. These characteristics enable us to achieve a peristaltic robot that can crawl on a flat substrate or inside a tube, a jumping robot with a tunable jumping height, a clamping robot that can sample solid objects by grasping, a needle-puncture robot that can take samples from the inside of the target, and a syringe robot that can collect or release liquids.


Subject(s)
Robotics , Equipment Design , Locomotion , Needles , Torque
SELECTION OF CITATIONS
SEARCH DETAIL