Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
PLoS Pathog ; 19(11): e1011755, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38032851

ABSTRACT

HIV rapidly rebounds after interruption of antiretroviral therapy (ART). HIV-specific CD8+ T cells may act to prevent early events in viral reactivation. However, the presence of viral immune escape mutations may limit the effect of CD8+ T cells on viral rebound. Here, we studied the impact of CD8 immune pressure on post-treatment rebound of barcoded SIVmac293M in 14 Mamu-A*01 positive rhesus macaques that initiated ART on day 14, and subsequently underwent two analytic treatment interruptions (ATIs). Rebound following the first ATI (seven months after ART initiation) was dominated by virus that retained the wild-type sequence at the Mamu-A*01 restricted Tat-SL8 epitope. By the end of the two-month treatment interruption, the replicating virus was predominantly escaped at the Tat-SL8 epitope. Animals reinitiated ART for 3 months prior to a second treatment interruption. Time-to-rebound and viral reactivation rate were significantly slower during the second treatment interruption compared to the first. Tat-SL8 escape mutants dominated early rebound during the second treatment interruption, despite the dominance of wild-type virus in the proviral reservoir. Furthermore, the escape mutations detected early in the second treatment interruption were well predicted by those replicating at the end of the first, indicating that escape mutant virus in the second interruption originated from the latent reservoir as opposed to evolving de novo post rebound. SL8-specific CD8+ T cell levels in blood prior to the second interruption were marginally, but significantly, higher (median 0.73% vs 0.60%, p = 0.016). CD8+ T cell depletion approximately 95 days after the second treatment interruption led to the reappearance of wild-type virus. This work suggests that CD8+ T cells can actively suppress the rebound of wild-type virus, leading to the dominance of escape mutant virus after treatment interruption.


Subject(s)
HIV Infections , Simian Acquired Immunodeficiency Syndrome , Simian Immunodeficiency Virus , Animals , Macaca mulatta , Virus Replication/physiology , CD8-Positive T-Lymphocytes , Epitopes , Viral Load , Anti-Retroviral Agents/therapeutic use , Anti-Retroviral Agents/pharmacology
2.
Proc Biol Sci ; 287(1933): 20200354, 2020 08 26.
Article in English | MEDLINE | ID: mdl-32811309

ABSTRACT

Antiretroviral therapy (ART) provides effective control of human immunodeficiency virus (HIV) replication and maintains viral loads of HIV at undetectable levels. Interruption of ART causes rapid recrudescence of HIV plasma viremia due to reactivation of latently HIV-infected cells. Here, we characterize the timing of both the initial and subsequent successful viral reactivations following ART interruption in macaques infected with simian immunodeficiency virus (SIV). We compare these to previous results from HIV-infected patients. We find that on average the time until the first successful viral reactivation event is longer than the time between subsequent reactivations. Based on this result, we hypothesize that the reactivation frequency of both HIV and SIV may fluctuate over time, and that this may impact the treatment of HIV. We develop a stochastic model incorporating fluctuations in the frequency of viral reactivation following ART interruption that shows behaviours consistent with the observed data. Furthermore, we show that one of the impacts of a fluctuating reactivation frequency would be to significantly reduce the efficacy of 'anti-latency' interventions for HIV that aim to reduce the frequency of reactivation. It is therefore essential to consider the possibility of a fluctuating reactivation frequency when assessing the impact of such intervention strategies.


Subject(s)
HIV Infections , HIV , Simian Immunodeficiency Virus , Animals , Anti-Retroviral Agents , Humans , Viral Load , Virus Replication
3.
iScience ; 27(3): 109264, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38450155

ABSTRACT

The axon initial segment (AIS) is located at the proximal axon demarcating the boundary between axonal and somatodendritic compartments. The AIS facilitates the generation of action potentials and maintenance of neuronal polarity. In this study, we show that the location of AIS assembly, as marked by Ankyrin G, corresponds to the nodal plane of the lowest-order harmonic of the Laplace-Beltrami operator solved over the neuronal shape. This correlation establishes a coupling between location of AIS assembly and neuronal cell morphology. We validate this correlation for neurons with atypical morphology and neurons containing multiple AnkG clusters on distinct neurites, where the nodal plane selects the appropriate axon showing enriched Tau. Based on our findings, we propose that Turing patterning systems are candidates for dynamically governing AIS location. Overall, this study highlights the importance of neuronal cell morphology in determining the precise localization of the AIS within the proximal axon.

4.
Chin J Integr Med ; 30(3): 243-250, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37987961

ABSTRACT

OBJECTIVE: To investigate the effects of Danmu Extract Syrup (DMS) on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice and explore the mechanism. METHODS: Seventy-two male Balb/C mice were randomly divided into 6 groups according to a random number table (n=12), including control (normal saline), LPS (5 mg/kg), LPS+DMS 2.5 mL/kg, LPS+DMS 5 mL/kg, LPS+DMS 10 mL/kg, and LPS+Dexamethasone (DXM, 5 mg/kg) groups. After pretreatment with DMS and DXM, the ALI mice model was induced by LPS, and the bronchoalveolar lavage fluid (BALF) were collected to determine protein concentration, cell counts and inflammatory cytokines. The lung tissues of mice were stained with hematoxylin-eosin, and the wet/dry weight ratio (W/D) of lung tissue was calculated. The levels of tumor necrosis factor-α (TNF-α), interleukin (IL)-6 and IL-1 ß in BALF of mice were detected by enzyme linked immunosorbent assay. The expression levels of Claudin-5, vascular endothelial (VE)-cadherin, vascular endothelial growth factor (VEGF), phospho-protein kinase B (p-Akt) and Akt were detected by Western blot analysis. RESULTS: DMS pre-treatment significantly ameliorated lung histopathological changes. Compared with the LPS group, the W/D ratio and protein contents in BALF were obviously reduced after DMS pretreatment (P<0.05 or P<0.01). The number of cells in BALF and myeloperoxidase (MPO) activity decreased significantly after DMS pretreatment (P<0.05 or P<0.01). DMS pre-treatment decreased the levels of TNF-α, IL-6 and IL-1 ß (P<0.01). Meanwhile, DMS activated the phosphoinositide 3-kinase/protein kinase B (PI3K/Akt) pathway and reversed the expressions of Claudin-5, VE-cadherin and VEGF (P<0.01). CONCLUSIONS: DMS attenuated LPS-induced ALI in mice through repairing endothelial barrier. It might be a potential therapeutic drug for LPS-induced lung injury.


Subject(s)
Acute Lung Injury , Drugs, Chinese Herbal , Proto-Oncogene Proteins c-akt , Mice , Male , Animals , Proto-Oncogene Proteins c-akt/metabolism , Lipopolysaccharides , Phosphatidylinositol 3-Kinases/metabolism , Interleukin-1beta/metabolism , Vascular Endothelial Growth Factor A/metabolism , Tumor Necrosis Factor-alpha/metabolism , Claudin-5/metabolism , Acute Lung Injury/drug therapy , Acute Lung Injury/chemically induced , Lung/pathology , Interleukin-6/metabolism
5.
Heliyon ; 10(9): e30169, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38699022

ABSTRACT

Nauclea officinalis, as a Chinese medicine in Hainan province, had the effect of treating lower limb ulcers, burn infections. In this paper, we studied the effect of Strictosamide (STR), the main bioactive compound in Nauclea officinals, on wound healing and explored its internal mechanism. Firstly, the wound healing potential of STR was evaluated in a rat model, demonstrating its ability to expedite wound healing, mitigate inflammatory infiltration, and enhance collagen deposition. Additionally, immunofluorescence analysis revealed that STR up-regulated the expression of CD31 and PCNA. Subsequently, target prediction, protein-protein interaction (PPI), gene ontology (GO), and pathway enrichment analyses were used to obtain potential targets, specific biological processes, and molecular mechanisms of STR for the potential treatment of wound healing. Furthermore, molecular docking was conducted to predict the binding affinity between STR and its associated targets. Additionally, in vivo and in vitro experiments confirmed that STR could increase the expression of P-PI3K, P-AKT and P-mTOR by activating the PI3K/AKT signaling pathway. In summary, this study provided a new explanation for the mechanism by which STR promotes wound healing through network pharmacology, suggesting that STR may be a new candidate for treating wound.

6.
Phytomedicine ; 128: 155490, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38460358

ABSTRACT

BACKGROUND: Nauclea officinalis (Pierre ex Pit.) Merr. & Chun (Rubiaceae) is widely used to treat respiratory diseases in China. Strictosamide is its main active component and has significant anti-inflammatory activity. However, the effects and molecular mechanisms of strictosamide in the treatment of acute lung injury (ALI) remain largely unknown. PURPOSE: This study aimed to examine the regulatory effects of strictosamide on T helper 17 cells (Th17 cells)/Regulatory T cells (Treg cells) and gut microbiota in ALI-affected mice. MATERIALS AND METHODS: The ALI model was induced using lipopolysaccharide (LPS) intraperitoneal injection. Hematoxylin-eosin (H&E) staining, the number of inflammatory cells in broncho-alveolar lavage fluid (BALF), the Wet/Dry (W/D) ratio, and myeloperoxidase (MPO) activity were utilized as evaluation indices for the therapeutic efficacy of strictosamide on ALI. Flow cytometry (FCM), enzyme-linked immune sorbent assay (ELISA), quantitative reverse transcription polymerase chain reaction (qRT-PCR), and western blotting were used to determine the regulation of strictosamide on the Th17/Treg cells and the STAT3/STAT5 signaling pathway. The analysis of gut microbiota was conducted using 16S rDNA sequencing. The verification of the relationship between the gut microbiome and immune function was conducted using Spearman analysis. RESULTS: Strictosamide attenuated inflammation on ALI induced by LPS, which reduced the levels of Th17-related factors interleukin (IL)-6 and IL-17 and increased Treg-related factors IL-10 and transforming growth factor (TGF)-ß. In the spleens and whole blood, strictosamide reduced the proportion of Th17 cells and increased the proportion of Treg cells. Furthermore, strictosamide increased Forkhead/winged helix transcription factor 3 (Foxp3) and p-STAT5 protein expression while inhibiting Retinoid-related orphan nuclear receptors-γt (RORγt) and p-STAT3 expression. Moreover, strictosamide reshaped the diversity and structure of the gut microbiota, and influence the associations between immune parameters and gut microbiota in ALI mice. CONCLUSIONS: In summary, the results of the current investigation showed that strictosamide has a therapeutic impact on LPS-induced ALI. The mechanism of action of this effect may be associated with the modulation of Th17 and Treg cells differentiation via the SATA signaling pathway, as well as the impact of the gut microbiota.


Subject(s)
Acute Lung Injury , Gastrointestinal Microbiome , Lipopolysaccharides , STAT3 Transcription Factor , T-Lymphocytes, Regulatory , Th17 Cells , Animals , Acute Lung Injury/drug therapy , T-Lymphocytes, Regulatory/drug effects , Gastrointestinal Microbiome/drug effects , Th17 Cells/drug effects , Male , Mice , STAT3 Transcription Factor/metabolism , Disease Models, Animal , Mice, Inbred BALB C , Mice, Inbred C57BL , Anti-Inflammatory Agents/pharmacology , Bronchoalveolar Lavage Fluid/cytology
7.
J Anal Methods Chem ; 2022: 5297603, 2022.
Article in English | MEDLINE | ID: mdl-36591325

ABSTRACT

A rapid, sensitive, selective, and accurate HPLC-MS/MS method was developed and validated for the simultaneous determination of chlorogenic acid, naucleactonin C, khaephuoside A 3,4-dimethoxyphenyl-1-O-ß-apiofuroseyl(1 ⟶ 2)-ß-D-glucopyranoside in rat plasma and tissues after oral administration of Nauclea officinalis extracts. Chloramphenicol was used as an internal standard (IS). The plasma and tissue samples were extracted by protein precipitation with methanol-ethyl acetate (1 : 1, v/v) including 0.1% (v/v) formic acid. The chromatographic separation was achieved by using an C18 column with gradient elution using mobile phase, which consisted of 0.1% formic acid water (A) and acetonitrile (B) and the flow rate of 0.8 mL/min. Mass spectrometric detection was performed in multiple reaction monitoring (MRM) mode utilizing electrospray ionization (ESI) in negative mode. The developed method exhibited good linearity (determination coefficients, R 2 ≥ 0.9849), and the lower limits of quantification were 2, 5, 5, and 25 ng/mL for chlorogenic acid, naucleactonin C, khaephuoside A, and 3,4-dimethoxyphenyl-1-O-ß-apiofuroseyl(1 ⟶ 2)-ß-D-glucopyranoside. The intraday and interday precisions (relative standard deviation, RSD) were less than 12.65%, while the accuracy was ranged from 86.31 to 114.17%. The recovery rate were 51.85-97.06%, 75.99-106.68%, 77.46-105.35%, and 68.36-103.75% for chlorogenic acid, naucleactonin C, khaephuoside A, and 3,4-dimethoxyphenyl-1-O-ß-apiofuroseyl(1 ⟶ 2)-ß-D-glucopyranoside the matrix effects were 50.17-116.62%, 86.75-115.99%, 45.79-87.44%, and 51.60-92.34% for chlorogenic acid, naucleactonin C, khaephuoside A, and 3,4-dimethoxyphenyl-1-O-ß-apiofuroseyl(1 ⟶ 2)-ß-D-glucopyranoside in different matrix. The developed method was successfully applied to a pharmacokinetic study and tissue distribution of four compounds in rats after oral administration of Nauclea officinalis extracts.

8.
Chin Med ; 17(1): 131, 2022 Nov 24.
Article in English | MEDLINE | ID: mdl-36434729

ABSTRACT

BACKGROUND: Acute lung injury (ALI) is a severe inflammatory disease, underscoring the urgent need for novel treatments. Nauclea officinalis Pierre ex Pitard (Danmu in Chinese, DM) is effective in treating inflammatory respiratory diseases. However, there is still no evidence of its protective effect against ALI. METHODS: Metabolomics was applied to identify the potential biomarkers and pathways in ALI treated with DM. Further, network pharmacology was introduced to predict the key targets of DM against ALI. Then, the potential pathways and key targets were further verified by immunohistochemistry and western blot assays. RESULTS: DM significantly improved lung histopathological characteristics and inflammatory response in LPS-induced ALI. Metabolomics analysis showed that 16 and 19 differential metabolites were identified in plasma and lung tissue, respectively, and most of these metabolites tended to recover after DM treatment. Network pharmacology analysis revealed that the PI3K/Akt pathway may be the main signaling pathway of DM against ALI. The integrated analysis of metabolomics and network pharmacology identified 10 key genes. These genes are closely related to inflammatory response and cell apoptosis of lipopolysaccharide (LPS)-induced ALI in mice. Furthermore, immunohistochemistry and western blot verified that DM could regulate inflammatory response and cell apoptosis by affecting the PI3K/Akt pathway, and expression changes in Bax and Bcl-2 were also triggered. CONCLUSION: This study first integrated metabolomics, network pharmacology and biological verification to investigate the potential mechanism of DM in treating ALI, which is related to the regulation of inflammatory response and cell apoptosis. And the integrated analysis can provide new strategies and ideas for the study of traditional Chinese medicines in the treatment of ALI.

SELECTION OF CITATIONS
SEARCH DETAIL