Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 115
Filter
Add more filters

Country/Region as subject
Publication year range
1.
J Virol ; 97(1): e0146722, 2023 01 31.
Article in English | MEDLINE | ID: mdl-36475768

ABSTRACT

Assembly of the adenovirus capsid protein hexon depends on the assistance of the molecular chaperone L4-100K. However, the chaperone mechanisms remain unclear. In this study, we found that L4-100K was involved in the hexon translation process and could prevent hexon degradation by the proteasome in cotransfected human cells. Two nonadjacent domains, 84-133 and 656-697, at the N-terminal and C-terminal regions of human adenovirus type 5 L4-100K, respectively, were found to be crucial and cooperatively responsible for hexon trimer expression and assembly. These two chaperone-related domains were conserved in the sequence of L4-100K and in the function of hexon assembly across different adenovirus serotypes. Different degrees of cross-activity of hexon trimerization with different serotypes were detected in subgroups B, C, and D, which were proven to be controlled by the interaction between the C-terminal chaperone-related domain of L4-100K and hypervariable regions (HVR) of hexon. Additionally, HVR-chimeric hexon mutants were successfully assembled with the assistance of the 1-697 mutant. Structural analysis of 656-697 by nuclear magnetic resonance and structural prediction of L4-100K using Robetta showed that the two conserved domains are mainly composed of α-helices and are located on the surface of the highly folded core region. Our research provides a more complete understanding of hexon assembly and guidance for the development of hexon-chimeric adenovirus vectors that will be safer, smarter, and more efficient. IMPORTANCE Adenovirus vectors have been widely used in clinical trials of vaccines and gene therapy, although some deficiencies remain. Chimeric modification of the hexon was expected to improve the potency of preexisting immune evasion and targeting, but in many cases, viral packaging is prevented by the inability of the chimeric hexon to assemble correctly. So far, few studies have examined the mechanisms of hexon trimer assembly. Here, we show how the chaperone protein L4-100K contributes to the assembly of the adenovirus capsid protein hexon, and these data will provide a guide for novel adenovirus vector design and development, as we desired.


Subject(s)
Adenoviruses, Human , Molecular Chaperones , Viral Nonstructural Proteins , Humans , Adenoviruses, Human/genetics , Adenoviruses, Human/metabolism , Capsid/metabolism , Capsid Proteins/metabolism , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism
2.
Nanotechnology ; 35(17)2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38241719

ABSTRACT

Fe-doped SiGe bulk alloys are fabricated using non-equilibrium spark plasma sintering (SPS) and their structure and ferromagnetic and magneto-transport properties are investigated. X-ray diffraction and high-resolution transmission electron microscope measurements show that the obtained alloys are composed of SiGe polycrystals. Magnetization measurements reveal that the Fe-doped SiGe alloys exhibit ferromagnetism up to 259 K, and their Curie temperature increases with Fe doping concentration up to 8%. Moreover, transport measurements of the Fe-doped SiGe alloys show typical metal-insulator transition characteristics of doped semiconductors as well as anomalous Hall effect and intriguing positive-to-negative magnetoresistance, indicating that the obtained alloys are diluted magnetic semiconductors (DMSs). Our results provide insight into the SPS-prepared Fe-doped SiGe bulk alloys and may be useful for the design, fabrication, and application of group-IV DMSs.

3.
J Cell Physiol ; 238(11): 2586-2599, 2023 11.
Article in English | MEDLINE | ID: mdl-37795636

ABSTRACT

Adolescent idiopathic scoliosis (AIS) is a complex disease characterized by three-dimensional structural deformities of the spine. Its pathogenesis is associated with osteopenia. Bone-marrow-derived mesenchymal stem cells (BMSCs) play an important role in bone metabolism. We detected 1919 differentially expressed mRNAs and 744 differentially expressed lncRNAs in BMSCs from seven patients with AIS and five patients without AIS via high-throughput sequencing. Multiple analyses identified bone morphogenetic protein-6 (BMP6) as a hub gene that regulates the abnormal osteogenic differentiation of BMSCs in AIS. BMP6 expression was found to be decreased in AIS and its knockdown in human BMSCs significantly altered the degree of osteogenic differentiation. Additionally, CAP1-217 has been shown to be a potential upstream regulatory molecule of BMP6. We showed that CAP1-217 knockdown downregulated the expression of BMP6 and the osteogenic differentiation of BMSCs. Simultaneously, knockout of BMP6 in zebrafish embryos significantly increased the deformity rate. The findings of this study suggest that BMP6 is a key gene that regulates the abnormal osteogenic differentiation of BMSCs in AIS via the CAP1-217/BMP6/RUNX2 axis.


Subject(s)
Bone Diseases, Metabolic , Scoliosis , Humans , Adolescent , Animals , Scoliosis/genetics , Scoliosis/pathology , Osteogenesis/genetics , Zebrafish/genetics , Spine/metabolism , Cell Differentiation/genetics , Bone Diseases, Metabolic/genetics , Bone Diseases, Metabolic/metabolism , Cells, Cultured , Bone Marrow Cells/metabolism , Bone Morphogenetic Protein 6/genetics
4.
Analyst ; 148(24): 6274-6281, 2023 Dec 04.
Article in English | MEDLINE | ID: mdl-37969078

ABSTRACT

Vanillin (Van) is widely utilized in processed foods and medicines for its appealing scent and multiple therapeutic benefits. However, its overconsumption poses a risk to public health, making its quantification essential for ensuring food and medicine safety and quality. This study introduces a stable and conductive phthalocyanine-based porous organic polymer (NiPc-CC POP), synthesized through a straightforward electrophilic substitution of nickel tetra-amine phthalocyanine (NiTAPc) with cyanuric chloride (CC). Appropriate characterization techniques were employed to determine the morphologies and structures of the synthesized materials. Furthermore, the NiPc-CC POP was applied to devise a sensitive Van detection method. Leveraging the high electrocatalytic activity of NiPc-CC POP toward Van oxidation, a linear response of 0.15-32 µmol L-1 was achieved, along with an exceptional detection limit of 0.10 µmol L-1. The sensor demonstrated high selectivity and stability. Samples of human serum and tablets spiked with Van were analyzed, yielding satisfactory recoveries. Consequently, this work contributes to the advancement of sensitive detection platforms for Van at minimal concentrations.


Subject(s)
Isoindoles , Polymers , Humans , Porosity
5.
Analyst ; 148(15): 3524-3530, 2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37382245

ABSTRACT

Metal-organic frameworks (MOFs) are composed of metal ions and organic ligands with high specific surface areas, controllable porous structures and abundant metal active sites, showing their extraordinary potential in electrochemical sensors. Here, a 3D conductive network structure (C-Co-N@MWCNTs) is designed by anchoring zeolite imidazole frameworks (ZIF-67) onto multi-walled carbon nanotubes (MWCNTs) and carbonizing them. The C-Co-N@MWCNTs exhibit excellent electron conductivity, a porous structure and considerable electrochemical active sites, which can effectively demonstrate high sensitivity and selectivity in the detection of adrenaline (Ad). The Ad sensor exhibited a low detection limit of 6.7 nmol L-1 (S/N = 3) and a wide linear range of 0.02 µmol L-1-1.0 mmol L-1. The developed sensor also displayed high selectivity, good reproducibility and repeatability. The C-Co-N@MWCNTs electrode was further employed in the detection of Ad in a real sample of human serum, suggesting that it is a promising candidate for electrochemical sensing of Ad.

6.
Phys Chem Chem Phys ; 25(17): 12050-12056, 2023 May 03.
Article in English | MEDLINE | ID: mdl-37092293

ABSTRACT

Magnetic skyrmions in a circular nanodisk show great potential in nano-oscillator-based applications owing to their long-term stability and electric current-dependent circulating high-frequency. However, the circulating orbits are confined at the edge or the center of the disk and the upper bond of high-frequency motion is limited due to the skyrmion Hall effect (SkHE). Indeed, skyrmions with enhanced tunability in circulating orbits and oscillation frequencies are more expected. In this work, artificial circulating orbits of skyrmions are designed in a circular nanodisk by using annular barriers induced by voltage-controlled magnetic anisotropy (VCMA) effect, and the dynamics of the orbital skyrmions are investigated by micromagnetic simulations. Our results show that, orbital skyrmions not only can circulate in one of the designed orbits separately or in both orbits simultaneously, but also can switch from one orbit to the other by appropriate electric current density (J), providing a not-previously-reported platform for innovative applications. Furthermore, the upper bond of high-frequency motion of orbital skyrmions is lifted with respect to that of the skyrmions in a standard circular nanodisk. Detailed studies of dynamics and annihilation of skyrmions reveal the correlation between the SkHE, the VCMA effect and the geometry of the designed orbits. Our results give insights into the stability and dynamics of orbital skyrmions in the nanodisk, and may be useful for the design, fabrication and application of orbital skyrmions in electronic and spintronic devices.

7.
Molecules ; 28(13)2023 Jun 26.
Article in English | MEDLINE | ID: mdl-37446666

ABSTRACT

Polymer-assisted deposition (PAD) has been widely used in the preparation of high-quality oxides and sulfides for basic research and applications. Specifically, diverse PAD-prepared magnetic material thin films such as ZnO, Ga2O3, SrRuO3, LaCoO3, LaMnO3, Y3Fe5O12, MoS2, MoSe2, and ReS2 thin films have been grown, in which thickness-dependent, strain-modulated, doping-mediated, and/or morphology-dependent room-temperature ferromagnetism (RTFM) have been explored. Inspired by the discovery of intrinsic low-temperature FM in two-dimensional (2D) systems prepared using mechanical exfoliation, the search for more convenient methods to prepare 2D ferromagnetic materials with high-temperature FM has seen explosive growth, but with little success. Fortunately, the very recent synthesis of 2D NiO by PAD has shed light on this challenge. Based on these abovementioned developments, the difficulties of PAD when preparing a-few-nanometer single-crystalline materials and the opportunities in PAD for novel materials such as chiral magnetic soliton material Cr1/3NbS2 are discussed.


Subject(s)
Explosive Agents , Magnets , Cold Temperature , Polymers , Magnetic Phenomena
8.
Molecules ; 28(6)2023 Mar 19.
Article in English | MEDLINE | ID: mdl-36985744

ABSTRACT

Iron-based catalysts with high load content of iron sulfide (FeS) were commonly peroxymonosulfate (PMS) and hydrogen peroxide (H2O2) activators to degrade organic pollutants but limited catalytic efficiency and increased risk of ferrous ion leaching restricted their use. Meanwhile, various biomass materials such as straw, peel, and branch have been extensively prepared into biochar for mechanical support for iron-based catalysts; however, the preparation process of biochar was energy-intensive. In this study, FeS nanoparticles modified rape straw composites (RS-FeS) encapsulated with ethylenediaminetetraacetic acid (RS-EDTA-FeS) were successfully presented by in-situ synthesis method for efficiently activating PMS and H2O2 to degrade oxytetracycline (OTC), which was economical and environmentally friendly. The results showed that the modified rape straw can remove OTC efficiently, and the addition of EDTA also significantly enhanced the stability and the reusability of the catalyst. In addition, EDTA also promoted the activation of H2O2 at neutral pH. The OTC degradation efficiency of the two catalysts by PMS was faster than that of H2O2, but H2O2 had a stronger ability to remove OTC than PMS. The highest OTC removal efficiency of RS-FeS and RS-EDTA-FeS were 87.51 and 81.15%. O2•- and 1O2 were the major reactive oxidative species (ROS) in the PMS system. Furthermore, compared with RS-FeS, the addition of EDTA inhabited the generation of O2•- in the PMS system. Instead, O2•- and •OH were the major ROS in the H2O2 system, but 1O2 was also identified in RS-FeS/H2O2 system. RS-EDTA-FeS showed a trend of rising first and then decreasing in recycle test. Instead, the removal rate of OTC by RS-FeS decreased significantly with the increase in reuse times. In the actual wastewater test, the TOC removal of two catalysts active by H2O2 was better than PMS, which was consistent with the test results of OTC, indicating that the two catalysts have application value in the removal of organic pollutants in actual wastewater. This study directly used plant materials as catalysts and omits the preparation process of biochar, greatly reduces the preparation cost and secondary pollution of catalysts, and provides theoretical support for the deepening of advanced oxidation technology.


Subject(s)
Environmental Pollutants , Nanoparticles , Oxytetracycline , Hydrogen Peroxide/chemistry , Wastewater , Reactive Oxygen Species , Edetic Acid , Peroxides/chemistry , Iron/chemistry , Nanoparticles/chemistry
9.
Molecules ; 28(5)2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36903547

ABSTRACT

Herein, the combination of anionic Zr4L6 (L = embonate) cages and N, N-chelated transition-metal cations leads to a series of new cage-based architectures, including ion pair structures (PTC-355 and PTC-356), dimer (PTC-357), and 3D frameworks (PTC-358 and PTC-359). Structural analyses show that PTC-358 exhibits a 2-fold interpenetrating framework with a 3,4-connected topology, and PTC-359 shows a 2-fold interpenetrating framework with a 4-connected dia network. Both PTC-358 and PTC-359 can be stable in air and other common solvents at room temperature. The investigations of third-order nonlinear optical (NLO) properties indicate that these materials show different degrees of optical limiting effects. It is surprising that increasing coordination interactions between anion and cation moieties can effectively enhance their third-order NLO properties, which can be attributed to the formation of coordination bonds that facilitate charge transfer. In addition, the phase purity, UV-vis spectra, and photocurrent properties of these materials were also studied. This work provides new ideas for the construction of third-order NLO materials.

10.
Proteins ; 90(1): 155-163, 2022 01.
Article in English | MEDLINE | ID: mdl-34346105

ABSTRACT

Glycoside hydrolase family 57 glycogen branching enzymes (GH57GBE) catalyze the formation of an α-1,6 glycosidic bond between α-1,4 linked glucooliogosaccharides. As an atypical family, a limited number of GH57GBEs have been biochemically characterized so far. This study aimed at acquiring a better understanding of the GH57GBE family by a systematic sequence-based bioinformatics analysis of almost 2500 gene sequences and determining the branching activity of several native and mutant GH57GBEs. A correlation was found in a very low or even no branching activity with the absence of a flexible loop, a tyrosine at the loop tip, and two ß-strands.


Subject(s)
1,4-alpha-Glucan Branching Enzyme , Bacterial Proteins , Glycoside Hydrolases , 1,4-alpha-Glucan Branching Enzyme/chemistry , 1,4-alpha-Glucan Branching Enzyme/metabolism , Amylose/chemistry , Amylose/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Glycogen/chemistry , Glycogen/metabolism , Glycoside Hydrolases/chemistry , Glycoside Hydrolases/metabolism , Glycosylation , Models, Molecular , Protein Conformation
11.
Nanotechnology ; 33(41)2022 Jul 25.
Article in English | MEDLINE | ID: mdl-34911044

ABSTRACT

The structural and electronic properties of two-dimensional (2D) SiAs2/GeAs2van der Waals heterostructure (vdWH) and its applications are investigated by combing first-principles calculations and Silvaco Atlas simulations. The stable SiAs2/GeAs2vdWH exhibits an indirect bandgap of 0.99 eV in type II band alignment for light detection and energy harvesting. The vdWH can exhibit a direct bandgap up to 0.66 eV by applying an appropriate electric field (Eext). Due to theEextinduced charge redistribution, its band alignment can be transformed from type II to type I for light-emitting. Further simulation shows that the band alignment of SiAs2/GeAs2vdWH can be tuned back and forth between type II and type I by gate voltage in a single field-effect transistor for multiple functional applications. These results may be useful for applications of the SiAs2/GeAs2heterostructure in future electronic and optoelectronic devices.

12.
Zhongguo Zhong Yao Za Zhi ; 47(19): 5306-5315, 2022 Oct.
Article in Zh | MEDLINE | ID: mdl-36472038

ABSTRACT

Based on Janus kinase 1/2-signal transducer and activator of transcription 1(JAK1/2-STAT1) signaling pathway, this study explored the immune mechanism of Maxing Shigan Decoction in alleviating the lung tissue and colon tissue damage in mice infected with influenza virus. The influenza virus infection was induced in mice by nasal drip of influenza virus. The normal group, model group, oseltamivir group, antiviral granule group, and Maxing Shigan Decoction group were designed. After intragastric administration of corresponding drugs or normal saline for 3 or 7 days, the body mass was measured, and lung index, spleen index, and thymus index were calculated. Based on hematoxylin-eosin(HE) staining, the pathological changes of lung tissue and colon tissue were observed. Enzyme-linked immunosorbent assay(ELISA) was used to detect serum levels of inflammatory factors interleukin-8(IL-8) and interferon-γ(IFN-γ), Western blot and real-time quantitative polymerase chain reaction(RT-qPCR) to determine the protein and mRNA levels of JAK1, JAK2, STAT1, interferon regulatory factor 9(IRF9), and IFN-γ in lung tissue and colon tissue. The results showed that after 3 and 7 days of administration, the body mass, spleen index, and thymus index were lower(P<0.05 or P<0.01), and the lung index was higher(P<0.01) in the model group than in the normal group. Moreover, the model group showed congestion, edema, and infiltration of a large number of lymphocytes and macrophages in the lung tissue, irregular structure of colon mucosa, ulceration and shedding of epithelial cells, and infiltration of a large number of inflammatory cells. The model group had higher levels of serum IFN-γ(P<0.01), higher protein and mRNA expression of JAK1, JAK2, STAT1, IRF9, IFN-γ in lung tissue(P<0.05 or P<0.01), higher level of JAK2 protein in colon tissue(P<0.01), and higher protein and mRNA levels of STAT1 and IRF9(P<0.05 or P<0.01) than the normal group. Compared with the model group, Maxing Shigan Decoction group had high body mass, spleen index, and thymus index(P<0.05 or P<0.01), low lung index(P<0.05 or P<0.01), and significant alleviation of pathological injury in lung and colon. Moreover, lower serum level of IFN-γ(P<0.05 or P<0.01), protein and mRNA levels of JAK1, JAK2, STAT1, IRF9, and IFN-γ in lung tissue(P<0.05 or P<0.01), JAK2 protein level in colon tissue(P<0.01), and protein and mRNA levels of STAT1 and IRF9(P<0.05 or P<0.01) were observed in the Maxing Shigan Decoction group than in the model group. After 3 days of administration, the level of serum IL-8 in the model group was significantly higher than that in the normal group(P<0.01), and the level in the Maxing Shigan Decoction group was significantly reduced(P<0.01). In conclusion, Maxing Shigan Decoction can significantly up-regulate body mass, spleen index, and thymus index, down-regulate lung index, reduce the levels of IL-8 and IFN-γ, and down-regulate protein and mRNA levels of JAK1, JAK2, STAT1, IRF9, and IFN-γ in lung tissue and protein and mRNA levels of JAK2, STAT1, and IRF9 in colon tissue, and alleviate pathological damage of lung tissue and colon tissue. The mechanism is the likelihood that it inhibits the activation of JAK1/2-STAT1 signaling pathway to alleviate the damage to lung and colon tissue damage.


Subject(s)
Influenza, Human , Orthomyxoviridae Infections , Orthomyxoviridae , Mice , Animals , Humans , Janus Kinase 1/genetics , STAT1 Transcription Factor/genetics , Interleukin-8 , Signal Transduction , Interferon-gamma , Lung , RNA, Messenger , Colon
13.
Opt Express ; 29(13): 20981-20994, 2021 Jun 21.
Article in English | MEDLINE | ID: mdl-34266174

ABSTRACT

In this paper, we present a polarization spatial phase-shifting method for fringe projection profilometry. It enables us to measure the three-dimensional shape of a metal object in a fast way requiring only a single-shot implementation. With this method, a couple of projectors are equipped, in front of their lens, with linear polarization filters having orthogonal polarization directions, so that they can simultaneously cast two sinusoidal fringe patterns having different phase shifts onto the measured metal surfaces without mixture. To register the two projected patterns, we suggest a fringe alignment method based on the epipolar geometry between the projectors. By taking advantage of the property of metal surfaces in maintaining polarization state of incident light, the deformed fringe patterns on the measured surfaces are captured by using two coaxially-arranged polarization cameras. As a result, the fringe phases are calculated by using a two-step phase-shifting algorithm and further the 3D shapes of the measured surfaces are reconstructed. Experimental results demonstrate the proposed method to be valid and efficient in measuring metal objects.

14.
Inorg Chem ; 60(23): 18178-18184, 2021 Dec 06.
Article in English | MEDLINE | ID: mdl-34806867

ABSTRACT

Herein we systematically investigated the coordination assembly behavior of Zr4L6 cages with Eu3+ ions at room temperature. Through adjustment of the concentration of Eu salt and changes of the type and molar ratio of the solvent, a series of Zr4L6-Eu structures with different structure dimensionalities have been synthesized and structurally characterized. In addition, we also studied the optical properties of these materials in detail, including the fluorescent and third-order nonlinear-optical properties. Most notably, a 2D layer structure with a strong aromatic π···π-stacking force exhibits a good optical-limiting effect.

15.
Nanotechnology ; 32(32)2021 May 17.
Article in English | MEDLINE | ID: mdl-33862615

ABSTRACT

In this work, indium tin oxide (ITO) nanofibers have been prepared by electrospinning of polymers and post-growth microwave plasma calcination (MPC). Interestingly, compared to traditional calcination in furnace, MPC can accelerate the degradation of high polar polymers and improve adhesion of ITO nanofibers to the sapphire substrate. Further characterizations reveal that the ITO nanofibers with diameters of 100-150 nm prepared by MPC at 600 °C can reach a low sheet resistance of 269 Ω/sq and a high transmittance of 90.7% at 550 nm simultaneously, which has not been previously reported by others. Our results show that the efficient MPC method has great potential in preparation of metal-oxide nanofibers for electrical and optical applications.

16.
Phys Chem Chem Phys ; 23(23): 13323-13330, 2021 Jun 16.
Article in English | MEDLINE | ID: mdl-34096566

ABSTRACT

Vertical van der Waals heterojunctions (HJs) composed of a photocatalytic star material BiOCl monolayer and group-IV Xene monolayer (silicene, germanene etc.) were studied by using first-principles calculations. Formation energy analysis and molecular dynamics simulation show that the BiOCl/Xene bilayer HJs can exist stably up to room temperature. Owing to evident charge redistribution and accumulation occurring between the bilayers, electron-hole puddles form and charge carrier transfer and separation occur in the HJs, which are beneficial to the improvement of photocatalytic performance. The HJ energy bands maintain the Dirac cones with almost linear dispersion curves, suggesting low effective mass and high mobility of carriers, and can be effectively tuned by strain. Our results show that the BiOCl/Xene bilayer HJs with high separation efficiency and high mobility of carriers and strain-adjustable bandgaps provide varieties in the functionalities of 2D van der Waals HJs and show great potentials in photocatalytic applications.

17.
Nanotechnology ; 31(47): 475706, 2020 Nov 20.
Article in English | MEDLINE | ID: mdl-32674089

ABSTRACT

The electrical properties of individual multiwall carbon nanotubes (CNTs) filled with Fe3C nanowires (Fe-CNTs) grown by chemical vapor deposition were investigated. The individual Fe-CNTs were measured by two-probe configuration in a scanning electron microscope, in which one probe was used to contact one end of the nanotubes and the other varied its contact position to measure the resistance along the Fe-CNTs. The data suggest that the ferromagnetic nanowires and the CNTs were well connected into a conduction network, and the resistance of the individual Fe-CNTs decreased as the filling rate increased. Analysis shows that the encapsulated ferromagnetic nanowires played a profound part in determining the electrical behavior of individual Fe-CNTs. The results may be useful for understanding of electronic transport of individual Fe-CNTs and applications based on individual Fe-CNTs.

18.
Nanotechnology ; 31(28): 285702, 2020 Apr 24.
Article in English | MEDLINE | ID: mdl-32244239

ABSTRACT

We have grown germanium selenide (GeSe) triangular nanoplate arrays (TNAs) with a high density (3.82 × 106 mm-2) on the Si (111) substrate using a simple thermal evaporation method. The thickness and trilateral lengths of a single triangular nanoplate were statistically estimated by atomic force microscopy as 44 nm, 365 nm, 458 nm and 605 nm, respectively. Transmission electron microscopy (TEM) images and x-ray diffraction patterns show that the TNAs were composed of single crystalline GeSe phase. The Se-related defects in the lattice were also revealed by TEM images and Raman vibration modes. Unlike previously reported GeSe compounds, the GeSe TNAs exhibited temperature-dependent photoluminescence (PL). The PL peak (1.25 eV) of the TNAs at 5 K was in the gaps between those of GeSe monolayers and a few hundred thick films, revealing a close relationship between the PL peak and the thickness of GeSe. The high-density structure and temperature-dependent PL of the TNAs on the Si substrate may be useful for temperature controllable semiconductor nanodevices.

19.
Toxicol Appl Pharmacol ; 310: 78-86, 2016 Nov 01.
Article in English | MEDLINE | ID: mdl-27639426

ABSTRACT

Resistance to cisplatin is a major obstacle for the success of non-small cell lung cancer therapy. The mechanisms underlying cisplatin resistance are not fully understood. In this study, we found that the increase of basal auotophagy accompanied the development of cisplatin resistance. Meanwhile the blockade of the Akt/mTOR pathway occurred in the process. Inhibition of this pathway was induced by cisplatin treatment in the resistant non-small cell lung carcinoma cells. Andrographolide, a natural diterpenoid, promoted the activation of the Akt/mTOR signaling by downregulating PTEN and suppressed autophagy, which subsequently resensitized the resistant cells to cisplatin-mediated apoptosis. Cisplatin treatment in combination with andrographolide significantly prevented the growth of the resistant cells in vivo. These results highlight the involvement of autophagy in cisplatin-resistance development and suggest that inhibition of autophagy via tuning the Akt/mTOR signaling could be a promising strategy in the therapy for cisplatin-resistant non-small cell lung cancer.


Subject(s)
Antineoplastic Agents/pharmacology , Autophagy/drug effects , Carcinoma, Non-Small-Cell Lung/pathology , Cisplatin/pharmacology , Diterpenes/pharmacology , Lung Neoplasms/pathology , Proto-Oncogene Proteins c-akt/metabolism , TOR Serine-Threonine Kinases/metabolism , Animals , Carcinoma, Non-Small-Cell Lung/enzymology , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Line, Tumor , Drug Resistance, Neoplasm , Female , Humans , Lung Neoplasms/enzymology , Lung Neoplasms/metabolism , Mice , Mice, Nude , PTEN Phosphohydrolase/metabolism , Xenograft Model Antitumor Assays
20.
Nature ; 466(7308): 845-8, 2010 Aug 12.
Article in English | MEDLINE | ID: mdl-20703302

ABSTRACT

The discovery of new phenomena in layered and nanostructured magnetic devices is driving rapid growth in nanomagnetics research. Resulting applications such as giant magnetoresistive field sensors and spin torque devices are fuelling advances in information and communications technology, magnetoelectronic sensing and biomedicine. There is an urgent need for high-resolution magnetic-imaging tools capable of characterizing these complex, often buried, nanoscale structures. Conventional ferromagnetic resonance (FMR) provides quantitative information about ferromagnetic materials and interacting multicomponent magnetic structures with spectroscopic precision and can distinguish components of complex bulk samples through their distinctive spectroscopic features. However, it lacks the sensitivity to probe nanoscale volumes and has no imaging capabilities. Here we demonstrate FMR imaging through spin-wave localization. Although the strong interactions in a ferromagnet favour the excitation of extended collective modes, we show that the intense, spatially confined magnetic field of the micromagnetic probe tip used in FMR force microscopy can be used to localize the FMR mode immediately beneath the probe. We demonstrate FMR modes localized within volumes having 200 nm lateral dimensions, and improvements of the approach may allow these dimensions to be decreased to tens of nanometres. Our study shows that this approach is capable of providing the microscopic detail required for the characterization of ferromagnets used in fields ranging from spintronics to biomagnetism. This method is applicable to buried and surface magnets, and, being a resonance technique, measures local internal fields and other magnetic properties with spectroscopic precision.

SELECTION OF CITATIONS
SEARCH DETAIL