Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 128
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nat Immunol ; 20(7): 835-851, 2019 07.
Article in English | MEDLINE | ID: mdl-31160797

ABSTRACT

How tumor cells genetically lose antigenicity and evade immune checkpoints remains largely elusive. We report that tissue-specific expression of the human long noncoding RNA LINK-A in mouse mammary glands initiates metastatic mammary gland tumors, which phenotypically resemble human triple-negative breast cancer (TNBC). LINK-A expression facilitated crosstalk between phosphatidylinositol-(3,4,5)-trisphosphate and inhibitory G-protein-coupled receptor (GPCR) pathways, attenuating protein kinase A-mediated phosphorylation of the E3 ubiquitin ligase TRIM71. Consequently, LINK-A expression enhanced K48-polyubiquitination-mediated degradation of the antigen peptide-loading complex (PLC) and intrinsic tumor suppressors Rb and p53. Treatment with LINK-A locked nucleic acids or GPCR antagonists stabilized the PLC components, Rb and p53, and sensitized mammary gland tumors to immune checkpoint blockers. Patients with programmed ccll death protein-1(PD-1) blockade-resistant TNBC exhibited elevated LINK-A levels and downregulated PLC components. Hence we demonstrate lncRNA-dependent downregulation of antigenicity and intrinsic tumor suppression, which provides the basis for developing combinational immunotherapy treatment regimens and early TNBC prevention.


Subject(s)
Antigen Presentation/immunology , Gene Expression Regulation, Neoplastic , Neoplasms/genetics , Neoplasms/immunology , Oncogenes , RNA, Long Noncoding/genetics , Tumor Escape/genetics , Tumor Escape/immunology , Adenoma/genetics , Adenoma/metabolism , Animals , Cell Line, Tumor , Cell Proliferation , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Disease Models, Animal , Disease Progression , Humans , Mice , Neoplasms/metabolism , Neoplasms/pathology , Phosphorylation , Receptors, G-Protein-Coupled/antagonists & inhibitors , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology , Tumor Suppressor Protein p53/metabolism , Ubiquitination , Xenograft Model Antitumor Assays
2.
Cell ; 161(2): 240-54, 2015 Apr 09.
Article in English | MEDLINE | ID: mdl-25860607

ABSTRACT

In vitro modeling of human disease has recently become feasible with induced pluripotent stem cell (iPSC) technology. Here, we established patient-derived iPSCs from a Li-Fraumeni syndrome (LFS) family and investigated the role of mutant p53 in the development of osteosarcoma (OS). LFS iPSC-derived osteoblasts (OBs) recapitulated OS features including defective osteoblastic differentiation as well as tumorigenic ability. Systematic analyses revealed that the expression of genes enriched in LFS-derived OBs strongly correlated with decreased time to tumor recurrence and poor patient survival. Furthermore, LFS OBs exhibited impaired upregulation of the imprinted gene H19 during osteogenesis. Restoration of H19 expression in LFS OBs facilitated osteoblastic differentiation and repressed tumorigenic potential. By integrating human imprinted gene network (IGN) into functional genomic analyses, we found that H19 mediates suppression of LFS-associated OS through the IGN component DECORIN (DCN). In summary, these findings demonstrate the feasibility of studying inherited human cancer syndromes with iPSCs.


Subject(s)
Gene Regulatory Networks , Induced Pluripotent Stem Cells/cytology , Li-Fraumeni Syndrome/complications , Osteosarcoma/etiology , Adolescent , Adult , Animals , Child , Decorin/metabolism , Female , Humans , Li-Fraumeni Syndrome/genetics , Li-Fraumeni Syndrome/pathology , Male , Mesenchymal Stem Cells/metabolism , Mice , Models, Biological , Neoplasm Transplantation , Osteoblasts/cytology , Osteoblasts/metabolism , Osteogenesis , Osteosarcoma/genetics , Osteosarcoma/pathology , RNA, Long Noncoding/metabolism , Transplantation, Heterologous , Tumor Suppressor Protein p53/metabolism
3.
Nature ; 580(7804): 530-535, 2020 04.
Article in English | MEDLINE | ID: mdl-32322062

ABSTRACT

Cancer cells increase lipogenesis for their proliferation and the activation of sterol regulatory element-binding proteins (SREBPs) has a central role in this process. SREBPs are inhibited by a complex composed of INSIG proteins, SREBP cleavage-activating protein (SCAP) and sterols in the endoplasmic reticulum. Regulation of the interaction between INSIG proteins and SCAP by sterol levels is critical for the dissociation of the SCAP-SREBP complex from the endoplasmic reticulum and the activation of SREBPs1,2. However, whether this protein interaction is regulated by a mechanism other than the abundance of sterol-and in particular, whether oncogenic signalling has a role-is unclear. Here we show that activated AKT in human hepatocellular carcinoma (HCC) cells phosphorylates cytosolic phosphoenolpyruvate carboxykinase 1 (PCK1), the rate-limiting enzyme in gluconeogenesis, at Ser90. Phosphorylated PCK1 translocates to the endoplasmic reticulum, where it uses GTP as a phosphate donor to phosphorylate INSIG1 at Ser207 and INSIG2 at Ser151. This phosphorylation reduces the binding of sterols to INSIG1 and INSIG2 and disrupts the interaction between INSIG proteins and SCAP, leading to the translocation of the SCAP-SREBP complex to the Golgi apparatus, the activation of SREBP proteins (SREBP1 or SREBP2) and the transcription of downstream lipogenesis-related genes, proliferation of tumour cells, and tumorigenesis in mice. In addition, phosphorylation of PCK1 at Ser90, INSIG1 at Ser207 and INSIG2 at Ser151 is not only positively correlated with the nuclear accumulation of SREBP1 in samples from patients with HCC, but also associated with poor HCC prognosis. Our findings highlight the importance of the protein kinase activity of PCK1 in the activation of SREBPs, lipogenesis and the development of HCC.


Subject(s)
Carcinoma, Hepatocellular/metabolism , Gluconeogenesis , Intracellular Signaling Peptides and Proteins/metabolism , Lipogenesis , Liver Neoplasms/metabolism , Membrane Proteins/metabolism , Phosphoenolpyruvate Carboxykinase (GTP)/metabolism , Animals , Carcinogenesis , Carcinoma, Hepatocellular/pathology , Cell Proliferation , Disease Models, Animal , Endoplasmic Reticulum/metabolism , Golgi Apparatus/metabolism , Humans , Intracellular Signaling Peptides and Proteins/chemistry , Liver Neoplasms/pathology , Male , Membrane Proteins/chemistry , Mice , Mice, Nude , Oxysterols/metabolism , Phosphorylation , Prognosis , Protein Binding , Protein Transport , Proto-Oncogene Proteins c-akt/metabolism , Sterol Regulatory Element Binding Protein 1/metabolism , Sterol Regulatory Element Binding Protein 2/metabolism
4.
Mol Cell ; 71(4): 606-620.e7, 2018 08 16.
Article in English | MEDLINE | ID: mdl-30118680

ABSTRACT

Metformin has been reported to possess antitumor activity and maintain high cytotoxic T lymphocyte (CTL) immune surveillance. However, the functions and detailed mechanisms of metformin's role in cancer immunity are not fully understood. Here, we show that metformin increases CTL activity by reducing the stability and membrane localization of programmed death ligand-1 (PD-L1). Furthermore, we discover that AMP-activated protein kinase (AMPK) activated by metformin directly phosphorylates S195 of PD-L1. S195 phosphorylation induces abnormal PD-L1 glycosylation, resulting in its ER accumulation and ER-associated protein degradation (ERAD). Consistently, tumor tissues from metformin-treated breast cancer patients exhibit reduced PD-L1 levels with AMPK activation. Blocking the inhibitory signal of PD-L1 by metformin enhances CTL activity against cancer cells. Our findings identify a new regulatory mechanism of PD-L1 expression through the ERAD pathway and suggest that the metformin-CTLA4 blockade combination has the potential to increase the efficacy of immunotherapy.


Subject(s)
Antineoplastic Agents/pharmacology , B7-H1 Antigen/genetics , CTLA-4 Antigen/genetics , Gene Expression Regulation, Neoplastic , Hypoglycemic Agents/pharmacology , Metformin/pharmacology , AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/immunology , Animals , B7-H1 Antigen/immunology , CTLA-4 Antigen/immunology , Cell Line, Tumor , Endoplasmic Reticulum/drug effects , Endoplasmic Reticulum/genetics , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum-Associated Degradation , Epithelial Cells/cytology , Epithelial Cells/drug effects , Epithelial Cells/immunology , Female , Glycosylation , Humans , Mammary Glands, Human/cytology , Mammary Glands, Human/drug effects , Mammary Glands, Human/immunology , Melanoma, Experimental/drug therapy , Melanoma, Experimental/genetics , Melanoma, Experimental/immunology , Melanoma, Experimental/pathology , Mice , Mice, Inbred NOD , Phosphorylation , Serine/metabolism , T-Lymphocytes, Cytotoxic/cytology , T-Lymphocytes, Cytotoxic/drug effects , T-Lymphocytes, Cytotoxic/immunology
5.
Mol Cell ; 69(2): 279-291.e5, 2018 01 18.
Article in English | MEDLINE | ID: mdl-29351847

ABSTRACT

Sustained energy starvation leads to activation of AMP-activated protein kinase (AMPK), which coordinates energy status with numerous cellular processes including metabolism, protein synthesis, and autophagy. Here, we report that AMPK phosphorylates the histone methyltransferase EZH2 at T311 to disrupt the interaction between EZH2 and SUZ12, another core component of the polycomb repressive complex 2 (PRC2), leading to attenuated PRC2-dependent methylation of histone H3 at Lys27. As such, PRC2 target genes, many of which are known tumor suppressors, were upregulated upon T311-EZH2 phosphorylation, which suppressed tumor cell growth both in cell culture and mouse xenografts. Pathologically, immunohistochemical analyses uncovered a positive correlation between AMPK activity and pT311-EZH2, and higher pT311-EZH2 correlates with better survival in both ovarian and breast cancer patients. Our finding suggests that AMPK agonists might be promising sensitizers for EZH2-targeting cancer therapies.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Enhancer of Zeste Homolog 2 Protein/metabolism , Animals , Carcinogenesis/genetics , Cell Cycle , Cell Line, Tumor , Cell Proliferation , DNA Methylation , DNA-Binding Proteins/metabolism , Enhancer of Zeste Homolog 2 Protein/genetics , Enhancer of Zeste Homolog 2 Protein/physiology , Epigenesis, Genetic , Female , Histones/metabolism , Humans , Mice , Neoplasm Proteins , Nuclear Proteins/metabolism , Oncogenes , Ovarian Neoplasms/metabolism , Phosphorylation , Polycomb Repressive Complex 2/metabolism , Polycomb Repressive Complex 2/physiology , Transcription Factors , Up-Regulation
6.
J Biol Chem ; 298(4): 101821, 2022 04.
Article in English | MEDLINE | ID: mdl-35283189

ABSTRACT

Antibodies that target immune checkpoint proteins such as programmed cell death protein 1, programmed death ligand 1, and cytotoxic T-lymphocyte-associated antigen 4 in human cancers have achieved impressive clinical success; however, a significant proportion of patients fail to respond to these treatments. Galectin-9 (Gal-9), a ß-galactoside-binding protein, has been shown to induce T-cell death and facilitate immunosuppression in the tumor microenvironment by binding to immunomodulatory receptors such as T-cell immunoglobulin and mucin domain-containing molecule 3 and the innate immune receptor dectin-1, suggesting that it may have potential as a target for cancer immunotherapy. Here, we report the development of two novel Gal-9-neutralizing antibodies that specifically react with the N-carbohydrate-recognition domain of human Gal-9 with high affinity. We also show using cell-based functional assays that these antibodies efficiently protected human T cells from Gal-9-induced cell death. Notably, in a T-cell/tumor cell coculture assay of cytotoxicity, these antibodies significantly promoted T cell-mediated killing of tumor cells. Taken together, our findings demonstrate potent inhibition of human Gal-9 by neutralizing antibodies, which may open new avenues for cancer immunotherapy.


Subject(s)
Antibodies, Neutralizing , Cell Death , Galectins , T-Lymphocytes , Antibodies, Neutralizing/metabolism , Antibodies, Neutralizing/pharmacology , Cell Death/drug effects , Galectins/metabolism , Humans , Neoplasms/metabolism , Neoplasms/therapy , T-Lymphocytes/drug effects , T-Lymphocytes/metabolism , Tumor Microenvironment
7.
J Biol Chem ; 298(4): 101817, 2022 04.
Article in English | MEDLINE | ID: mdl-35278434

ABSTRACT

Expression of the receptor tyrosine kinase ephrin receptor A10 (EphA10), which is undetectable in most normal tissues except for the male testis, has been shown to correlate with tumor progression and poor prognosis in several malignancies, including triple-negative breast cancer (TNBC). Therefore, EphA10 could be a potential therapeutic target, likely with minimal adverse effects. However, no effective clinical drugs against EphA10 are currently available. Here, we report high expression levels of EphA10 in tumor regions of breast, lung, and ovarian cancers as well as in immunosuppressive myeloid cells in the tumor microenvironment. Furthermore, we developed anti-EphA10 monoclonal antibodies (mAbs) that specifically recognize cell surface EphA10, but not other EphA family isoforms, and target tumor regions precisely in vivo with no apparent accumulation in other organs. In syngeneic TNBC mouse models, we found that anti-EphA10 mAb clone #4 enhanced tumor regression, therapeutic response rate, and T cell-mediated antitumor immunity. Notably, the chimeric antigen receptor T cells derived from clone #4 significantly inhibited TNBC cell viability in vitro and tumor growth in vivo. Together, our findings suggest that targeting EphA10 via EphA10 mAbs and EphA10-specific chimeric antigen receptor-T cell therapy may represent a promising strategy for patients with EphA10-positive tumors.


Subject(s)
Antibodies, Monoclonal , Receptors, Chimeric Antigen , Receptors, Eph Family , T-Lymphocytes , Triple Negative Breast Neoplasms , Animals , Antibodies, Monoclonal/metabolism , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Antineoplastic Agents, Immunological/therapeutic use , Cell Line, Tumor , Cell Survival/drug effects , Disease Models, Animal , Humans , Mice , Receptors, Eph Family/immunology , T-Lymphocytes/metabolism , Triple Negative Breast Neoplasms/drug therapy , Xenograft Model Antitumor Assays
8.
J Oral Pathol Med ; 52(6): 554-563, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36807323

ABSTRACT

BACKGROUND: Venous malformation (VM) is a kind of congenital vascular anomaly with a high incidence of recurrence, detailed pathogenesis and standard treatment of VM still lack now. Increasing evidence showed exosomal RNA plays a pivotal role in various diseases. However, the underlying mechanism of VM based on the potential differentially exosomal RNAs remains unclear. METHODS: Comparative high-throughput sequencing with serum exosomes from three VM patients and three healthy donors was used to explore differentially expressed (DE) circRNAs, DE lncRNAs, and DE mRNAs involving the formation of VM. We identified and verified DE circRNAs, DE lncRNAs, and DE mRNAs via qRT-PCR assay. We explored the potential functions of these exosomal DE non-coding RNAs via performing further Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis. Besides, circRNA/lncRNA-miRNA-mRNA linkages were also constructed to find their potential relationships in VM. RESULTS: A total of 121 circRNAs, 53 lncRNAs, and 42 mRNAs (|log2 FC| ≥ 2.0, FDR <0.05, n = 3) were determined to be differentially expressed. QRT-PCR validated that these top-changed DE circRNAs, lncRNAs, and mRNAs had significant expression changes. Functional studies demonstrated that DE circRNAs play a pivotal role in thyroid hormone signaling pathway, DE lncRNAs function as a key regulator in MAPK signaling pathway and DE miRNAs participate in the process of hepatocellular carcinoma mostly. CONCLUSION: Our study comprehensively depicted exosomal DE non-coding RNAs networks related to the pathogenesis of VM which can provide new insight into, a novel target for treating VM.


Subject(s)
MicroRNAs , RNA, Long Noncoding , Humans , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Circular/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Gene Expression Profiling , MicroRNAs/genetics , MicroRNAs/metabolism
9.
J Oral Pathol Med ; 51(10): 911-919, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35854627

ABSTRACT

BACKGROUNDS: Head and neck vascular malformation (HNVM) is a highly complex congenital condition that is difficult to diagnose, monitor and treat. Therefore, it is critical to explore serum cytokines that may be related to its pathology and prognosis. METHODS: An antibody-based microarray was used to examine the expression of 31 angiogenic cytokines in 11 HNVM patients relative to 11 healthy subjects. ELISA was used to verify the results. We performed Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses of the differentially expressed cytokines (DECs). Additionally, we explored the function of DECs in human umbilical vein endothelial cells (HUVECs) in vitro via CCK-8, wound healing, transwell and tube formation assays. RESULTS: Expression of interleukin (IL)-10, matrix metallopeptidase-9 (MMP-9) and vascular endothelial growth factor receptor 2 (VEGF-R2) in HNVM patients was significantly higher, whereas levels of IL-12p40 and angiostatin were significantly lower in HNVM patients relative to healthy controls (p < 0.05). However, ELISA only verified that IL-10, MMP-9, VEGF-R2 and IL-12p40 had significant expression changes. Functional enrichment analysis revealed DECs mainly participated in the RAS signalling pathway. Functional studies demonstrated that IL-10, MMP-9 and VEGF-R2 promote cell proliferation, migration, invasion and tube formation, while IL-12p40 inhibited these processes in HUVECs. CONCLUSIONS: The present study not only indicates that IL-10, MMP-9, VEGF-R2 and IL-12p40 may participate in the development of HNVMs but also provides a theoretical basis for the discovery of new targeted molecules in the treatment of HNVMs.


Subject(s)
Vascular Endothelial Growth Factor A , Vascular Malformations , Humans , Vascular Endothelial Growth Factor A/metabolism , Interleukin-10/metabolism , Cell Movement , Matrix Metalloproteinase 9/metabolism , Interleukin-12 Subunit p40/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Vascular Malformations/metabolism , Cytokines/metabolism
10.
J Hepatol ; 74(4): 907-918, 2021 04.
Article in English | MEDLINE | ID: mdl-33031845

ABSTRACT

BACKGROUND & AIMS: There are currently limited therapeutic options for hepatocellular carcinoma (HCC), particularly when it is diagnosed at advanced stages. Herein, we examined the pathophysiological role of ROS1 and assessed the utility of ROS1-targeted therapy for the treatment of HCC. METHODS: Recombinant ribonucleases (RNases) were purified, and the ligand-receptor relationship between RNase7 and ROS1 was validated in HCC cell lines by Duolink, immunofluorescence, and immunoprecipitation assays. Potential interacting residues between ROS1 and RNase7 were predicted using a protein-protein docking approach. The oncogenic function of RNase7 was analyzed by cell proliferation, migration and invasion assays, and a xenograft mouse model. The efficacy of anti-ROS1 inhibitor treatment was evaluated in patient-derived xenograft (PDX) and orthotopic models. Two independent patient cohorts were analyzed to evaluate the pathological relevance of RNase7/ROS1. RESULTS: RNase7 associated with ROS1's N3-P2 domain and promoted ROS1-mediated oncogenic transformation. Patients with HCC exhibited elevated plasma RNase7 levels compared with healthy individuals. High ROS1 and RNase7 expression were strongly associated with poor prognosis in patients with HCC. In both HCC PDX and orthotopic mouse models, ROS1 inhibitor treatment markedly suppressed RNase7-induced tumorigenesis, leading to decreased plasma RNase7 levels and tumor shrinkage in mice. CONCLUSIONS: RNase7 serves as a high-affinity ligand for ROS1. Plasma RNase7 could be used as a biomarker to identify patients with HCC who may benefit from anti-ROS1 treatment. LAY SUMMARY: Receptor tyrosine kinases are known to be involved in tumorigenesis and have been targeted therapeutically for a number of cancers, including hepatocellular carcinoma. ROS1 is the only such receptor with kinase activity whose ligand has not been identified. Herein, we show that RNase7 acts as a ligand to activate ROS1 signaling. This has important pathophysiological and therapeutic implications. Anti-ROS1 inhibitors could be used to treatment patients with hepatocellular carcinoma and high RNase7 levels.


Subject(s)
Carcinogenesis , Carcinoma, Hepatocellular , Crizotinib/pharmacology , Liver Neoplasms , Protein Kinase Inhibitors/pharmacology , Protein-Tyrosine Kinases/metabolism , Proto-Oncogene Proteins/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Ribonucleases/metabolism , Animals , Biomarkers, Tumor/metabolism , Carcinogenesis/drug effects , Carcinogenesis/metabolism , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/metabolism , Cell Migration Assays/methods , Cell Proliferation/drug effects , Gene Expression Profiling/methods , Gene Expression Regulation, Neoplastic/drug effects , Humans , Ligands , Liver Neoplasms/drug therapy , Liver Neoplasms/metabolism , Mice , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Xenograft Model Antitumor Assays
11.
Genes Dev ; 27(3): 274-87, 2013 Feb 01.
Article in English | MEDLINE | ID: mdl-23388826

ABSTRACT

Steroid receptor coactivator 3 (SRC-3) is an oncogenic nuclear receptor coactivator that plays a significant role in drug resistance. Using a lentiviral cDNA library rescue screening approach, we identified a SRC-3 downstream gene-TRAF4 (tumor necrosis factor [TNF] receptor associated-factor 4)-that functions in cell resistance to cytotoxic stress. TRAF4 expression is positively correlated with SRC-3 expression in human breast cancers. Similar to that observed for SRC-3 overexpression, breast cancer cells overexpressing TRAF4 are more resistant to stress-induced death. Here, we further dissected the underlying molecular mechanism for SRC-3 and TRAF4-mediated resistance to cytotoxic agents. We observed that SRC-3 expression is inversely correlated with the expression of p53-regulated proapoptotic genes in breast cancers and further found that SRC-3 and TRAF4 overexpression diminished cytotoxic stress-induced up-regulation of the tumor suppressor p53 protein. To determine the mechanism, we showed that the TRAF domain of TRAF4 bound to the N-terminal TRAF-like region of the deubiquitinase HAUSP (herpesvirus-associated ubiquitin-specific protease; also named USP7) and blocked the access of p53 to the same region of HAUSP. This TRAF4-mediated inhibition of HAUSP then led to the loss of p53 deubiquitination and its stabilization in response to cellular stress. Consistent with this cellular function, we also found that TRAF4 overexpression in breast cancer patients was associated significantly with poor prognosis. Because of SRC-3's ability to abrogate p53 function, our results suggest that SRC-3 overexpression may be especially important in tumors in which p53 is not mutated.


Subject(s)
Nuclear Receptor Coactivator 3/metabolism , Stress, Physiological/physiology , TNF Receptor-Associated Factor 4/metabolism , Tumor Suppressor Protein p53/metabolism , Animals , Antineoplastic Agents/pharmacology , Breast Neoplasms/mortality , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Survival/drug effects , Endopeptidases/metabolism , Female , Gene Expression Regulation, Neoplastic/drug effects , Gene Knockdown Techniques , HEK293 Cells , Humans , Mice , Nuclear Receptor Coactivator 3/genetics , Protein Binding , Protein Stability , Ubiquitin-Specific Peptidase 7 , Ubiquitin-Specific Proteases , Ubiquitination
12.
Gastroenterology ; 156(6): 1849-1861.e13, 2019 05.
Article in English | MEDLINE | ID: mdl-30711629

ABSTRACT

BACKGROUND & AIMS: Inhibitors of MET have not produced satisfactory outcomes in trials of patients with liver cancer. We investigated the mechanisms of liver tumor resistance to MET inhibitors in mice. METHODS: We tested the effects of MET inhibitors tivantinib and capmatinib in the mouse hepatocellular carcinoma (HCC) cell line HCA-1 and in immune-competent and immunodeficient mice with subcutaneous tumors grown from this cell line. Tumors were collected from mice and tumor cells were analyzed by time-of-flight mass cytometry. We used short hairpin RNAs to weaken expression of MET in Hep3B, SK-HEP-1, HA59T, and HA22T liver cancer cell lines and analyzed cells by immunoblot, immunofluorescence, and immunoprecipitation assays. Mass spectrometry was used to assess interactions between MET and glycogen synthase kinase 3ß (GSK3B), and GSK3B phosphorylation, in liver cancer cell lines. C57/BL6 mice with orthotopic tumors grown from Hep1-6 cells were given combinations of capmatinib or tivantinib and antibodies against programmed cell death 1 (PDCD1; also called PD1); tumors were collected and analyzed by immunofluorescence. We analyzed 268 HCCsamples in a tissue microarray by immunohistochemistry. RESULTS: Exposure of liver cancer cell lines to MET inhibitors increased their expression of PD ligand 1 (PDL1) and inactivated cocultured T cells. MET phosphorylated and activated GSK3B at tyrosine 56, which decreased the expression of PDL1 by liver cancer cells. In orthotopic tumors grown in immune-competent mice, MET inhibitors decreased the antitumor activity of T cells. However, addition of anti-PD1 decreased orthotopic tumor growth and prolonged survival of mice compared with anti-PD1 or MET inhibitors alone. Tissue microarray analysis of HCC samples showed an inverse correlation between levels of MET and PDL1 and a positive correlation between levels of MET and phosphorylated GSK3B. CONCLUSIONS: In studies of liver cancer cell lines and mice with orthotopic tumors, MET mediated phosphorylation and activated GSK3B, leading to decreased expression of PDL1. Combined with a MET inhibitor, anti-PD1 and anti-PDL1 produced additive effect to slow growth of HCCs in mice.


Subject(s)
B7-H1 Antigen/metabolism , Carcinoma, Hepatocellular/enzymology , Glycogen Synthase Kinase 3 beta/metabolism , Liver Neoplasms/enzymology , Proto-Oncogene Proteins c-met/metabolism , TNF Receptor-Associated Factor 6/metabolism , Tumor Escape/drug effects , Animals , Antibodies, Monoclonal/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/immunology , Benzamides , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/immunology , Cell Line, Tumor , Down-Regulation , Granzymes/metabolism , Imidazoles/pharmacology , Imidazoles/therapeutic use , Liver Neoplasms/drug therapy , Liver Neoplasms/immunology , Male , Mice , Phosphorylation , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Pyrrolidinones/pharmacology , Pyrrolidinones/therapeutic use , Quinolines/pharmacology , Quinolines/therapeutic use , TNF Receptor-Associated Factor 6/immunology , Triazines/pharmacology , Triazines/therapeutic use , Ubiquitination
13.
Mol Cell ; 45(2): 171-84, 2012 Jan 27.
Article in English | MEDLINE | ID: mdl-22196886

ABSTRACT

Proinflammatory cytokine TNFα plays critical roles in promoting malignant cell proliferation, angiogenesis, and tumor metastasis in many cancers. However, the mechanism of TNFα-mediated tumor development remains unclear. Here, we show that IKKα, an important downstream kinase of TNFα, interacts with and phosphorylates FOXA2 at S107/S111, thereby suppressing FOXA2 transactivation activity and leading to decreased NUMB expression, and further activates the downstream NOTCH pathway and promotes cell proliferation and tumorigenesis. Moreover, we found that levels of IKKα, pFOXA2 (S107/111), and activated NOTCH1 were significantly higher in hepatocellular carcinoma tumors than in normal liver tissues and that pFOXA2 (S107/111) expression was positively correlated with IKKα and activated NOTCH1 expression in tumor tissues. Therefore, dysregulation of NUMB-mediated suppression of NOTCH1 by TNFα/IKKα-associated FOXA2 inhibition likely contributes to inflammation-mediated cancer pathogenesis. Here, we report a TNFα/IKKα/FOXA2/NUMB/NOTCH1 pathway that is critical for inflammation-mediated tumorigenesis and may provide a target for clinical intervention in human cancer.


Subject(s)
Carcinoma, Hepatocellular/metabolism , Cell Transformation, Neoplastic/metabolism , Hepatocyte Nuclear Factor 3-beta/genetics , I-kappa B Kinase/metabolism , Liver Neoplasms/metabolism , Receptor, Notch1/metabolism , Animals , Carcinoma, Hepatocellular/pathology , Cell Proliferation , Gene Expression Regulation, Neoplastic , Hepatocyte Nuclear Factor 3-beta/metabolism , Humans , Liver Neoplasms, Experimental/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Models, Biological , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Phosphorylation , Receptor, Notch1/genetics , Signal Transduction , Tumor Necrosis Factor-alpha/metabolism
14.
Nature ; 497(7449): 383-7, 2013 May 16.
Article in English | MEDLINE | ID: mdl-23636329

ABSTRACT

MicroRNAs (miRNAs) are generated by two-step processing to yield small RNAs that negatively regulate target gene expression at the post-transcriptional level. Deregulation of miRNAs has been linked to diverse pathological processes, including cancer. Recent studies have also implicated miRNAs in the regulation of cellular response to a spectrum of stresses, such as hypoxia, which is frequently encountered in the poorly angiogenic core of a solid tumour. However, the upstream regulators of miRNA biogenesis machineries remain obscure, raising the question of how tumour cells efficiently coordinate and impose specificity on miRNA expression and function in response to stresses. Here we show that epidermal growth factor receptor (EGFR), which is the product of a well-characterized oncogene in human cancers, suppresses the maturation of specific tumour-suppressor-like miRNAs in response to hypoxic stress through phosphorylation of argonaute 2 (AGO2) at Tyr 393. The association between EGFR and AGO2 is enhanced by hypoxia, leading to elevated AGO2-Y393 phosphorylation, which in turn reduces the binding of Dicer to AGO2 and inhibits miRNA processing from precursor miRNAs to mature miRNAs. We also identify a long-loop structure in precursor miRNAs as a critical regulatory element in phospho-Y393-AGO2-mediated miRNA maturation. Furthermore, AGO2-Y393 phosphorylation mediates EGFR-enhanced cell survival and invasiveness under hypoxia, and correlates with poorer overall survival in breast cancer patients. Our study reveals a previously unrecognized function of EGFR in miRNA maturation and demonstrates how EGFR is likely to function as a regulator of AGO2 through novel post-translational modification. These findings suggest that modulation of miRNA biogenesis is important for stress response in tumour cells and has potential clinical implications.


Subject(s)
Argonaute Proteins/chemistry , Argonaute Proteins/metabolism , Cell Hypoxia/physiology , ErbB Receptors/metabolism , MicroRNAs/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/mortality , Breast Neoplasms/pathology , Cell Hypoxia/genetics , Cell Line, Tumor , Cell Survival , Female , Gene Expression Regulation, Neoplastic , Humans , MicroRNAs/biosynthesis , MicroRNAs/chemistry , MicroRNAs/genetics , Neoplasm Invasiveness , Nucleic Acid Conformation , Phosphorylation , Phosphotyrosine/metabolism , Prognosis , Protein Binding , RNA Precursors/chemistry , RNA Precursors/genetics , RNA Precursors/metabolism , Ribonuclease III/metabolism , Survival Analysis
16.
Mol Cell ; 36(1): 131-40, 2009 Oct 09.
Article in English | MEDLINE | ID: mdl-19818716

ABSTRACT

IkappaB kinase beta (IKKbeta) is involved in tumor development and progression through activation of the nuclear factor (NF)-kappaB pathway. However, the molecular mechanism that regulates IKKbeta degradation remains largely unknown. Here, we show that a Cullin 3 (CUL3)-based ubiquitin ligase, Kelch-like ECH-associated protein 1 (KEAP1), is responsible for IKKbeta ubiquitination. Depletion of KEAP1 led to the accumulation and stabilization of IKKbeta and to upregulation of NF-kappaB-derived tumor angiogenic factors. A systematic analysis of the CUL3, KEAP1, and RBX1 genomic loci revealed a high percentage of genome loss and missense mutations in human cancers that failed to facilitate IKKbeta degradation. Our results suggest that the dysregulation of KEAP1-mediated IKKbeta ubiquitination may contribute to tumorigenesis.


Subject(s)
I-kappa B Kinase/metabolism , Intracellular Signaling Peptides and Proteins/physiology , NF-kappa B/metabolism , Signal Transduction/physiology , Animals , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cell Line , Cell Line, Tumor , Cullin Proteins/genetics , Cullin Proteins/metabolism , DNA Copy Number Variations/genetics , Female , Gene Expression/drug effects , Gene Expression/genetics , Humans , I-kappa B Kinase/genetics , Interleukin-8/genetics , Kaplan-Meier Estimate , Kelch-Like ECH-Associated Protein 1 , Mice , Mutation/physiology , Neoplasms/genetics , Neoplasms/metabolism , Neovascularization, Physiologic/genetics , Protein Binding/physiology , Protein Interaction Domains and Motifs/physiology , RNA, Small Interfering/genetics , Signal Transduction/drug effects , Transcription Factor RelA/metabolism , Transfection , Tumor Necrosis Factor-alpha/pharmacology , Ubiquitination/physiology
17.
Nature ; 468(7326): 927-32, 2010 Dec 16.
Article in English | MEDLINE | ID: mdl-21164480

ABSTRACT

Recognition of modified histone species by distinct structural domains within 'reader' proteins plays a critical role in the regulation of gene expression. Readers that simultaneously recognize histones with multiple marks allow transduction of complex chromatin modification patterns into specific biological outcomes. Here we report that chromatin regulator tripartite motif-containing 24 (TRIM24) functions in humans as a reader of dual histone marks by means of tandem plant homeodomain (PHD) and bromodomain (Bromo) regions. The three-dimensional structure of the PHD-Bromo region of TRIM24 revealed a single functional unit for combinatorial recognition of unmodified H3K4 (that is, histone H3 unmodified at lysine 4, H3K4me0) and acetylated H3K23 (histone H3 acetylated at lysine 23, H3K23ac) within the same histone tail. TRIM24 binds chromatin and oestrogen receptor to activate oestrogen-dependent genes associated with cellular proliferation and tumour development. Aberrant expression of TRIM24 negatively correlates with survival of breast cancer patients. The PHD-Bromo of TRIM24 provides a structural rationale for chromatin activation through a non-canonical histone signature, establishing a new route by which chromatin readers may influence cancer pathogenesis.


Subject(s)
Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Carrier Proteins/metabolism , Gene Expression Regulation, Neoplastic , Histones/metabolism , Acetylation , Breast Neoplasms/pathology , Carrier Proteins/chemistry , Carrier Proteins/genetics , Cell Line, Tumor , Chromatin/metabolism , Chromatin Assembly and Disassembly , Crystallography, X-Ray , Estrogen Receptor alpha/metabolism , Estrogens/metabolism , Gene Expression Regulation, Neoplastic/genetics , HEK293 Cells , Histones/chemistry , Humans , Methylation , Protein Array Analysis , Protein Binding , Protein Structure, Tertiary , Substrate Specificity , Survival Rate
18.
Cancer Cell ; 12(1): 52-65, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17613436

ABSTRACT

Pancreatic cancer is an aggressive malignancy with morbidity rates almost equal to mortality rates because of the current lack of effective treatment options. Here, we describe a targeted approach to treating pancreatic cancer with effective therapeutic efficacy and safety in noninvasive imaging models. We developed a versatile expression vector "VISA" (VP16-GAL4-WPRE integrated systemic amplifier) and a CCKAR (cholecystokinin type A receptor) gene-based, pancreatic-cancer-specific promoter VISA (CCKAR-VISA) composite to target transgene expression in pancreatic tumors in vivo. Targeted expression of BikDD, a potent proapoptotic gene driven by CCKAR-VISA, exhibited significant antitumor effects on pancreatic cancer and prolonged survival in multiple xenograft and syngeneic orthotopic mouse models of pancreatic tumors with virtually no toxicity.


Subject(s)
Models, Biological , Pancreatic Neoplasms/genetics , Animals , Mice , Mice, Inbred C57BL , Receptors, Cholecystokinin/genetics , Transgenes
19.
Mol Carcinog ; 53(12): 1011-26, 2014 Dec.
Article in English | MEDLINE | ID: mdl-24000122

ABSTRACT

Metastatic dissemination is a multi-step process that depends on cancer cells' ability to respond to microenvironmental cues by adapting adhesion abilities and undergoing cytoskeletal rearrangement. Breast Cancer Metastasis Suppressor 1 (BRMS1) affects several steps of the metastatic cascade: it decreases survival in circulation, increases susceptibility to anoikis, and reduces capacity to colonize secondary organs. In this report, BRMS1 expression is shown to not significantly alter expression levels of integrin monomers, while time-lapse and confocal microscopy revealed that BRMS1-expressing cells exhibited reduced activation of both ß1 integrin and focal adhesion kinase, and decreased localization of these molecules to sites of focal adhesions. Short-term plating of BRMS1-expressing cells onto collagen or fibronectin markedly decreased cytoskeletal reorganization and formation of cellular adhesion projections. Under 3D culture conditions, BRMS1-expressing cells remained rounded and failed to reorganize their cytoskeleton and form invasive colonies. Taken together, BRMS1-expressing breast cancer cells are greatly attenuated in their ability to respond to microenvironment changes. © 2013 Wiley Periodicals, Inc.


Subject(s)
Breast Neoplasms/genetics , Cell Adhesion/genetics , Neoplasm Metastasis/genetics , Neoplasm Proteins/genetics , Cell Line, Tumor , Cytoskeleton/genetics , Female , Focal Adhesion Protein-Tyrosine Kinases/genetics , Humans , Integrin beta1/genetics , Repressor Proteins
20.
Nat Commun ; 15(1): 1009, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38307859

ABSTRACT

Tumor-secreted factors contribute to the development of a microenvironment that facilitates the escape of cancer cells from immunotherapy. In this study, we conduct a retrospective comparison of the proteins secreted by hepatocellular carcinoma (HCC) cells in responders and non-responders among a cohort of ten patients who received Nivolumab (anti-PD-1 antibody). Our findings indicate that non-responders have a high abundance of secreted RNase1, which is associated with a poor prognosis in various cancer types. Furthermore, mice implanted with HCC cells that overexpress RNase1 exhibit immunosuppressive tumor microenvironments and diminished response to anti-PD-1 therapy. RNase1 induces the polarization of macrophages towards a tumor growth-promoting phenotype through activation of the anaplastic lymphoma kinase (ALK) signaling pathway. Targeting the RNase1/ALK axis reprograms the macrophage polarization, with increased CD8+ T- and Th1- cell recruitment. Moreover, simultaneous targeting of the checkpoint protein PD-1 unleashes cytotoxic CD8+ T-cell responses. Treatment utilizing both an ALK inhibitor and an anti-PD-1 antibody exhibits enhanced tumor regression and facilitates long-term immunity. Our study elucidates the role of RNase1 in mediating tumor resistance to immunotherapy and reveals an RNase1-mediated immunosuppressive tumor microenvironment, highlighting the potential of targeting RNase1 as a promising strategy for cancer immunotherapy in HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Humans , Mice , Anaplastic Lymphoma Kinase , Carcinoma, Hepatocellular/metabolism , CD8-Positive T-Lymphocytes , Immunosuppression Therapy , Liver Neoplasms/metabolism , Retrospective Studies , Ribonucleases , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL