Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell Mol Biol Lett ; 29(1): 88, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38877424

ABSTRACT

Osteoarthritis (OA) is the most common degenerative joint disorder that causes disability in aged individuals, caused by functional and structural alterations of the knee joint. To investigate whether metabolic drivers might be harnessed to promote cartilage repair, a liquid chromatography-mass spectrometry (LC-MS) untargeted metabolomics approach was carried out to screen serum biomarkers in osteoarthritic rats. Based on the correlation analyses, α-ketoglutarate (α-KG) has been demonstrated to have antioxidant and anti-inflammatory properties in various diseases. These properties make α-KG a prime candidate for further investigation of OA. Experimental results indicate that α-KG significantly inhibited H2O2-induced cartilage cell matrix degradation and apoptosis, reduced levels of reactive oxygen species (ROS) and malondialdehyde (MDA), increased superoxide dismutase (SOD) and glutathione (GSH)/glutathione disulfide (GSSG) levels, and upregulated the expression of ETV4, SLC7A11 and GPX4. Further mechanistic studies observed that α-KG, like Ferrostatin-1 (Fer-1), effectively alleviated Erastin-induced apoptosis and ECM degradation. α-KG and Fer-1 upregulated ETV4, SLC7A11, and GPX4 at the mRNA and protein levels, decreased ferrous ion (Fe2+) accumulation, and preserved mitochondrial membrane potential (MMP) in ATDC5 cells. In vivo, α-KG treatment inhibited ferroptosis in OA rats by activating the ETV4/SLC7A11/GPX4 pathway. Thus, these findings indicate that α-KG inhibits ferroptosis via the ETV4/SLC7A11/GPX4 signaling pathway, thereby alleviating OA. These observations suggest that α-KG exhibits potential therapeutic properties for the treatment and prevention of OA, thereby having potential clinical applications in the future.


Subject(s)
Ferroptosis , Ketoglutaric Acids , Osteoarthritis , Phospholipid Hydroperoxide Glutathione Peroxidase , Signal Transduction , Ferroptosis/drug effects , Animals , Osteoarthritis/drug therapy , Osteoarthritis/metabolism , Osteoarthritis/pathology , Ketoglutaric Acids/metabolism , Ketoglutaric Acids/pharmacology , Signal Transduction/drug effects , Rats , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/genetics , Amino Acid Transport System y+/metabolism , Amino Acid Transport System y+/genetics , Male , Proto-Oncogene Proteins c-ets/metabolism , Proto-Oncogene Proteins c-ets/genetics , Rats, Sprague-Dawley , Apoptosis/drug effects , Reactive Oxygen Species/metabolism
2.
Cell Mol Neurobiol ; 43(1): 1-13, 2023 Jan.
Article in English | MEDLINE | ID: mdl-34767143

ABSTRACT

Heat stress is known to result in neuroinflammation, neuronal damage, and disabilities in learning and memory in animals and humans. It has previously been reported that cognitive impairment caused by neuroinflammation may at least in part be mediated by defective hippocampal neurogenesis, and defective neurogenesis has been linked to aberrantly activated microglial cells. Moreover, the release of cytokines within the brain has been shown to contribute to the disruption of cognitive functions in several conditions following neuroinflammation. In this review, we summarize evolving evidence for the current understanding of inflammation-induced deficits in hippocampal neurogenesis, and the resulting behavioral impairments after heat stress. Furthermore, we provide valuable insights into the molecular and cellular mechanisms underlying neuroinflammation-induced deficits in hippocampal neurogenesis, particularly relating to cognitive dysfunction following heat stress. Lastly, we aim to identify potential mechanisms through which neuroinflammation induces cognitive dysfunction, and elucidate how neuroinflammation contributes to defective hippocampal neurogenesis. This review may therefore help to better understand the relationship between hippocampal neurogenesis and heat stress.


Subject(s)
Cognitive Dysfunction , Neuroinflammatory Diseases , Animals , Humans , Cognitive Dysfunction/etiology , Hippocampus , Neurogenesis/physiology , Heat-Shock Response
3.
FASEB J ; 36(4): e22264, 2022 04.
Article in English | MEDLINE | ID: mdl-35333405

ABSTRACT

Heat stress causes many pathophysiological responses in the brain, including neuroinflammation and cognitive deficits. ß-Hydroxybutyric acid (BHBA) has been shown to have neuroprotective effects against inflammation induced by lipopolysaccharide. The aim of the present study was to evaluate the effects of BHBA on neuroinflammation induced by heat stress, as well as the underlying mechanisms. Mice were pretreated with vehicle, BHBA or minocycline (positive control group) and followed by heat exposure (43°C) for 15 min for 14 days. In mice subjected to heat stress, we found that treatment with BHBA or minocycline significantly decreased the level of serum cortisol, the expressions of heat shock protein 70 (HSP70), and the density of c-Fos+ cells in the hippocampus. Surprisingly, the ethological tests revealed that heat stress led to cognitive dysfunctions and could be alleviated by BHBA and minocycline administration. Further investigation showed that BHBA and minocycline significantly attenuated the activation of microglia and astrocyte induced by heat stress. Pro-inflammatory cytokines were attenuated in the hippocampus by BHBA and minocycline treatment. Importantly, compared with the heat stress group, mice in the BHBA treatment group and positive control group experienced a decrease in the expressions of toll-like receptor 4 (TLR4), phospho-p38 (p-p38), and nuclear factor kappa B (NF-κB). Our results elucidated that BHBA inhibits neuroinflammation induced by heat stress by suppressing the activation of microglia and astrocyte, and modulating TLR4/p38 MAPK and NF-κB pathways. This study provides new evidence that BHBA is a potential strategy for protecting animals from heat stress.


Subject(s)
NF-kappa B , Toll-Like Receptor 4 , 3-Hydroxybutyric Acid/metabolism , Animals , Heat-Shock Response , Hippocampus/metabolism , Inflammation/drug therapy , Inflammation/metabolism , Mice , Microglia/metabolism , Minocycline/metabolism , Minocycline/pharmacology , NF-kappa B/metabolism , Neuroinflammatory Diseases , Signal Transduction , Toll-Like Receptor 4/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism
4.
Sensors (Basel) ; 24(1)2023 Dec 27.
Article in English | MEDLINE | ID: mdl-38203016

ABSTRACT

The growth of renewable energy sources presents a pressing challenge to the operation and maintenance of existing fossil fuel power plants, given that fossil fuel remains the predominant fuel source, responsible for over 60% of electricity generation in the United States. One of the main concerns within these fossil fuel power plants is the unpredictable failure of boiler tubes, resulting in emergency maintenance with significant economic and societal consequences. A reliable high-temperature sensor is necessary for in situ monitoring of boiler tubes and the safety of fossil fuel power plants. In this study, a comprehensive four-stage multi-physics computational framework is developed to assist the design, optimization installation, and operation of the high-temperature stainless-steel and quartz coaxial cable sensor (SSQ-CCS) for coal-fired boiler applications. With the consideration of various operation conditions, we predict the distributions of flue gas temperatures within coal-fired boilers, the temperature correlation between the boiler tube and SSQ-CCS, and the safety of SSQ-CCS. With the simulation-guided sensor installation plan, the newly designed SSQ-CCSs have been employed for field testing for more than 430 days. The computational framework developed in this work can guide the future operation of coal-fired plants and other power plants for the safety prediction of boiler operations.

5.
Int J Neuropsychopharmacol ; 24(5): 419-433, 2021 05 18.
Article in English | MEDLINE | ID: mdl-33283869

ABSTRACT

BACKGROUND: Neurogenesis in the neonatal period involves the proliferation and differentiation of neuronal stem/progenitor cells and the establishment of synaptic connections. This process plays a critical role in determining the normal development and maturation of the brain throughout life. Exposure to certain physical or chemical factors during the perinatal period can lead to many neuropathological defects that cause high cognitive dysfunction and are accompanied by abnormal hippocampal neurogenesis and plasticity. As an endocrine disruptor, gossypol is generally known to exert detrimental effects in animals exposed under experimental conditions. However, it is unclear whether gossypol affects neurogenesis in the hippocampal dentate gyrus during early developmental stages. METHODS: Pregnant Institute of Cancer Research mice were treated with gossypol at a daily dose of 0, 20, and 50 mg/kg body weight from embryonic day 6.5 to postnatal day (P) 21. The changes of hippocampal neurogenesis as well as potential mechanisms were investigated by 5-bromo-2-deoxyuridine labeling, behavioral tests, immunofluorescence, quantitative reverse transcription-polymerase chain reaction, and western-blot analyses. RESULTS: At P8, maternal gossypol exposure impaired neural stem cell proliferation in the dentate gyrus and decreased the number of newborn cells as a result of reduced proliferation of BLBP+ radial glial cells and Tbr2+ intermediate progenitor cells. At P21, the numbers of NeuN+ neurons and parvalbumin+ γ-aminobutyric acid-ergic interneurons were increased following 50 mg/kg gossypol exposure. In addition, gossypol induced hippocampal neuroinflammation, which may contribute to behavioral abnormalities and cognitive deficits and decrease synaptic plasticity. CONCLUSIONS: Our findings suggest that developmental gossypol exposure affects hippocampal neurogenesis by targeting the proliferation and differentiation of neuronal stem/progenitor cells, cognitive functions, and neuroinflammation. The present data provide novel insights into the neurotoxic effects of gossypol on offspring.


Subject(s)
Behavior, Animal/drug effects , Cognitive Dysfunction/chemically induced , Endocrine Disruptors/pharmacology , Gossypol/pharmacology , Hippocampus/drug effects , Hippocampus/growth & development , Neurogenesis/drug effects , Neuroinflammatory Diseases/chemically induced , Prenatal Exposure Delayed Effects/chemically induced , Animals , Animals, Newborn , Disease Models, Animal , Female , Mice , Pregnancy
6.
Bipolar Disord ; 23(4): 376-390, 2021 06.
Article in English | MEDLINE | ID: mdl-32805776

ABSTRACT

OBJECTIVES: As a common model for adverse early experience and depression, maternal separation (MS) is always used to investigate the psychological disease. Despite extensive and strong evidence verified the depression-like state induced by MS, little is known about the specific mechanism of MS. Therefore, the present study aimed to investigate the neurobiology mechanism of the MS-induced depression-like state. METHODS: To verify the depression-like behaviors of offspring induced by MS, a series of behavioral tests were performed. Then, in vivo electroporation and three-dimensional reconstruction, combining with immunohistochemistry and BrdU labeling, were mainly used to explore the neurogenesis and synaptogenesis in postnatal dentate gyrus. RESULTS: Prolonged MS indeed induced the depression-like behaviors of offspring in adulthood. Surprisingly, learning and memory were enhanced by prolonged MS. Further investigation indicated that prolonged MS inhibited the proliferation of neural stem cells, impaired the survival, and altered the fate decision of newborn cells, whereas the total length and terminal tips of dendrite, and the spine density, especially thin spine, were significantly increased in prolonged MS mice. CONCLUSIONS: Our results elucidated that prolonged MS induced the depression-like state by impairing postnatal neurogenesis of dentate gyrus. Importantly, our results emphasized that prolonged MS increased the spine density, especially thin spine, by increasing the total length and number of terminal tips of dendrite, thereby enhancing learning and memory.


Subject(s)
Bipolar Disorder , Dentate Gyrus , Animals , Maternal Deprivation , Mice , Neurogenesis
7.
Sensors (Basel) ; 21(20)2021 Oct 13.
Article in English | MEDLINE | ID: mdl-34695996

ABSTRACT

A microwave photonics method has been developed for measuring distributed acoustic signals. This method uses microwave-modulated low coherence light as a probe to interrogate distributed in-fiber interferometers, which are used to measure acoustic-induced strain. By sweeping the microwave frequency at a constant rate, the acoustic signals are encoded into the complex microwave spectrum. The microwave spectrum is transformed into the joint time-frequency domain and further processed to obtain the distributed acoustic signals. The method is first evaluated using an intrinsic Fabry Perot interferometer (IFPI). Acoustic signals of frequency up to 15.6 kHz were detected. The method was further demonstrated using an array of in-fiber weak reflectors and an external Michelson interferometer. Two piezoceramic cylinders (PCCs) driven at frequencies of 1700 Hz and 3430 Hz were used as acoustic sources. The experiment results show that the sensing system can locate multiple acoustic sources. The system resolves 20 nε when the spatial resolution is 5 cm. The recovered acoustic signals match the excitation signals in frequency, amplitude, and phase, indicating an excellent potential for distributed acoustic sensing (DAS).

8.
Opt Lett ; 45(7): 1663-1666, 2020 Apr 01.
Article in English | MEDLINE | ID: mdl-32235968

ABSTRACT

In this Letter, we report a novel integrated additive and subtractive manufacturing (IASM) method to fabricate an information integrated glass module. After a certain number of glass layers are 3D printed and sintered by direct ${{\rm CO}_2}$CO2 laser irradiation, a microchannel will be fabricated on top of the printed glass by integrated picosecond laser, for intrinsic Fabry-Perot interferometer (IFPI) optical fiber sensor embedment. Then, the glass 3D printing process continues for the realization of bonding between optical fiber and printed glass. Temperature sensing up to 1000°C was demonstrated using the fabricated information integrated module. In addition, the long-term stability of the glass module at 1000°C was conducted. Enhanced sensor structure robustness and harsh temperature sensing capability make this glass module attractive for harsh environment structural health monitoring.

9.
IEEE Photonics Technol Lett ; 32(7): 414-417, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32612343

ABSTRACT

This letter reports a novel fused silica microfluidic device with pressure sensing capability that is fabricated by integrated additive and subtractive manufacturing (IASM) method. The sensor consists of a capillary and a 3D printed glass reservoir, where the reservoir volume change under pressure manifests liquid level deviation inside the capillary, thus realizing the conversion between small pressure change into large liquid level variation. Thanks to the design flexibility of this unique IASM method, the proposed microfluidic device is fabricated with liquid-in-glass thermometer configuration, where the reservoir is sealed following a novel 3D printing assisted glass bonding process. And liquid level is interrogated by a fiber-optic sensor based on multimode interference (MMI) effect. This proposed microfluidic device is attractive for chemical and biomedical sensing because it is flexible in design, and maintains good chemical and mechanical stability, and adjustable sensitivity and range.

10.
Bioorg Med Chem ; 28(4): 115305, 2020 02 15.
Article in English | MEDLINE | ID: mdl-31928863

ABSTRACT

The similarity of spatial structure between radicicol and matrine urged us to perform conformation modification of matrine, followed by L-shaped matrine derivatives, 6, 12, 21a-h and 22a-h were originally designed, synthesized and evaluated for Hsp90N inhibitors as anticancer agents. TSA (Thermal Shift Assay) results indicated that 21e, 22a-c and 22e-g exhibited strong binding force against Hsp90N with∣ΔTm∣ > 3, meanwhile, MTT assay also revealed these compounds displayed potent anticancer activity with IC50 values below 25 µM against HepG2, HeLa and MDA-MB-231 cells lines. Then, compound 22g with a high ΔTm = 10.92 was chosen as a representative to perform further mechanism study. It can induce cell apoptosis, arrest the cell cycle at the S phase and decrease the expression level of Hsp90 in Hela cell. These results originally provided targeted modification strategy for matrine derivatives to serve as Hsp90 inhibitors for cancer therapy.


Subject(s)
Alkaloids/pharmacology , Antineoplastic Agents/pharmacology , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Quinolizines/pharmacology , Alkaloids/chemical synthesis , Alkaloids/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , HSP90 Heat-Shock Proteins/metabolism , Humans , Molecular Conformation , Molecular Docking Simulation , Quinolizines/chemical synthesis , Quinolizines/chemistry , Structure-Activity Relationship , Matrines
11.
Ann Hematol ; 98(2): 445-455, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30370485

ABSTRACT

The incidence and clinical implications of autoimmune diseases (ADs) in patients with non-Hodgkin's lymphoma(NHL) remain unclear. The aim of this study was to examine the prevalence of ADs in NHL and define the clinical characteristics and prognosis of AD-associated NHL patients. Patients diagnosed with NHL in our institute between 1995 and 2017 were retrospectively reviewed to assess the incidence of ADs. Of 4880 patients with NHL, 140 (2.9%) presented with autoimmunity, with a total of 24 ADs. The most common AD was Sjögren syndrome, followed by autoimmune cytopenia, psoriasis, rheumatoid arthritis, etc. Psoriasis and rheumatoid arthritis were significantly associated with pre-existing ADs, whereas autoimmune cytopenia was significantly associated with secondary AD. Sjögren syndrome was significantly associated with B-cell lymphoma, and systemic vasculitis was significantly associated with T-cell lymphoma. Patients with AD-associated NHL had a high frequency of extranodal involvement(87%), with significant associations between specific extranodal sites of lymphoma and subtypes of ADs. Among patients with available data on pre-treatment peripheral blood Epstein-Barr virus (EBV) DNA(n = 68), elevated EBV-DNA load was observed in a variety of NHL subtypes, including 20% of marginal zone lymphoma and 14.3% of follicular lymphoma patients. In a matched-pair analysis, survival did not differ significantly between NHL patients with and without ADs. However, for NHL patients with pre-existing ADs, a prior history of systemic corticosteroids therapy was significantly associated with worse survival (HR = 7.33, P = 0.006). Taken together, our data suggest that a broad spectrum of ADs is associated with NHL, and AD-associated NHL has distinct features with regard to clinical manifestations and prognosis.


Subject(s)
Autoimmune Diseases/mortality , Lymphoma, B-Cell, Marginal Zone/mortality , Lymphoma, Follicular/mortality , Adolescent , Adrenal Cortex Hormones/administration & dosage , Adult , Aged , Aged, 80 and over , Autoimmune Diseases/drug therapy , China/epidemiology , Disease-Free Survival , Female , Humans , Lymphoma, B-Cell, Marginal Zone/drug therapy , Lymphoma, Follicular/drug therapy , Male , Middle Aged , Retrospective Studies , Survival Rate
12.
IEEE Sens J ; 19(23): 11242-11246, 2019 Dec.
Article in English | MEDLINE | ID: mdl-32494234

ABSTRACT

In this paper, we report a fiber-optic pressure sensor fabricated by three-dimensional (3D) printing of glass using direct laser melting method. An all-glass fiber-housing structure is 3D printed on top of a fused silica substrate, which also serves as the pressure sensing diaphragm. And an optical fiber can be inserted inside the fiber housing structure and brought in close proximity to the diaphragm to form a Fabry-Perot interferometer. The theoretical analysis and experimental verification of the pressure sensing capability are presented.

13.
Drug Des Devel Ther ; 18: 1583-1602, 2024.
Article in English | MEDLINE | ID: mdl-38765877

ABSTRACT

Background: Knee osteoarthritis (KOA) is a persistent degenerative condition characterized by the deterioration of cartilage. The Chinese herbal formula Radix Rehmanniae Praeparata- Angelica Sinensis-Radix Achyranthis Bidentatae (RAR) has often been used in effective prescriptions for KOA as the main functional drug, but its underlying mechanism remains unclear. Therefore, network pharmacology and verification experiments were employed to investigate the impact and mode of action of RAR in the treatment of KOA. Methods: The destabilization of the medial meniscus model (DMM) was utilized to assess the anti-KOA effect of RAR by using gait analysis, micro-computed tomography (Micro-CT), and histology. Primary chondrocytes were extracted from the rib cartilage of a newborn mouse. The protective effects of RAR on OA cells were evaluated using a CCK-8 assay. The antioxidative effect of RAR was determined by measuring reactive oxygen species (ROS), superoxide dismutase (SOD), and glutathione (GSH) production. Furthermore, network pharmacology and molecular docking were utilized to propose possible RAR targets for KOA, which were further verified through experiments. Results: In vivo, RAR significantly ameliorated DMM-induced KOA characteristics, such as subchondral bone sclerosis, cartilage deterioration, gait abnormalities, and the degree of knee swelling. In vitro, RAR stimulated chondrocyte proliferation and the expression of Col2a1, Comp, and Acan. Moreover, RAR treatment significantly reduced ROS accumulation in an OA cell model induced by IL-1ß and increased the activity of antioxidant enzymes (SOD and GSH). Network pharmacology analysis combined with molecular docking showed that Mapk1 might be a key therapeutic target. Subsequent research showed that RAR could downregulate Mapk1 mRNA levels in IL-1ß-induced chondrocytes and DMM-induced rats. Conclusion: RAR inhibited extracellular matrix (ECM) degradation and oxidative stress response via the MAPK signaling pathway in KOA, and Mapk1 may be a core target.


Subject(s)
Achyranthes , Angelica sinensis , Drugs, Chinese Herbal , Network Pharmacology , Osteoarthritis, Knee , Animals , Angelica sinensis/chemistry , Osteoarthritis, Knee/drug therapy , Osteoarthritis, Knee/pathology , Osteoarthritis, Knee/metabolism , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/isolation & purification , Mice , Achyranthes/chemistry , Rehmannia/chemistry , Molecular Docking Simulation , Cells, Cultured , Chondrocytes/drug effects , Chondrocytes/metabolism , Chondrocytes/pathology , Male , Mice, Inbred C57BL , Rats
14.
Zhongguo Dang Dai Er Ke Za Zhi ; 15(8): 627-32, 2013 Aug.
Article in Zh | MEDLINE | ID: mdl-23965874

ABSTRACT

OBJECTIVE: To investigate the isolation, purification and ex vivo expansion of CD34(+)CD59(+) cells from the bone marrow of children with paroxysmal nocturnal hemoglobinuria (PNH), to evaluate the capability of long-term hematopoietic reconstruction of the expanded CD34(+)CD59(+) cells, and to provide a laboratory basis for novel treatment of PNH. METHODS: CD34(+)CD59(+) cells were isolated from the bone marrow mononuclear cells of children with PNH using immunomagnetic beads and flow cytometer in sequence. The isolated cells were subjected to ex vivo expansion in the presence of different combinations of hematopoietic growth factors for two weeks. The colony-forming cells and long-term culture-initiating cells (LTC-ICs) were cultured and counted. RESULTS: The optimal combination of hematopoietic growth factors for ex vivo expansion was stem cell factor+interleukin (IL)-3+IL-6+FLT3 ligand+thrombopoietin+ery-thropoietin, and maximum expansion (30.4 ± 6.7 folds) was seen on day 7 of days 4 to 14 of ex vivo expansion. After ex vivo expansion, CD34(+)CD59(+) cells remained CD59-positive, retained strong capability of forming colony-forming units, and could still form LTC-ICs. There was no significant difference in capability of forming LTC-ICs between CD34(+)CD59(+) cells before and after expansion. The expansion capability of CD34(+)CD59(+) cells from children with PNH was significantly lower than that of CD34(+) cells from normal controls (P<0.01). CONCLUSIONS: The CD34(+)CD59(+) cells from children with PNH can be expanded in vitro. Post-expansion CD34(+)CD59(+) cells retain capability of long-term hematopoietic reconstruction. CD34(+)CD59(+) cells showed no trend towards PNH clone during culture. Ex vivo expansion of CD34(+)CD59(+) cells from children with PNH might be practical in performing autologous transplantation clinically for these children.


Subject(s)
Antigens, CD34/analysis , Bone Marrow Cells/cytology , CD59 Antigens/analysis , Cell Separation , Hemoglobinuria, Paroxysmal/therapy , Adolescent , Bone Marrow Transplantation , Child , Female , Hematopoiesis , Humans , Male
15.
Article in English | MEDLINE | ID: mdl-37889823

ABSTRACT

With the advent of the data era, most power secondary side equipment tends to be digitized. The power system needs more accurate numerical results to further improve its operating efficiency. Therefore, it is important to study the electromagnetic interferences of very fast transient overvoltage (VFTO) generated by gas-insulated switchgear (GIS). To protect the secondary side cable from interferences, the secondary side cable is wrapped with an outer shield and the shield is grounded. When the interference of VFTO comes, it will couple the interference current and interference voltage on the shield of the cable. By grounding, the interference is greatly discharged. However, due to the grounding resistance, there will be a potential difference between the grounding points at the two ends of the shield of the cable. This causes a corresponding interference current to flow through the shield, which will affect the transmission of signals inside the cable. In the actual substation, the resistivity of the soil, the ambient temperature and humidity of the area, and so on will have impacts on the grounding resistance. In addition, the irregularity of the cable arrangement and the time of the use of the cable will have impacts on the signal transmission of the cable. Based on the abovementioned issues, this article proposed a comprehensive assessment method based on the combination of the cloud model and measurement of alternatives and ranking according to compromise solution (MARCOS). The method brings the cloud model into MARCOS by the algorithm of the contribution of the cloud droplets. It overcomes the difficulty of cloud model quantification. By comparing the results of the proposed method with the actual conditions at the substation and the results of the common MARCOS assessment method, the validity of the method is verified, and a reference scheme is provided for substation optimization.

16.
Sci Adv ; 9(25): eadf4068, 2023 06 23.
Article in English | MEDLINE | ID: mdl-37352351

ABSTRACT

The increased tameness to reduce avoidance of human in wild animals has been long proposed as the key step of animal domestication. The tameness is a complex behavior trait and largely determined by genetic factors. However, the underlying genetic mutations remain vague and how they influence the animal behaviors is yet to be explored. Behavior tests of a wild-domestic hybrid goat population indicate the locus under strongest artificial selection during domestication may exert a huge effect on the flight distance. Within this locus, only one missense mutation RRM1I241V which was present in the early domestic goat ~6500 years ago. Genome editing of RRM1I241V in mice showed increased tameness and sociability and reduced anxiety. These behavioral changes induced by RRM1I241V were modulated by the alternation of activity of glutamatergic synapse and some other synapse-related pathways. This study established a link between RRM1I241V and tameness, demonstrating that the complex behavioral change can be achieved by mutations under strong selection during animal domestication.


Subject(s)
Animals, Domestic , Behavior, Animal , Domestication , Mutation, Missense , Ribonucleoside Diphosphate Reductase , Animals , Mice , Animals, Domestic/genetics , Goats/genetics , Ribonucleoside Diphosphate Reductase/genetics , Selection, Genetic
17.
Micromachines (Basel) ; 13(11)2022 Nov 16.
Article in English | MEDLINE | ID: mdl-36422414

ABSTRACT

Multi-fluid micromixing, which has rarely been explored, typically represents a highly sought-after technique in on-chip biochemical and biomedical assays. Herein, we propose a novel micromixing approach utilizing induced-charge electroosmosis (ICEO) to implement multicomplex mixing between parallel streams. The variations of ICEO microvortices above a sinusoidally shaped floating electrode (SSFE) are first investigated to better understand the microvortex development and the resultant mixing process within a confined channel. On this basis, a mathematical model of the vortex index is newly developed to predict the mixing degree along the microchannel. The negative exponential distribution obtained between the vortex index and mixing index demonstrates an efficient model to describe the mixing performance without solving the coupled diffusion and momentum equations. Specifically, sufficient mixing with a mixing index higher than 0.9 can be achieved when the vortex index exceeds 51, and the mixing efficiency reaches a plateau at an AC frequency close to 100 Hz. Further, a rectangle floating electrode (RFE) is deposited before SSFE to enhance the controlled sequence for three-fluid mixing. One side fluid can fully mix with the middle fluid with a mixing index of 0.623 above RFE in the first mixing stage and achieve entire-channel mixing with a mixing index of 0.983 above SSFE in the second mixing stage, thereby enabling on-demand sequential mixing. As a proof of concept, this work can provide a robust alternative technique for multi-objective issues and structural design related to mixers.

18.
Front Neurosci ; 16: 860280, 2022.
Article in English | MEDLINE | ID: mdl-35585921

ABSTRACT

Background: Multiple sclerosis is a chronic demyelinating disease of uncertain etiology. Traditional treatment methods produce more adverse effects. Epidemiological and clinical treatment findings showed that unknown environmental factors contribute to the etiology of MS and that diet is a commonly assumed factor. Despite the huge interest in diet expressed by people with MS and the potential role diet plays in MS, very little data is available on the role of diet in MS pathogenesis and MS course, in particular, studies on fats and MS. The oil of Acer truncatum is potential as a resource to be exploited in the treatment of some neurodegenerative diseases. Objective: Here, we investigated the underlying influences of Acer truncatum oil on the stimulation of remyelination in a cuprizone mouse model of demyelination. Methods: Cuprizone (0.2% in chow) was used to establish a mouse model of demyelination. Acer truncatum oil was administrated to mice during remyelination. Following techniques were used: behavioral test, histochemistry, fluorescent immunohistochemistry, transmission electron microscope. Results: Mice exposed to cuprizone for 6 weeks showed schizophrenia-like behavioral changes, the increased exploration of the center in the open field test (OFT), increased entries into the open arms of the elevated plus-maze, as well as demyelination in the corpus callosum. After cuprizone withdrawal, the diet therapy was initiated with supplementation of Acer truncatum oil for 2 weeks. As expected, myelin repair was greatly enhanced in the demyelinated regions with increased mature oligodendrocytes (CC1) and myelin basic protein (MBP). More importantly, the supplementation with Acer truncatum oil in the diet reduced the schizophrenia-like behavior in the open field test (OFT) and the elevated plus-maze compared to the cuprizone recovery group. The results revealed that the diet supplementation with Acer truncatum oil improved behavioral abnormalities, oligodendrocyte maturation, and remyelination in the cuprizone model during recovery. Conclusion: Diet supplementation with Acer truncatum oil attenuates demyelination induced by cuprizone, indicating that Acer truncatum oil is a novel therapeutic diet in demyelinating diseases.

19.
J Mol Neurosci ; 72(5): 923-938, 2022 May.
Article in English | MEDLINE | ID: mdl-35129799

ABSTRACT

Hypoglycemia has emerged as a prominent complication in anti-diabetic drug therapy or negative energy balance of animals, which causes brain damage, cognitive impairment, and even death. Brain injury induced by hypoglycemia is closely related to oxidative stress and the production of reactive oxygen species (ROS). The intracellular accumulation of ROS leads to neuronal damage, even death. Ketone body ß-hydroxybutyrate (BHBA) not only serves as alternative energy source for glucose in extrahepatic tissues, but is also involved in cellular signaling transduction. Previous studies showed that BHBA reduces apoptosis by inhibiting the excessive production of ROS and activation of caspase-3. However, the effects of BHBA on apoptosis induced by glucose deprivation and its related molecular mechanisms have been seldom reported. In the present study, PC12 cells and primary cortical neurons were used to establish a low glucose injury model. The effects of BHBA on the survival and apoptosis in a glucose deficient condition and related molecular mechanisms were investigated by using flow cytometry, immunofluorescence, and western blotting. PC12 cells were incubated with 1 mM glucose for 24 h as a low glucose cell model, in which ROS accumulation and cell mortality were significantly increased. After 24 h and 48 h treatment with different concentrations of BHBA (0 mM, 0.05 mM, 0.5 mM, 1 mM, 2 mM), ROS production was significantly inhibited. Moreover, cell apoptosis rate was decreased and survival rate was significantly increased in 1 mM and 2 mM BHBA groups. In primary cortical neurons, at 24 h after treatment with 2 mM BHBA, the injured length and branch of neurites were significantly improved. Meanwhile, the intracellular ROS level, the proportion of c-Fos+ cells, apoptosis rate, and nuclear translocation of NF-κB protein after treatment with BHBA were significantly decreased when compared with that in low glucose cells. Importantly, the expression of p38, p-p38, NF-κB, and caspase-3 were significantly decreased, while the expression of p-ERK was significantly increased in both PC12 cells and primary cortical neurons. Our results demonstrate that BHBA decreased the accumulation of intracellular ROS, and further inhibited cell apoptosis by mediating the p38 MAPK signaling pathway and caspase-3 apoptosis cascade during glucose deprivation. In addition, BHBA inhibited apoptosis by activating ERK phosphorylation and alleviated the damage of low glucose to PC12 cells and primary cortical neurons. These results provide new insight into the anti-apoptotic effect of BHBA in a glucose deficient condition and the related signaling cascade.


Subject(s)
Brain Injuries , Hypoglycemia , 3-Hydroxybutyric Acid/pharmacology , Animals , Apoptosis , Caspase 3 , Glucose/pharmacology , NF-kappa B , Rats , Reactive Oxygen Species , p38 Mitogen-Activated Protein Kinases
20.
Stress Biol ; 2(1): 57, 2022 Dec 29.
Article in English | MEDLINE | ID: mdl-37676574

ABSTRACT

Heat stress has multiple potential effects on the brain, such as neuroinflammation, neurogenesis defects, and cognitive impairment. ß-hydroxybutyric acid (BHBA) has been demonstrated to play neuroprotective roles in various models of neurological diseases. In the present study, we investigated the efficacy of BHBA in alleviating heat stress-induced impairments of adult hippocampal neurogenesis and cognitive function, as well as the underlying mechanisms. Mice were exposed to 43 ℃ for 15 min for 14 days after administration with saline, BHBA, or minocycline. Here, we showed for the first time that BHBA normalized memory ability in the heat stress-treated mice and attenuated heat stress-impaired hippocampal neurogenesis. Consistently, BHBA noticeably improved the synaptic plasticity in the heat stress-treated hippocampal neurons by inhibiting the decrease of synapse-associated proteins and the density of dendritic spines. Moreover, BHBA inhibited the expression of cleaved caspase-3 by suppressing endoplasmic reticulum (ER) stress, and increased the expression of brain-derived neurotrophic factor (BDNF) in the heat stress-treated hippocampus by activating the protein kinase B (Akt)/cAMP response element binding protein (CREB) and methyl-CpG binding protein 2 (MeCP2) pathways. These findings indicate that BHBA is a potential agent for improving cognitive functions in heat stress-treated mice. The action may be mediated by ER stress, and Akt-CREB-BDNF and MeCP2 pathways to improve adult hippocampal neurogenesis and synaptic plasticity.

SELECTION OF CITATIONS
SEARCH DETAIL