Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Nature ; 616(7955): 73-76, 2023 04.
Article in English | MEDLINE | ID: mdl-37020005

ABSTRACT

With strong reducibility and high redox potential, the hydride ion (H-) is a reactive hydrogen species and an energy carrier. Materials that conduct pure H- at ambient conditions will be enablers of advanced clean energy storage and electrochemical conversion technologies1,2. However, rare earth trihydrides, known for fast H migration, also exhibit detrimental electronic conductivity3-5. Here we show that by creating nanosized grains and defects in the lattice, the electronic conductivity of LaHx can be suppressed by more than five orders of magnitude. This transforms LaHx to a superionic conductor at -40 °C with a record high H- conductivity of 1.0 × 10-2 S cm-1 and a low diffusion barrier of 0.12 eV. A room-temperature all-solid-state hydride cell is demonstrated.

2.
Small ; : e2312204, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38804909

ABSTRACT

LiNi0.8Mn0.1Co0.1O2 with high nickel content plays a critical role in enabling lithium metal batteries (LMBs) to achieve high specific energy density, making them a prominent choice for electric vehicles (EVs). However, ensuring the long-term cycling stability of the cathode electrolyte interfaces (CEIs), particularly at fast-charge conditions, remains an unsolved challenge. The decay mechanism associated with CEIs and electrolytes in LMB at high current densities is still not fully understood. To address this issue, in situ Fourier transform infrared (FTIR) is employed to observe the dynamic process of formation/disappearance/regeneration of CEIs during charge and discharge cycles. These dynamic processes further exacerbate the instability of CEIs as current density increases, leading to rupture and dissolution of CEIs and subsequent deterioration in battery performance because of continuous electrolyte reactions. Additionally, the dynamic changes occurring within individual components of CEIs at different cycling stages and various current densities are also discussed. The results demonstrate that excellent capacity retention at small current density is attributed to enrichment of inorganic compounds (Li2CO3, LiF, etc.) and rendering better stability and smaller expansion of CEIs. The key to achieving excellent electrochemical performance at high current densities lies on protecting CEIs, mainly inorganic components.

3.
Small ; : e2311740, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38412430

ABSTRACT

Metal oxides with conversion and alloying mechanisms are more competitive in suppressing lithium dendrites. However, it is difficult to simultaneously regulate the conversion and alloying reactions. Herein, conversion and alloying reactions are regulated by modulation of the zinc oxide bandgap and oxygen vacancies. State-of-the-art advanced characterization techniques from a microcosmic to a macrocosmic viewpoint, including neutron diffraction, synchrotron X-ray absorption spectroscopy, synchrotron X-ray microtomography, nanoindentation, and ultrasonic C-scan demonstrated the electrochemical gain benefit from plentiful oxygen vacancies and low bandgaps due to doping strategies. In addition, high mechanical strength 3D morphology and abundant mesopores assist in the uniform distribution of lithium ions. Consequently, the best-performed ZnO-2 offers impressive electrochemical properties, including symmetric Li cells with 2000 h and full cells with 81% capacity retention after 600 cycles. In addition to providing a promising strategy for improving the lithiophilicity and mechanical strength of metal oxide anodes, this work also sheds light on lithium metal batteries for practical applications.

4.
Inorg Chem ; 63(1): 211-218, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38153326

ABSTRACT

A quaternary compound, ThCr2Si2C, was synthesized by using the arc-melting technique. The compound adopts a tetragonal CeCr2Si2C-type crystal structure. The electronic resistivity and specific heat data exhibit metallic behavior, while the magnetic susceptibility displays a pronounced broad peak at around 370 K, indicating the antiferromagnetic phase transition. The first-principles calculations suggest A-type antiferromagnetic ordering of the Cr sublattice, which is confirmed by neutron diffraction experiments. By comparing the crystal structure of ThCr2Si2C with the isostructural Cr-based compounds, the magnetic state of Cr 3d orbital is discussed in terms of the band-filling effects and indirect spin exchange interaction.

5.
Inorg Chem ; 59(5): 2937-2944, 2020 Mar 02.
Article in English | MEDLINE | ID: mdl-32064866

ABSTRACT

Mn-based ZrCuSiAs-type pnictides ThMnPnN (Pn = P, As) containing PbO-type Th2N2 layers were synthesized. The crystal and magnetic structures are determined using X-ray and neutron powder diffraction. While neutron diffraction indicates a C-type antiferromagnetic state at 300 K, the temperature dependence of the magnetic susceptibility shows cusps at 36 and 52 K respectively for ThMnPN and ThMnAsN. The susceptibility cusps are ascribed to a spontaneous antiferromagnetic-to-antiferromagnetic transition for Mn2+ moments, which is observed for the first time in Mn-based ZrCuSiAs-type compounds. In addition, measurements of the resistivity and specific heat suggest an abnormal increase in the density of states at the Fermi energy. The result is discussed in terms of the internal chemical pressure effect.

6.
Phys Chem Chem Phys ; 22(5): 2819-2826, 2020 Feb 07.
Article in English | MEDLINE | ID: mdl-31960860

ABSTRACT

Li+ doping is a well-known, simple, yet efficient strategy to optimize the properties of upconverting materials. Nonetheless, the position of Li+ in the lattice and the mechanism of upconversion enhancement are still controversial, especially in Yb3+/Er3+ co-doped Y2O3. This paper presents a comprehensive investigation of the above issues (i.e. the position occupied by Li+ in the lattice and the mechanism of luminescence enhancement, in terms of decreased defects) by studying (Y0.78-XYb0.20Er0.02LiX)2O3 powders. Neutron powder diffraction was employed for the first time in the literature to show that Li+ ions are accommodated in Y sites of YO6 octahedra, confirmed also by the content of oxygen defects, which was increased with the increase of Li+ concentration. FT-IR showed that there was a small change in the amount and the type of the surface-absorbed groups with the increase in the Li+ content, thus not supporting the prevailing conclusion that the quenching groups are decreased by doping Li+. Positron annihilation lifetime (PLAS) experiments showed that the total defect concentration and the large defect clusters, which are considered as quenching centers, are decreased with increasing Li+-content, resulting in the enhancement of the emission intensity in Yb3+/Er3+ co-doped Y2O3.

7.
J Am Chem Soc ; 141(14): 5645-5649, 2019 Apr 10.
Article in English | MEDLINE | ID: mdl-30908017

ABSTRACT

The dynamic behaviors of a new type of three-dimensional (3D) water framework symbiotic with 1D stacking organic guests, including an order-disorder transition of hydrogen atoms, a supercooling phenomenon during phase transition, and a dipole-glass-like relaxation behavior due to locally trapped water molecules, are presented. This extremely scarce 3D water framework, together with the rich dynamic behaviors it exhibits, provides new clues to design new ice-like models for promoting the fundamental understanding of the dynamic behavior of water in diverse solid-states.

8.
J Am Chem Soc ; 141(14): 5640-5644, 2019 Apr 10.
Article in English | MEDLINE | ID: mdl-30912936

ABSTRACT

Sodium superionic conductors are keys to develop high safety and low cost all-solid-state sodium batteries. Among developed sodium ionic conductors, antiperovskite-type ionic conductors have attracted vast interest due to their high structural tolerance and good formability. Herein, we successfully synthesize Na3OBH4 with cubic antiperovskite structure by solid-state reaction from Na2O and NaBH4. Na3OBH4 exhibits ionic conductivity of 4.4 × 10-3 S cm-1 at room temperature (1.1 × 10-2 S cm-1 at 328 K) and activation energy of 0.25 eV. The ionic conductivity is 4 orders of magnitude higher than the existing antiperovskite Na3OX (X = Cl, Br, I). It is shown that such enhancement is not only due to the specific cubic antiperovskite structure of Na3OBH4 but also because of the rotation of BH4 cluster anion. This work deepens the understanding of the antiperovskite structure and the role of cluster anions for superionic conduction.

9.
Inorg Chem ; 58(10): 6966-6973, 2019 May 20.
Article in English | MEDLINE | ID: mdl-31056904

ABSTRACT

Photocatalysts with suitable nanostructures and excellent photocatalytic activity driven by solar light are in great demand for rapidly eliminating the organic pollutants from wastewater. In order to improve the photocatalytic activities, three main factors should be considered, including band gap, band structure, and morphologies. Most of the previous studies only focused on manipulating one factor, such as the band gap by element doping. However, studies on enhancing photocatalytic activities by designing the band structure and morphologies are challenging, due to the difficulity to control the three parameters at the same time. Here, the V-doped Bi25FeO40 (Bi25Fe1- xV xO40) was demonstrated as a great system to manipulate the photocatalytic activities by designing the band structure and morphologies. With the simple hydrothermal methods, Bi25Fe1- xV xO40 with different flower-like morphologies and band structures were prepared. Surprisingly, the blooming and withering processes of the artificial architectures could be precisely tuned through different V concentrations. The controllable microstructures possess the high visible light absorption and enhanced photocatalytic activity. These results offer a model to reveal how the doping element can synchronously manipulate the particle morphology, band gap, and band structures, which is a key step to design new photocatalytic materials.

10.
J Am Chem Soc ; 140(19): 6146-6155, 2018 05 16.
Article in English | MEDLINE | ID: mdl-29693392

ABSTRACT

Although comprehensive progress has been made in the area of coordination polymer (CP)/metal-organic framework (MOF)-based proton-conducting materials over the past decade, searching for a CP/MOF with stable, intrinsic, high anhydrous proton conductivity that can be directly used as a practical electrolyte in an intermediate-temperature proton-exchange membrane fuel cell assembly for durable power generation remains a substantial challenge. Here, we introduce a new proton-conducting CP, (NH4)3[Zr(H2/3PO4)3] (ZrP), which consists of one-dimensional zirconium phosphate anionic chains and fully ordered charge-balancing NH4+ cations. X-ray crystallography, neutron powder diffraction, and variable-temperature solid-state NMR spectroscopy suggest that protons are disordered within an inherent hydrogen-bonded infinite chain of acid-base pairs (N-H···O-P), leading to a stable anhydrous proton conductivity of 1.45 × 10-3 S·cm-1 at 180 °C, one of the highest values among reported intermediate-temperature proton-conducting materials. First-principles and quantum molecular dynamics simulations were used to directly visualize the unique proton transport pathway involving very efficient proton exchange between NH4+ and phosphate pairs, which is distinct from the common guest encapsulation/dehydration/superprotonic transition mechanisms. ZrP as the electrolyte was further assembled into a H2/O2 fuel cell, which showed a record-high electrical power density of 12 mW·cm-2 at 180 °C among reported cells assembled from crystalline solid electrolytes, as well as a direct methanol fuel cell for the first time to demonstrate real applications. These cells were tested for over 15 h without notable power loss.

11.
Mater Horiz ; 11(11): 2749-2758, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38533828

ABSTRACT

The intricate correlation between lattice geometry, topological behavior and charge degrees of freedom plays a key role in determining the physical and chemical properties of a quantum-magnetic system. Herein, we investigate the introduction of the unusual oxidation state as an alternative pathway to modulate the magnetic ground state in the well-known S = 1 Haldane system nickelate Y2BaNiO5 (YBNO). YBNO is topologically reduced to incorporate d9-Ni+ (S = 1/2) in the one-dimensional Haldane chain system. The random distribution of Ni+ for the first time results in the emergence of a one-dimensional ferromagnetic phase with a transition temperature far above room temperature. Theoretical calculations reveal that the antiferromagnetic interplay can evolve into ferromagnetic interactions with the presence of oxygen vacancies, which promotes the formation of ferromagnetic order within one-dimensional nickel chains. The unusual electronic instabilities in the nickel-based Haldane system may offer new possibilities towards unconventional physical and chemical properties from quantum interactions.

12.
J Phys Chem Lett ; 14(5): 1343-1353, 2023 Feb 09.
Article in English | MEDLINE | ID: mdl-36727740

ABSTRACT

There is a lack of fundamental understanding of mechano-electro-optical multifield coupling for organometallic halide perovskites (OHPs). In this study, the effect of light irradiation on OHPs' mechanical properties was investigated by atomic force microscopy. In the dark, an MAPbI3 film was dominated by grains with a Young's modulus of approximately 5.94 GPa, which decreased to 2.97 GPa under light illumination. The photoinduced strain distribution within the polycrystalline MAPbI3 film was not uniform, and the maximum strain generated inside individual grains was 5.8%. Furthermore, the illumination-induced strain promoted the formation of ferroelastic domains. The Young's modulus of one domain increased from 8.99 to 25.27 GPa, whereas the Young's modulus of an adjacent domain decreased from 14.9 to 1.30 GPa. According to the density-functional-theory calculations, the observed photoinduced strain-promoted variations in mechanical properties were caused by the reversible migration of MA+ cations. These findings can help establish the relationship among the mechanical-chemical-optoelectronic characteristics of OHPs.

13.
ACS Nano ; 17(17): 16478-16490, 2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37589462

ABSTRACT

Potassium-ion batteries (KIBs) are promising candidates for large-scale energy storage devices due to their high energy density and low cost. However, the large potassium-ion radius leads to its sluggish diffusion kinetics during intercalation into the lattice of the electrode material, resulting in electrode pulverization and poor cycle stability. Herein, vanadium trioxide anodes with different oxygen vacancy concentrations (V2O2.9, V2O2.8, and V2O2.7 determined by the neutron diffraction) are developed for KIBs. The V2O2.8 anode is optimal and exhibits excellent potassium storage performance due to the realization of expanded interlayer spacing and efficient ion/electron transport. In situ X-ray diffraction indicates that V2O2.8 is a zero-strain anode with a volumetric strain of 0.28% during the charge/discharge process. Density functional theory calculations show that the impacts of oxygen defects are embodied in reducing the band gap, increasing electron transfer ability, and lowering the diffusion energy barriers for potassium ions. As a result, the electrode of nanosized V2O2.8 embedded in porous reticular carbon (V2O2.8@PRC) delivers high reversible capacity (362 mAh g-1 at 0.05 A g-1), ultralong cycling stability (98.8% capacity retention after 3000 cycles at 2 A g-1), and superior pouch-type full-cell performance (221 mAh g-1 at 0.05 A g-1). This work presents an oxygen defect engineering strategy for ultrastable KIBs.

14.
Nanomaterials (Basel) ; 12(9)2022 May 07.
Article in English | MEDLINE | ID: mdl-35564295

ABSTRACT

The magnetic interactions of iron-rich manganese-based ThMn12 type rare earth metal intermetallic compounds are extremely complex. The antiferromagnetic structure sublattice and the ferromagnetic structure sublattice had coexisted and competed with each other. Previous works are focus on studying magnetic properties of RFexMn12−x (x = 0−9.0, Δx = 0.2). In this work, we obtained a detailed magnetic phase diagram for iron-rich ErFexMn12−x series alloy samples with a fine composition increment (Δx = 0.2), and studied the exchange bias effect and magneto-caloric effect of samples. ErFexMn12−x series (x = 7.0−9.0, Δx = 0.2) alloy samples were synthesized by arc melting, and the pure ThMn12-type phase structure was confirmed by X-ray diffraction (XRD). The neutron diffraction test was used to confirm the Mn atom preferentially occupying the 8i position and to quantify the Mn. The magnetic properties of the materials were characterized by a comprehensive physical property measurement system (PPMS). Accurate magnetic phase diagrams of the samples in the composition range 7.0−9.0 were obtained. Along with temperature decrease, the samples experienced paramagnetic, ferromagnetic changes for samples with x < 7.4 and x > 8.4, and paramagnetic, antiferromagnetic and ferromagnetic or paramagnetic, ferromagnetic and antiferromagnetic changes for samples with 7.4 ≤ x ≤ 8.2. The tunable exchange bias effect was observed for sample with 7.4 ≤ x ≤ 8.2, which resulting from competing magnetic interacting among ferromagnetic and antiferromagnetic sublattices. The maximum magnetic entropy change in an ErFe9.0Mn3.0 specimen reached 1.92 J/kg/K around room temperature when the magnetic field change was 5 T. This study increases our understanding of exchange bias effects and allows us to better control them.

15.
J Colloid Interface Sci ; 622: 261-271, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-35512590

ABSTRACT

Core-shell structure has been receiving extensive attention to enhance the electromagnetic wave (EMW) absorption performance due to its unique interface effect. In this paper, a micro-flower like ZnCo@C@1T-2H-MoS2 was prepared through MOF self-template method. The introduction 1T-2H-MoS2 shell helps optimize impedance matching of the CoZn@C particles to improve the EMW absorption ability. The minimal reflection loss (RLmin) value of ZnCo@C@1T-2H-MoS2 is -35.83 dB with a thickness of 5.0 mm at 5.83 GHz and the effective absorption (RL < -10 dB) bandwidth up to 4.56 GHz at 2.0 mm thickness. Meanwhile, the overall effective absorption bandwidth (OEAB) can reach up to 13.44 GHz from 4.56 to 18.0 GHz. Moreover, ultrafast photothermal performances are also achieved, which can guarantee the normal functioning of ZnCo@C@1T-2H-MoS2 materials in cold conditions. The excellent EMW absorption and photothermal performance are attributed to the unique structure designed with the core of magnetic ZnCo@C rhombic dodecahedral and the shell of dielectric micro-flower like 1T-2H-MoS2 optimize impedance matching.


Subject(s)
Electromagnetic Radiation , Molybdenum , Electric Impedance
16.
Sci Adv ; 8(11): eabj7698, 2022 Mar 18.
Article in English | MEDLINE | ID: mdl-35302845

ABSTRACT

Solid electrolytes are highly important materials for improving safety, energy density, and reversibility of electrochemical energy storage batteries. However, it is a challenge to modulate the coordination structure of conducting ions, which limits the improvement of ionic conductivity and hampers further development of practical solid electrolytes. Here, we present a skeleton-retained cationic exchange approach to produce a high-performance solid electrolyte of Li3Zr2Si2PO12 stemming from the NASICON-type superionic conductor of Na3Zr2Si2PO12. The introduced lithium ions stabilized in under-coordination structures are facilitated to pass through relatively large conduction bottlenecks inherited from the Na3Zr2Si2PO12 precursor. The synthesized Li3Zr2Si2PO12 achieves a low activation energy of 0.21 eV and a high ionic conductivity of 3.59 mS cm-1 at room temperature. Li3Zr2Si2PO12 not only inherits the satisfactory air survivability from Na3Zr2Si2PO12 but also exhibits excellent cyclic stability and rate capability when applied to solid-state batteries. The present study opens an innovative avenue to regulate cationic occupancy and make new materials.

17.
Nat Commun ; 13(1): 1390, 2022 Mar 16.
Article in English | MEDLINE | ID: mdl-35296672

ABSTRACT

Phase boundary provides a fertile ground for exploring emergent phenomena and understanding order parameters couplings in condensed-matter physics. In Pb(Zr1-xTix)O3, there are two types of composition-dependent phase boundary with both technological and scientific importance, i.e. morphotropic phase boundary (MPB) separating polar regimes into different symmetry and ferroelectric/antiferroelectric (FE/AFE) phase boundary dividing polar and antipolar dipole configurations. In contrast with extensive studies on MPB, FE/AFE phase boundary is far less explored. Here, we apply atomic-scale imaging and Rietveld refinement to directly demonstrate the intermediate phase at FE/AFE phase boundary exhibits a rare multipolar Pb-cations ordering, i.e. coexistence of antipolar or polar displacement, which manifests itself in both periodically gradient lattice spacing and anomalous initial hysteresis loop. In-situ electron/neutron diffraction reveals that the same parent intermediate phase can transform into either FE or AFE state depending on suppression of antipolar or polar displacement, coupling with the evolution of long-/short-range oxygen octahedra tilts. First-principle calculations further show that the transition between AFE and FE phase can occur in a low-energy pathway via the intermediate phase. These findings enrich the structural understanding of FE/AFE phase boundary in perovskite oxides.

18.
ACS Appl Mater Interfaces ; 13(43): 51028-51038, 2021 Nov 03.
Article in English | MEDLINE | ID: mdl-34672200

ABSTRACT

Hard carbon (HC) has attracted considerable attention in the application of sodium-ion battery (SIB) anodes, but the poor realistic capacity and low rate performance severely hinder their practical application. Herein we report a solvent mechanochemical protocol for the in situ fabrication of the HC-MXene/TiO2 electrode by functionalizing MXene to improve the electrochemical performance of the batteries. MXene (Ti3C2Tx) with abundant oxygen-containing functional groups reacts with HC particles in the ball milling process to form a Ti-O-C covalent cross-linked HC-MXene composite, in which the edge of the MXene nanosheets is in situ oxidized by air to form TiO2 nanorods, forming a regular 1D/2D MXene/TiO2 heterojunction structure. Ti-O-C covalent bonding can protect the heterojunction structures from pulverization and detachment from the current collector during charge/discharge cycles due to sodium-ion intercalation/detachment, thus improving the stability of the electrode structure. Meanwhile, the MXene/TiO2 heterojunction can form a 3D conductive network and provide more active sites. The resulting HC-MXene/TiO2 electrode exhibits superior electrode capacity (660 mAh g-1), making it a promising anode material for SIBs. This simple and efficient method for preparing MXene/TiO2 heterojunction-decorated HC provides a new perspective on the structural design of MXene and carbon material composites for SIBs.

19.
Adv Mater ; 33(37): e2100866, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34346090

ABSTRACT

The removal of low concentration N2 is of great significance and challenging in the industrial production of high-purity O2 . Herein, a chromium-based metal-organic framework, namely, TYUT-96Cr, is reported, which has an unprecedented N2 capture capacity of 37.46 cm3 cm-3 and N2 /O2 (5:95, v/v) selectivity up to 26.95 (298 K and 1 bar), thus setting new benchmarks for all reported metal-organic frameworks and commercially used ones (Li-LSX and 13X). Breakthrough experiments reveal that N2 can be directly extracted from various N2 /O2 (79:21, 50:50, 5:95, and 1:99, v/v) mixtures by this material, affording a record-high O2 -production scale with 99.99% purity. Density functional theory calculations and in situ infrared spectroscopy studies demonstrate that the high-density open Cr (III) sites in TYUT-96Cr can behave as effective Lewis acidic sites, thus resulting in a strong affinity toward N2 . The high N2 adsorption selectivity, exceptional separation performance, and ultrahigh structural stability render this porous material with great potential for this important industrial application.

20.
Nanoscale ; 12(45): 22935-22944, 2020 Nov 26.
Article in English | MEDLINE | ID: mdl-33180074

ABSTRACT

Layered transition-metal compounds with controllable magnetic behaviors provide many fascinating opportunities for the fabrication of high-performance magneto-electric and spintronic devices. The tuning of their electronic and magnetic properties is usually limited to the change of layer thickness, electrostatic doping, and the control of electric and magnetic fields. However, pressure has been rarely exploited as a control parameter for tailoring their magneto-electric properties. Here, we report a unique pressure-driven isostructural phase transition in layered CrCl3 accompanied by a simultaneous switching of magnetism from a ferromagnetic to an antiferromagnetic ordering. Our experiments, in combination with ab initio calculations, demonstrate that such a magnetic transition hinders the bandgap collapse under pressure, leading to an anomalous semiconductor-to-semiconductor transition. Our findings not only reveal the potential applications of this material in electronic and spintronic devices but also establish the basis for exploring unusual phase transitions in layered transition-metal compounds.

SELECTION OF CITATIONS
SEARCH DETAIL