Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 356
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Mol Cell ; 78(1): 42-56.e6, 2020 04 02.
Article in English | MEDLINE | ID: mdl-32035036

ABSTRACT

The functional relevance and mechanistic basis of the effects of the neurotransmitter dopamine (DA) on inflammation remain unclear. Here we reveal that DA inhibited TLR2-induced NF-κB activation and inflammation via the DRD5 receptor in macrophages. We found that the DRD5 receptor, via the EFD and IYX(X)I/L motifs in its CT and IC3 loop, respectively, can directly recruit TRAF6 and its negative regulator ARRB2 to form a multi-protein complex also containing downstream signaling proteins, such as TAK1, IKKs, and PP2A, that impairs TRAF6-mediated activation of NF-κB and expression of pro-inflammatory genes. Furthermore, the DA-DRD5-ARRB2-PP2A signaling axis can prevent S. aureus-induced inflammation and protect mice against S. aureus-induced sepsis and meningitis after DA treatment. Collectively, these findings provide the first demonstration of DA-DRD5 signaling acting to control inflammation and a detailed delineation of the underlying mechanism and identify the DRD5-ARRB2-PP2A axis as a potential target for future therapy of inflammation-associated diseases such as meningitis and sepsis.


Subject(s)
Dopamine/physiology , Inflammation/metabolism , Protein Phosphatase 2/metabolism , Receptors, Dopamine D5/metabolism , Signal Transduction , beta-Arrestin 2/metabolism , Amino Acid Motifs , Animals , Cells, Cultured , Cyclic AMP-Dependent Protein Kinases/metabolism , Cytokines/genetics , Cytokines/metabolism , HEK293 Cells , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Mice , NF-kappa B/antagonists & inhibitors , NF-kappa B/metabolism , Receptors, Dopamine D5/chemistry , TNF Receptor-Associated Factor 6/antagonists & inhibitors , TNF Receptor-Associated Factor 6/metabolism , Toll-Like Receptor 2/antagonists & inhibitors , beta-Arrestin 2/physiology
2.
BMC Genomics ; 25(1): 179, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38355396

ABSTRACT

BACKGROUND: Gene expression pattern is associated with biological phenotype and is widely used in exploring gene functions. Its evolution is also crucial in understanding species speciation and divergence. The genus Gossypium is a bona fide model for studying plant evolution and polyploidization. However, the evolution of gene expression during cotton species divergence has yet to be extensively discussed. RESULTS: Based on the seedling leaf transcriptomes, this work analyzed the transcriptomic content and expression patterns across eight cotton species, including six diploids and two natural tetraploids. Our findings indicate that, while the biological function of these cotton transcriptomes remains largely conserved, there has been significant variation in transcriptomic content during species divergence. Furthermore, we conducted a comprehensive analysis of expression distances across cotton species. This analysis lends further support to the use of G. arboreum as a substitute for the A-genome donor of natural cotton polyploids. Moreover, our research highlights the evolution of stress-responsive pathways, including hormone signaling, fatty acid degradation, and flavonoid biosynthesis. These processes appear to have evolved under lower selection pressures, presumably reflecting their critical role in the adaptations of the studied cotton species to diverse environments. CONCLUSIONS: In summary, this study provided insights into the gene expression variation within the genus Gossypium and identified essential genes/pathways whose expression evolution was closely associated with the evolution of cotton species. Furthermore, the method of characterizing genes and pathways under unexpected high or slow selection pressure can also serve as a new strategy for gene function exploration.


Subject(s)
Gossypium , Transcriptome , Gossypium/genetics , Gossypium/metabolism , Genes, Plant , Gene Expression Profiling , Polyploidy , Gene Expression Regulation, Plant , Phylogeny , Genome, Plant
3.
Mol Cancer ; 23(1): 79, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38658974

ABSTRACT

R-loops are prevalent three-stranded nucleic acid structures, comprising a DNA-RNA hybrid and a displaced single-stranded DNA, that frequently form during transcription and may be attributed to genomic stability and gene expression regulation. It was recently discovered that RNA modification contributes to maintain the stability of R-loops such as N6-methyladenosine (m6A). Yet, m6A-modified R-loops in regulating gene transcription remains poorly understood. Here, we demonstrated that insulin-like growth factor 2 mRNA-binding proteins (IGF2BPs) recognize R-loops in an m6A-dependent way. Consequently, IGF2BPs overexpression leads to increased overall R-loop levels, cell migration inhibition, and cell growth retardation in prostate cancer (PCa) via precluding the binding of DNA methyltransferase 1(DNMT1) to semaphorin 3 F (SEMA3F) promoters. Moreover, the K homology (KH) domains of IGF2BPs are required for their recognition of m6A-containing R-loops and are required for tumor suppressor functions. Overexpression of SEMA3F markedly enhanced docetaxel chemosensitivity in prostate cancer via regulating Hippo pathway. Our findings point to a distinct R-loop resolution pathway mediated by IGF2BPs, emphasizing the functional importance of IGF2BPs as epigenetic R-loop readers in transcriptional genetic regulation and cancer biology.The manuscript summarizes the new role of N6-methyladenosine in epigenetic regulation, we introduce the distinct R-loop resolution mediated by IGF2BP proteins in an m6A-dependent way, which probably lead to the growth retardation and docetaxel chemotherapy resistance in prostate cancer. Moreover, our findings first emphasized the functional importance of IGF2BPs as epigenetic R-loop readers in transcriptional genetic regulation and cancer biology. In addition, our research provides a novel RBM15/IGF2BPs/DNMT1 trans-omics regulation m6A axis, indicating the new crosstalk between RNA m6A methylation and DNA methylation in prostate cancer.


Subject(s)
Adenosine/analogs & derivatives , Docetaxel , Epigenesis, Genetic , Gene Expression Regulation, Neoplastic , Prostatic Neoplasms , R-Loop Structures , Male , Humans , Docetaxel/pharmacology , Prostatic Neoplasms/genetics , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Prostatic Neoplasms/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Cell Line, Tumor , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Adenosine/metabolism , Adenosine/pharmacology , Cell Proliferation , Drug Resistance, Neoplasm/genetics , Promoter Regions, Genetic , Antineoplastic Agents/pharmacology
4.
Article in English | MEDLINE | ID: mdl-38896005

ABSTRACT

INTRODUCTION: The association between paced LVAT and cardiac structure and function at baseline, as well as whether longer LVAT is associated with worse cardiac reverse remodeling in patients with heart failure (HF) and left bundle branch block (LBBB) has not been well investigated. The purpose of this study is to investigate the association between paced LVAT and baseline echocardiographic parameters and cardiac reverse remodeling at follow-up. METHODS: Patients with HF and LBBB receiving successful left bundle branch pacing (LBBP) from June 2018 to April 2023 were enrolled and grouped based on paced LVAT. NT-proBNP and echocardiographic parameters were recorded during routine follow-up. The relationships between paced LVAT and echocardiographic parameters at baseline and follow-up were analyzed. RESULTS: Eighty-three patients were enrolled (48 males, aged 65 ± 9.8, mean LVEF 32.1 ± 7.5%, mean LVEDD 63.0 ± 8.5 mm, median NT-proBNP 1057[513-3158] pg/mL). The paced QRSd was significantly decreased (177 ± 17.9 vs. 134 ± 18.5, p < .001) and median paced LVAT was 80[72-88] ms. After a median follow-up of 12[9-29] months, LVEF increased to 52.1 ± 11.2%, LVEDD decreased to 52.6 ± 8.8 mm, and NT-proBNP decreased to 215[73-532]pg/mL. Patients were grouped based on paced LVAT: LVAT < 80 ms (n = 39); 80 ≤ LVAT < 90 ms (n = 24); LVAT ≥ 90 ms (n = 20). Patients with longer LVAT had larger LVEDD and lower LVEF (LVEDDbaseline: p < .001; LVEFbaseline: p = .001). The difference in LVEF6M was statistically significant among groups (p < .001) and patients with longer LVAT had lower LVEF6M, while the difference in LVEF1Y was not seen (p = .090). There was no significant correlation between ΔLVEF6M-baseline, ΔLVEF1Y-6M and LVAT respectively (ΔLVEF6M-baseline: p = .261, r = -.126; ΔLVEF1Y-6M: p = .085, r = .218). CONCLUSION: Long paced LVAT was associated with worse echocardiographic parameters at baseline, but did not affect the cardiac reverse remodeling in patients with HF and LBBB. Those with longer LVAT required longer time to recover.

5.
Hum Genomics ; 17(1): 89, 2023 10 03.
Article in English | MEDLINE | ID: mdl-37789450

ABSTRACT

OBJECTIVE: Previous studies have proposed that food intakes are associated with the risk of urolithiasis. Here, we conducted a two-sample Mendelian randomization (MR) study to evaluate the causal effects of different food intakes on urolithiasis. METHODS: Independent genetic variants associated with different food intakes at a genome-wide significant level were selected from summary-level statistics of genome-wide association studies from the UK Biobank. The association of these instrumental variables with urolithiasis was studied in a cohort from FinnGen Consortium. RESULTS: Among the 15 studied food intake exposures, tea intake (odds ratio [OR] = 0.433, 95% confidence interval [CI] = 0.281-0.667, p value = 1.470 × 10-4) and fresh fruit intake (OR = 0.358, 95% CI = 0.185-0.694, p value = 0.002) were found to significantly reduce the risk of the calculus of kidney and ureter. The association remained consistent in the sensitivity analyses. After adjusting for the effects of vitamin D and vitamin C, fresh fruit intake remained the reverse causal association with the calculus of kidney and ureter. CONCLUSIONS: Genetically proxied fresh fruit intake is causally associated with a reduced risk of the calculus of kidney and ureter.


Subject(s)
Calculi , Urolithiasis , Humans , Protective Factors , Mendelian Randomization Analysis , Fruit/genetics , Genome-Wide Association Study , Urolithiasis/epidemiology , Urolithiasis/genetics , Urolithiasis/prevention & control , Polymorphism, Single Nucleotide/genetics
6.
Brain Behav Immun ; 117: 456-470, 2024 03.
Article in English | MEDLINE | ID: mdl-38336024

ABSTRACT

Obesity has reached pandemic proportions and is a risk factor for neurodegenerative diseases, including Alzheimer's disease. Chronic inflammation is common in obese patients, but the mechanism between inflammation and cognitive impairment in obesity remains unclear. Accumulative evidence shows that protein-tyrosine phosphatase 1B (PTP1B), a neuroinflammatory and negative synaptic regulator, is involved in the pathogenesis of neurodegenerative processes. We investigated the causal role of PTP1B in obesity-induced cognitive impairment and the beneficial effect of PTP1B inhibitors in counteracting impairments of cognition, neural morphology, and signaling. We showed that obese individuals had negative relationship between serum PTP1B levels and cognitive function. Furthermore, the PTP1B level in the forebrain increased in patients with neurodegenerative diseases and obese cognitive impairment mice with the expansion of white matter, neuroinflammation and brain atrophy. PTP1B globally or forebrain-specific knockout mice on an obesogenic high-fat diet showed enhanced cognition and improved synaptic ultrastructure and proteins in the forebrain. Specifically, deleting PTP1B in leptin receptor-expressing cells improved leptin synaptic signaling and increased BDNF expression in the forebrain of obese mice. Importantly, we found that various PTP1B allosteric inhibitors (e.g., MSI-1436, well-tolerated in Phase 1 and 1b clinical trials for obesity and type II diabetes) prevented these alterations, including improving cognition, neurite outgrowth, leptin synaptic signaling and BDNF in both obese cognitive impairment mice and a neural cell model of PTP1B overexpression. These findings suggest that increased forebrain PTP1B is associated with cognitive decline in obesity, whereas inhibition of PTP1B could be a promising strategy for preventing neurodegeneration induced by obesity.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Diabetes Mellitus, Type 2 , Animals , Humans , Mice , Brain-Derived Neurotrophic Factor , Inflammation , Leptin , Obesity/complications
7.
Nanotechnology ; 35(19)2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38237184

ABSTRACT

The demand for Lithium-ion batteries (LIBs) has significantly grown in the last decade due to their extensive use electric vehicles. To further advance the commercialization of LIBs for various applications, there is a pressing need to develop electrode materials with enhanced performance. The porous microsphere morphology LiNixMn2-xO4(LNMO) is considered to be an effective material with both high energy density and excellent rate performance. Nevertheless, LNMO synthesis technology still has problem such as long reaction time, high energy consumption and environmental pollution. Herein, LNMO microsphere was successfully synthesized with short precursors reaction time (18 s) at 40 °C without using chelating agent by microreaction technology combined solid-state lithiation. The optimized LNMO cathode shows microsphere (∼8µm) morphology stacked by nano primary particles, with abundant mesoporous and fully exposed low-energy plane. The electrochemical analysis indicates that the optimized LNMO cathode demonstrates 97.33% capacity retention even after 200 cycles at 1C. Additionally, the material shows a highly satisfactory discharge capacity of 92.3 mAh·g-1at 10C. Overall, microreaction technology is anticipated to offer a novel approach in the synthesis of LNMO cathode materials with excellent performance.

8.
Int J Hyperthermia ; 41(1): 2316085, 2024.
Article in English | MEDLINE | ID: mdl-38346911

ABSTRACT

OBJECTIVE: This study aimed to evaluate the combined efficacy of hyperthermia and chemotherapy using a bladder cancer organoid model and to explore hyperthermia-related molecular pathways. METHOD: Tumor organoids were generated by embedding RT4 bladder cancer cells into Matrigel. The resulting organoids were treated with pirarubicin or gemcitabine at 37 °C or 42 °C. Proliferation was determined by Ki67 immunofluorescence staining, and apoptosis was assessed using a TdT-mediated dUTP nick end labeling (TUNEL) assay. RNA sequencing was used to identify the differentially expressed genes. RESULTS: Bladder cancer organoids were successfully established and exhibited robust proliferative abilities. Treatment with gemcitabine or pirarubicin under hyperthermic conditions caused pronounced structural damage to the organoids and increased cell death compared to that in the normothermically treated group. Furthermore, Ki67 labeling and TUNEL assays showed that the hyperthermia chemotherapy group showed a significantly reduced proliferation rate and high level of apoptosis. Finally, RNA sequencing revealed the IFN-γ signaling pathway to be associated with hyperthermia. CONCLUSION: Overall, hyperthermia combined with chemotherapy exerted better therapeutic effects than those of normothermic chemotherapy in grade 1-2 non-muscle-invasive bladder cancer, potentially through activation of the IFN-γ-JAK-STAT pathway.


Subject(s)
Doxorubicin/analogs & derivatives , Hyperthermia, Induced , Urinary Bladder Neoplasms , Humans , Gemcitabine , Janus Kinases/therapeutic use , Ki-67 Antigen , STAT Transcription Factors/therapeutic use , Signal Transduction , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/pathology , Hyperthermia , Hyperthermia, Induced/methods , Organoids/pathology
9.
Mol Cell ; 62(3): 359-370, 2016 05 05.
Article in English | MEDLINE | ID: mdl-27153534

ABSTRACT

Metabolic reprogramming is fundamental to biological homeostasis, enabling cells to adjust metabolic routes after sensing altered availability of fuels and growth factors. ULK1 and ULK2 represent key integrators that relay metabolic stress signals to the autophagy machinery. Here, we demonstrate that, during deprivation of amino acid and growth factors, ULK1/2 directly phosphorylate key glycolytic enzymes including hexokinase (HK), phosphofructokinase 1 (PFK1), enolase 1 (ENO1), and the gluconeogenic enzyme fructose-1,6-bisphosphatase (FBP1). Phosphorylation of these enzymes leads to enhanced HK activity to sustain glucose uptake but reduced activity of FBP1 to block the gluconeogenic route and reduced activity of PFK1 and ENO1 to moderate drop of glucose-6-phosphate and to repartition more carbon flux to pentose phosphate pathway (PPP), maintaining cellular energy and redox homeostasis at cellular and organismal levels. These results identify ULK1/2 as a bifurcate-signaling node that sustains glucose metabolic fluxes besides initiation of autophagy in response to nutritional deprivation.


Subject(s)
Autophagy-Related Protein-1 Homolog/metabolism , Autophagy , Glucose/metabolism , Glycolysis , Intracellular Signaling Peptides and Proteins/metabolism , Pentose Phosphate Pathway , Protein Serine-Threonine Kinases/metabolism , Stress, Physiological , Amino Acids/deficiency , Amino Acids/metabolism , Animals , Autophagy-Related Protein-1 Homolog/deficiency , Autophagy-Related Protein-1 Homolog/genetics , Biomarkers, Tumor/metabolism , Cell Death , DNA-Binding Proteins/metabolism , Female , Fructose-Bisphosphatase/metabolism , Genotype , HCT116 Cells , Hexokinase/metabolism , Humans , Intracellular Signaling Peptides and Proteins/genetics , MCF-7 Cells , Male , Mice, Knockout , Phenotype , Phosphofructokinase-1/metabolism , Phosphopyruvate Hydratase/metabolism , Phosphorylation , Protein Serine-Threonine Kinases/deficiency , Protein Serine-Threonine Kinases/genetics , RNA Interference , Reactive Oxygen Species/metabolism , Signal Transduction , Time Factors , Transfection , Tumor Suppressor Proteins/metabolism
10.
Cell Mol Biol Lett ; 29(1): 79, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38783169

ABSTRACT

BACKGROUND: Postoperative cognitive dysfunction (POCD) is a common complication after anesthesia/surgery, especially among elderly patients, and poses a significant threat to their postoperative quality of life and overall well-being. While it is widely accepted that elderly patients may experience POCD following anesthesia/surgery, the exact mechanism behind this phenomenon remains unclear. Several studies have indicated that the interaction between silent mating type information regulation 2 homologue 1 (SIRT1) and brain-derived neurotrophic factor (BDNF) is crucial in controlling cognitive function and is strongly linked to neurodegenerative disorders. Hence, this research aims to explore how SIRT1/BDNF impacts cognitive decline caused by anesthesia/surgery in aged mice. METHODS: Open field test (OFT) was used to determine whether anesthesia/surgery affected the motor ability of mice, while the postoperative cognitive function of 18 months old mice was evaluated with Novel object recognition test (NORT), Object location test (OLT) and Fear condition test (FC). The expressions of SIRT1 and other molecules were analyzed by western blot and immunofluorescence staining. The hippocampal synaptic plasticity was detected by Golgi staining and Long-term potentiation (LTP). The effects of SIRT1 and BDNF overexpression as well as chemogenetic activation of glutamatergic neurons in hippocampal CA1 region of 18 months old vesicular glutamate transporter 1 (VGLUT1) mice on POCD were further investigated. RESULTS: The research results revealed that older mice exhibited cognitive impairment following intramedullary fixation of tibial fracture. Additionally, a notable decrease in the expression of SIRT1/BDNF and neuronal excitability in hippocampal CA1 glutamatergic neurons was observed. By increasing levels of SIRT1/BDNF or enhancing glutamatergic neuron excitability in the CA1 region, it was possible to effectively mitigate synaptic plasticity impairment and ameliorate postoperative cognitive dysfunction. CONCLUSIONS: The decline in SIRT1/BDNF levels leading to changes in synaptic plasticity and neuronal excitability in older mice could be a significant factor contributing to cognitive impairment after anesthesia/surgery.


Subject(s)
Brain-Derived Neurotrophic Factor , CA1 Region, Hippocampal , Down-Regulation , Neuronal Plasticity , Neurons , Postoperative Cognitive Complications , Sirtuin 1 , Animals , Sirtuin 1/metabolism , Sirtuin 1/genetics , Brain-Derived Neurotrophic Factor/metabolism , Brain-Derived Neurotrophic Factor/genetics , Mice , Neurons/metabolism , Postoperative Cognitive Complications/metabolism , Postoperative Cognitive Complications/etiology , CA1 Region, Hippocampal/metabolism , Male , Mice, Inbred C57BL , Long-Term Potentiation , Glutamic Acid/metabolism , Cognitive Dysfunction/etiology , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/physiopathology
11.
Graefes Arch Clin Exp Ophthalmol ; 262(2): 527-535, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37650897

ABSTRACT

PURPOSE: To explore the long-term course of patients with meibomian gland dysfunction (MGD), and to analyse potential factors affecting the recovery of meibomian gland (MG) dropout. METHODS: Seventy-nine MGD patients (79 eyes) aged 36.03±15.78 years old who underwent more than one year of follow-up were enrolled in this retrospective study. Corneal fluorescein staining (CFS), tear meniscus height (TMH), noninvasive breakup time (NIBUT), and noncontact meibography at baseline and last visit were collected and analysed. Then an automatic MG analyzer was used to measure the morphological and functional parameters of MGs, including their area ratio (AR), tortuosity index (TI), and signal index (SI). The patients whose AR increased by more than 5% were defined as MG improvement, and AR decreased by more than 5% was MG worsening. RESULTS: A total of 79 patients (79 eyes) were assessed with at least 1-year of follow-up. More than 1/3 of MGD patients (27 eyes, 34.2%) underwent MG improvement, and 30.4% of MGs became worsened. Age (P=0.002), gender (P<0.001), IPL treatment (P=0.013), the change of CFS (P=0.0015), and the recovery of SI (P=0.035) showed significant differences among different recovery groups. Age(P<0.001), female sex (P=0.003), ΔCFS (P<0.001), AR at baseline (P<0.001) were negative correlation with AR recovery, and the change of SI (P=0.003) and IPL treatment (P=0.003) had a positive correlation with it. Among them, age (P=0.038), the change of CFS (P=0.004), and AR at baseline (P=0.007) were confirmed as negatively correlated factors predicting the long-term change of the MG. CONCLUSION: Although the MGD treatment has continued for more than 1 year, only 34.2% of MGD patients were observed to undergo MG improvement. Younger patients and patients with better CFS recovery seem to have more opportunities to improve their MGs.


Subject(s)
Dry Eye Syndromes , Meibomian Gland Dysfunction , Humans , Female , Young Adult , Adult , Middle Aged , Meibomian Glands/diagnostic imaging , Meibomian Gland Dysfunction/diagnosis , Meibomian Gland Dysfunction/therapy , Retrospective Studies , Tears , Dry Eye Syndromes/diagnosis , Dry Eye Syndromes/etiology
12.
Int J Mol Sci ; 25(12)2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38928488

ABSTRACT

The oxidative esterification of aldehydes under mild conditions remains a significant challenge. This study introduces a unique defective UiO-66 to achieve gold nanoclusters (AuNCs) for efficient aldehyde oxidation under mild conditions. The construction and characterization of these materials are thoroughly investigated by techniques of XRD, SEM and TEM images, FT-IR, Raman, and XPS spectrum, emphasizing the unique microporous in defective UiO-66 are conducive to the fabrication of AuNCs. The catalytic performance of the prepared materials in aldehyde oxidation reactions is systematically evaluated, demonstrating the remarkable efficiency of dispersed Au@UiO-66-25 with high-content (9.09 wt%) Au-loading and ultra-small size (~2.7 nm). Moreover, mechanistic insights into the catalytic process under mild conditions (70 °C for 1 h) are provided, elucidating the determination of defective UiO-66 in the confined fabrication of AuNCs and subsequent furfural adsorption, which underlie the principles governing the observed enhancements. This study establishes the groundwork for the synthesis of highly dispersed and catalytically active metal nanoparticles using defective MOFs as a platform, advancing the catalytic esterification reaction of furfural to the next level.


Subject(s)
Aldehydes , Gold , Metal Nanoparticles , Oxidation-Reduction , Gold/chemistry , Metal Nanoparticles/chemistry , Aldehydes/chemistry , Catalysis , Metal-Organic Frameworks/chemistry , Porosity , Esterification , Spectroscopy, Fourier Transform Infrared
13.
Public Health Nurs ; 41(1): 22-36, 2024.
Article in English | MEDLINE | ID: mdl-37712430

ABSTRACT

BACKGROUND: Women are more likely to develop breast cancer if their first-degree relatives (FDRs) have the disease, but they are often unaware of their individual risk and conduct screening behaviors. OBJECTIVE: This study aimed to evaluate the effectiveness of interventions in increasing breast self-examination, clinical breast examination, and mammography rates in FDRs of breast cancer patients. METHODS: We selected randomized clinical trials and quasi-experimental studies in eight databases. Interventions in each study were categorized as "promising", or "non-promising" according to whether they led to a positive change in screening behaviors. Interventions were also coded using the Behavioral Change Techniques (BCTs) Taxonomy and a promise ratio calculated for each. BCTs with a promise ratio ≥2 was classified as "promising". RESULTS: Thirteen studies with 21 different BCTs were included. The most frequent BCTs were "Prompts/cues", "Credible source", and "Instructions on how to perform the behavior". Seven BCTs had a promise ratio of ≥2 and the four most promising were "Information about health consequences" (promise ratio = 6), "Problem solving" (promise ratio = 4), "Demonstration of the behavior" (promise ratio = 4), and "Adding objects to the environment" (promise ratio = 4). CONCLUSIONS: This review indicated an overall weak use of theory, and an insufficient description of several interventions to support the assessment of how specific BCTs were activated.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/diagnosis , Breast Neoplasms/prevention & control , Early Detection of Cancer
14.
Int Wound J ; 21(4): e14873, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38629589

ABSTRACT

This review aims to synthesize current knowledge on the incidence, characteristics and management of wounds and injuries among professional ice hockey athletes, with the specific focus on the emerging population of Chinese female players. An extensive literature search was conducted across several databases to gather data on injury patterns and wounds, causes, severity and prevention strategies in ice hockey. Special attention was given to studies involving female athletes and unique challenges faced by players in developing regions like China. The review also examined the impact of training modalities, protective equipment and medical interventions on injury rates. The findings reveal a significant seasonal fluctuation in wound incidence, with marked reduction following the preseason period. This trend underscores the effectiveness of adjusted training programmes and essential role of medical teams in injury prevention and rehabilitation. Analysis did not show significant difference in wound rates between technical and physical training sessions, suggesting that injuries are pervasive risk across all training activities. Skating, collisions and inadequate warm-ups were identified as the leading causes of wounds, highlighting areas for targeted preventive measures. The distribution of wounds across various body regions pointed to knee, lower back and wrist as the most vulnerable sites, necessitating focused protection and training adjustments. Ice hockey, particularly among female athletes in China, presents complex injury landscape characterized by the wide range of wounds. The study emphasizes the necessity of comprehensive, multidisciplinary approach to injury prevention that includes training modifications, enhanced protective gear and strategic medical oversight. By addressing the specific causes and patterns of injuries identified, stakeholders can better protect athletes from the inherent risks of the sport, promote safer play and extend career longevity.


Subject(s)
Athletes , Hockey , Female , Humans , China/epidemiology , Hockey/injuries , Incidence , Lower Extremity , Male
15.
BMC Genomics ; 24(1): 252, 2023 May 10.
Article in English | MEDLINE | ID: mdl-37165305

ABSTRACT

BACKGROUND: The long non-coding RNAs (lncRNAs) are critical regulators of diverse biological processes. Nevertheless, a global view of its expression and function in the mouse retina, a crucial model for neurogenesis study, still needs to be made available. RESULTS: Herein, by integrating the established gene models and the result from ab initio prediction using short- and long-read sequencing, we characterized 4,523 lncRNA genes (MRLGs) in developing mouse retinas (from the embryonic day of 12.5 to the neonatal day of P28), which was so far the most comprehensive collection of retinal lncRNAs. Next, derived from transcriptomics analyses of different tissues and developing retinas, we found that the MRLGs were highly spatiotemporal specific in expression and played essential roles in regulating the genesis and function of mouse retinas. In addition, we investigated the expression of MRLGs in some mouse mutants and revealed that 97 intergenic MRLGs might be involved in regulating differentiation and development of retinal neurons through Math5, Isl1, Brn3b, NRL, Onecut1, or Onecut2 mediated pathways. CONCLUSIONS: In summary, this work significantly enhanced our knowledge of lncRNA genes in mouse retina development and provided valuable clues for future exploration of their biological roles.


Subject(s)
RNA, Long Noncoding , Animals , Mice , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Retina/metabolism , Gene Expression Profiling , Hepatocyte Nuclear Factor 6/genetics , Hepatocyte Nuclear Factor 6/metabolism
16.
Plant Mol Biol ; 112(1-2): 19-31, 2023 May.
Article in English | MEDLINE | ID: mdl-36929454

ABSTRACT

Pectin widely exists in higher plants' cell walls and intercellular space of higher plants and plays an indispensable role in plant growth and development. We identified 55 differentially expressed genes related to pectin degradation by transcriptomic analysis in the male sterile mutant, ms1. A gene encoding pectin methylesterase (GhPME21) was found to be predominantly expressed in the developing stamens of cotton but was significantly down-regulated in ms1 stamens. The tapetal layer of GhPME21 interfered lines (GhPME21i) was significantly thickened compared to that of WT at the early stage; anther compartment morphology of GhPME21i lines was abnormal, and the microspore wall was broken at the middle stage; Alexander staining showed that the pollen grains of GhPME21i lines differed greatly in volume at the late stage. The mature pollen surfaces of GhPME21i lines were deposited with discontinuous and broken sheets and prickles viewed under SEM. Fewer pollen tubes were observed to germinate in vitro in GhPME21i lines, while tiny of those in vivo were found to elongate to the ovary. The seeds harvested from GhPME21i lines as pollination donors were dry and hollow. The changes of phenotypes in GhPME21i lines at various stages illustrated that the GhPME21 gene played a vital role in the development of cotton stamens and controlled plant fertility by affecting stamen development, pollen germination, and pollen tube elongation. The findings of this study laid the groundwork for further research into the molecular mechanisms of PMEs involved in microspore formation and the creation of cotton male sterility materials.


Subject(s)
Gossypium , Plant Proteins , Gossypium/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Carboxylic Ester Hydrolases/genetics , Carboxylic Ester Hydrolases/metabolism , Pectins , Gene Expression Regulation, Plant , Flowers , Plant Infertility/genetics
17.
New Phytol ; 237(6): 2347-2359, 2023 03.
Article in English | MEDLINE | ID: mdl-36200166

ABSTRACT

Aboveground herbivores and soil biota profoundly affect plant invasions. However, how they interactively affect plant invasions through plant-soil feedbacks (PSFs) remains unclear. To explore how herbivory by the introduced beetle Agasicles hygrophila affects Alternanthera philoxeroides invasions in China, we integrated multiyear field surveys and a 2-yr PSF experiment, in which we examined how herbivory affects PSFs on the performance of native and invasive plants and the introduced beetles. Despite increased herbivory from A. hygrophila, A. philoxeroides dominance over co-occurring congeneric native Alternanthera sessilis remained constant from 2014 to 2019. While occurring at lower abundances, A. sessilis experienced similar herbivore damage, suggesting apparent competitive effects. Our experiments revealed that herbivory on A. philoxeroides altered soil microbial communities, prolonged its negative PSF on A. sessilis, and decreased A. hygrophila larvae performance on the next-generation invasive plants. Consequently, A. hygrophila larvae performed better on leaves of natives than those of invasives when grown in soils conditioned by invasive plants defoliated by the introduced beetles. Our findings suggest that aboveground herbivory might promote rather than suppress A. philoxeroides invasion by enhancing its soil-mediated self-reinforcement, providing a novel mechanistic understanding of plant invasions. These findings highlight the need to incorporate an aboveground-belowground perspective during the assessment of potential biocontrol agents.


Subject(s)
Amaranthaceae , Coleoptera , Animals , Herbivory , Introduced Species , Plants , Larva , Soil
18.
Opt Express ; 31(20): 33200-33211, 2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37859105

ABSTRACT

In recent years, the transmission capacity of chaotic secure communications has been greatly expanded by combining coherent detection and multi-dimensional multiplexing. However, demonstrations over 1000 km fiber are yet to be further explored. In this paper, we propose a coherent optical secure transmission system based on analog-digital hybrid chaos. By introducing an analog-digital converter (ADC) and a bit extraction into the feedback loop of entropy source, the broadband analog chaos is converted into a binary digital signal. This binary digital signal is then mapped to a 65536-level pulse amplitude modulation (PAM) signal and injected into the semiconductor laser (SL) to regenerate the analog chaos, forming a closed loop. The binary digital signal from the chaos source and the encrypted signal are transmitted via wavelength division multiplexing (WDM). By using conventional digital signal processing (DSP) algorithms and neural networks for post-compensation, long-haul high-quality chaotic synchronization and high-performance secure communication are achieved. In addition, the probability density distribution of the analog chaotic signal is effectively improved by adopting the additional higher-order mapping operation in the digital part of the chaos source. The proof-of-concept experimental results show that our proposed scheme can support the secure transmission of 100 Gb/s quadrature phase shift keying (QPSK) signals over 1000 km of standard single-mode fiber (SSMF). The decrypted bit error rate (BER) reaches 9.88 × 10-4, which is well below the 7% forward error correction (FEC) threshold (BER = 3.8 × 10-3). This research provides a potential solution for high-capacity long-haul chaotic optical communications and fills the gap in secure communications based on analog-digital hybrid chaos.

19.
Analyst ; 148(16): 3931-3937, 2023 Aug 07.
Article in English | MEDLINE | ID: mdl-37466370

ABSTRACT

Besides being a luminescent material, cytidine 5'-monophosphate-capped gold nanoclusters (AuNCs@CMP) also show superior peroxidase-like activity which can promote TMB oxidation in the presence of H2O2, causing the solution to turn efficiently from pale to blue. However, the presence of perfluorooctane sulfonate (PFOS) in the above system inhibited TMB oxidation and bluing of the solution, consequently establishing a colorimetric platform of AuNCs/H2O2/TMB for PFOS determination. The results showed that it responded to PFOS over a wide range of 2.0-50 µM, with a limit of detection (LOD) as low as 150 nM. Furthermore, in-depth mechanism investigation revealed that, rather than the active site of the catalyst being occupied by PFOS, such a hypochromatic effect originated from depletion of the reactive oxygen species (ROS) by PFOS degradation, thereby also offering a unique strategy to scavenge the lethal toxicity of PFOS. In addition, the colorimetric response of AuNCs/H2O2/TMB to PFOS was extended to smartphone determination conveniently based on RGB values. Finally, the established platform was applied to PFOS determination both in soil extracts and in tap water with good recovery, which supplies a novel colorimetric platform for visual determination of PFOS in practice. The method has the advantages of being rapid, sensitive and highly selective, which highlight the design and construction of more systems for determination and elimination of lethal pollutants in environmental water.


Subject(s)
Colorimetry , Metal Nanoparticles , Colorimetry/methods , Gold/chemistry , Smartphone , Hydrogen Peroxide , Limit of Detection , Water , Peroxidases , Cytidine , Peroxidase/metabolism , Metal Nanoparticles/chemistry
20.
Nature ; 548(7665): 112-116, 2017 08 03.
Article in English | MEDLINE | ID: mdl-28723898

ABSTRACT

The major energy source for most cells is glucose, from which ATP is generated via glycolysis and/or oxidative metabolism. Glucose deprivation activates AMP-activated protein kinase (AMPK), but it is unclear whether this activation occurs solely via changes in AMP or ADP, the classical activators of AMPK. Here, we describe an AMP/ADP-independent mechanism that triggers AMPK activation by sensing the absence of fructose-1,6-bisphosphate (FBP), with AMPK being progressively activated as extracellular glucose and intracellular FBP decrease. When unoccupied by FBP, aldolases promote the formation of a lysosomal complex containing at least v-ATPase, ragulator, axin, liver kinase B1 (LKB1) and AMPK, which has previously been shown to be required for AMPK activation. Knockdown of aldolases activates AMPK even in cells with abundant glucose, whereas the catalysis-defective D34S aldolase mutant, which still binds FBP, blocks AMPK activation. Cell-free reconstitution assays show that addition of FBP disrupts the association of axin and LKB1 with v-ATPase and ragulator. Importantly, in some cell types AMP/ATP and ADP/ATP ratios remain unchanged during acute glucose starvation, and intact AMP-binding sites on AMPK are not required for AMPK activation. These results establish that aldolase, as well as being a glycolytic enzyme, is a sensor of glucose availability that regulates AMPK.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Fructose-Bisphosphate Aldolase/metabolism , Fructosediphosphates/metabolism , Glucose/metabolism , AMP-Activated Protein Kinase Kinases , Adenosine Diphosphate/metabolism , Adenosine Monophosphate/metabolism , Adenosine Triphosphatases/metabolism , Adenosine Triphosphate/metabolism , Animals , Axin Protein/metabolism , Binding Sites , Enzyme Activation , Fibroblasts , Fructose-Bisphosphate Aldolase/genetics , Glucose/deficiency , Humans , Male , Mice , Phosphorylation , Protein Serine-Threonine Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL