Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 699
Filter
Add more filters

Country/Region as subject
Publication year range
1.
J Neurosci ; 43(4): 526-539, 2023 01 25.
Article in English | MEDLINE | ID: mdl-36283831

ABSTRACT

The transmembrane protein TMEM206 was recently identified as the molecular basis of the extracellular proton-activated Cl- channel (PAC), which plays an essential role in neuronal death in ischemia-reperfusion. The PAC channel is activated by extracellular acid, but the proton-sensitive mechanism remains unclear, although different acid-sensitive pockets have been suggested based on the cryo-EM structure of the human PAC (hPAC) channel. In the present study, we firstly identified two acidic amino acid residues that removed the pH-dependent activation of the hPAC channel by neutralization all the conservative negative charged residues located in the extracellular domain of the hPAC channel and some positively charged residues at the hotspot combined with two-electrode voltage-clamp (TEVC) recording in the Xenopus oocytes system. Double-mutant cycle analysis and double cysteine mutant of these two residues proved that these two residues cooperatively form a proton-sensitive site. In addition, we found that chloral hydrate activates the hPAC channel depending on the normal pH sensitivity of the hPAC channel. Furthermore, the PAC channel knock-out (KO) male mice (C57BL/6J) resist chloral hydrate-induced sedation and hypnosis. Our study provides a molecular basis for understanding the proton-dependent activation mechanism of the hPAC channel and a novel drug target of chloral hydrate.SIGNIFICANCE STATEMENT Proton-activated Cl- channel (PAC) channels are widely distributed in the nervous system and play a vital pathophysiological role in ischemia and endosomal acidification. The main discovery of this paper is that we identified the proton activation mechanism of the human proton-activated chloride channel (hPAC). Intriguingly, we also found that anesthetic chloral hydrate can activate the hPAC channel in a pH-dependent manner. We found that the chloral hydrate activates the hPAC channel and needs the integrity of the pH-sensitive site. In addition, the PAC channel knock-out (KO) mice are resistant to chloral hydrate-induced anesthesia. The study on PAC channels' pH activation mechanism enables us to better understand PAC's biophysical mechanism and provides a novel target of chloral hydrate.


Subject(s)
Chloral Hydrate , Chloride Channels , Mice , Animals , Male , Humans , Chloral Hydrate/pharmacology , Chloride Channels/genetics , Chloride Channels/metabolism , Protons , Chlorides/metabolism , Mice, Inbred C57BL
2.
J Cell Mol Med ; 28(12): e18483, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39051629

ABSTRACT

The development of high-throughput technologies has enhanced our understanding of small non-coding RNAs (sncRNAs) and their crucial roles in various diseases, including atrial fibrillation (AF). This study aimed to systematically delineate sncRNA profiles in AF patients. PANDORA-sequencing was used to examine the sncRNA profiles of atrial appendage tissues from AF and non-AF patients. Differentially expressed sncRNAs were identified using the R package DEGseq 2 with a fold change >2 and p < 0.05. The target genes of the differentially expressed sncRNAs were predicted using MiRanda and RNAhybrid. Gene Ontology (GO) categories and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed. In AF patients, the most abundant sncRNAs were ribosomal RNA-derived small RNAs (rsRNAs), followed by transfer RNA-derived small RNAs (tsRNAs), and microRNAs (miRNAs). Compared with non-AF patients, 656 rsRNAs, 45 miRNAs, 191 tsRNAs and 51 small nucleolar RNAs (snoRNAs) were differentially expressed in AF patients, whereas no significantly differentially expressed piwi-interacting RNAs were identified. Two out of three tsRNAs were confirmed to be upregulated in AF patients by quantitative reverse transcriptase polymerase chain reaction, and higher plasma levels of tsRNA 5006c-LysCTT were associated with a 2.55-fold increased risk of all-cause death in AF patients (hazard ratio: 2.55; 95% confidence interval, 1.56-4.17; p < 0.001). Combined with our previous transcriptome sequencing results, 32 miRNA, 31 snoRNA, 110 nucleus-encoded tsRNA, and 33 mitochondria-encoded tsRNA target genes were dysregulated in AF patients. GO and KEGG analyses revealed enrichment of differentially expressed sncRNA target genes in AF-related pathways, including the 'calcium signaling pathway' and 'adrenergic signaling in cardiomyocytes.' The dysregulated sncRNA profiles in AF patients suggest their potential regulatory roles in AF pathogenesis. Further research is needed to investigate the specific mechanisms of sncRNAs in the development of AF and to explore potential biomarkers for AF treatment and prognosis.


Subject(s)
Atrial Appendage , Atrial Fibrillation , Gene Expression Profiling , RNA, Small Untranslated , Humans , Atrial Fibrillation/genetics , RNA, Small Untranslated/genetics , Atrial Appendage/metabolism , Male , Female , MicroRNAs/genetics , Gene Ontology , Aged , Middle Aged , RNA, Small Nucleolar/genetics , RNA, Small Nucleolar/metabolism , Gene Expression Regulation , Transcriptome/genetics , Computational Biology/methods , Prognosis
3.
J Hepatol ; 80(5): 764-777, 2024 May.
Article in English | MEDLINE | ID: mdl-38181823

ABSTRACT

BACKGROUND & AIMS: Clinical evidence substantiates a link between inflammatory bowel disease, particularly Crohn's disease (CD), and metabolic dysfunction-associated steatotic liver disease (MASLD). This study aims to explore the underlying molecular mechanisms responsible for this association. METHODS: MASLD was induced by administering high-fat and western diets, while inflammatory bowel disease was induced using DSS (dextran sulfate sodium) and the Il10 knockout (KO) mouse model. The investigation into the role of secondary bile acids (SBAs) in ileitis involved employing metagenomic sequencing, conducting metabolomics detection, performing fecal microbiota transplantation, and constructing CD8+ T cell-specific gene knockout mice. RESULTS: In MASLD+DSS and Il10 KO MASLD mice, we observed ileitis characterized by T-cell infiltration and activation in the terminal ileum. This condition resulted in decreased bile acid levels in the portal vein and liver, inhibited hepatic farnesoid X receptor (FXR) activation, and exacerbated MASLD. Metagenomic and metabolomic analysis of ileal contents revealed increased Clostridium proliferation and elevated SBA levels in MASLD-associated ileitis. Experiments using germ-free mice and fecal microbiota transplantation suggested an association between SBA and MASLD-related ileitis. In vitro, SBAs promoted CD8+ T-cell activation via the TGR5, mTOR, and oxidative phosphorylation pathways. In vivo, TGR5 KO in CD8+ T cells effectively alleviated ileitis and reversed the MASLD phenotype. Clinical data further supported these findings, demonstrating a positive correlation between ileitis and MASLD. CONCLUSION: MASLD-induced changes in intestinal flora result in elevated levels of SBAs in the ileum. In the presence of a compromised intestinal barrier, this leads to severe CD8+ T cell-mediated ileitis through the TGR5/mTOR/oxidative phosphorylation signaling pathway. Ileitis-induced tissue damage impairs enterohepatic circulation, inhibits hepatic FXR activation, and exacerbates the MASLD phenotype. IMPACT AND IMPLICATIONS: Our study provides a comprehensive investigation of the interplay and underlying mechanisms connecting ileitis and metabolic dysfunction-associated steatotic liver disease (MASLD). Secondary bile acids produced by intestinal bacteria act as the critical link between MASLD and ileitis. Secondary bile acids exert their influence by disrupting liver lipid metabolism through the promotion of CD8+ T cell-mediated ileitis. In future endeavors to prevent and treat MASLD, it is essential to thoroughly account for the impact of the intestinal tract, especially the ileum, on liver function via the enterohepatic circulation.


Subject(s)
Crohn Disease , Fatty Liver , Ileitis , Mice , Animals , Bile Acids and Salts , Interleukin-10 , CD8-Positive T-Lymphocytes , Signal Transduction/genetics , Ileum , Mice, Knockout , TOR Serine-Threonine Kinases
4.
Genome Res ; 31(9): 1546-1560, 2021 09.
Article in English | MEDLINE | ID: mdl-34400476

ABSTRACT

G-quadruplexes (G4s) are noncanonical DNA secondary structures formed through the self-association of guanines, and G4s are distributed widely across the genome. G4 participates in multiple biological processes including gene transcription, and G4-targeted ligands serve as potential therapeutic agents for DNA-targeted therapies. However, genome-wide studies of the exact roles of G4s in transcriptional regulation are still lacking. Here, we establish a sensitive G4-CUT&Tag method for genome-wide profiling of native G4s with high resolution and specificity. We find that native G4 signals are cell type-specific and are associated with transcriptional regulatory elements carrying active epigenetic modifications. Drug-induced promoter-proximal RNA polymerase II pausing promotes nearby G4 formation. In contrast, G4 stabilization by G4-targeted ligands globally reduces RNA polymerase II occupancy at gene promoters as well as nascent RNA synthesis. Moreover, ligand-induced G4 stabilization modulates chromatin states and impedes transcription initiation via inhibition of general transcription factors loading to promoters. Together, our study reveals a reciprocal genome-wide regulation between native G4 dynamics and gene transcription, which will deepen our understanding of G4 biology toward therapeutically targeting G4s in human diseases.


Subject(s)
G-Quadruplexes , Transcription Initiation, Genetic , Chromatin , DNA/chemistry , Ligands , Promoter Regions, Genetic
5.
Small ; 20(21): e2307945, 2024 May.
Article in English | MEDLINE | ID: mdl-38098338

ABSTRACT

The redox stabilities of different oxygen donor solvents (C═O, P═O and S═O) and lithium salt anions for supercapacitors (SCs) electrolytes have been compared by calculating the frontier molecular orbital energy. Among six lithium difluoro(oxalate)borate (LiDFOB)-based mono-solvent electrolytes, the dilute LiDFOB-1,4-butyrolactone (GBL) electrolyte exhibits the highest operating voltage but suffers from electrolyte breakdown at elevated temperatures. Trimethyl phosphate (TMP) exhibits the highest redox stability and a strongly negative electrostatic potential (ESP), making it suitable for promoting the dissolution of LiDFOB as expected. Therefore, TMP is selected as a co-solvent into LiDFOB-GBL electrolyte to regulate Li+ solvation structure and improve the operability of electrolytes at high temperatures. The electrochemical stable potential window (ESPW) of 0.5 m LiDFOB-G/T(5/5) hybrid electrolyte can reach 5.230 V. The activated carbon (AC)-based symmetric SC using 0.5 m LiDFOB-G/T(5/5) hybrid electrolyte achieves a high energy density of 54.2 Wh kg-1 at 1.35 kW kg-1 and the capacitance retention reaches 89.2% after 10 000 cycles. The operating voltage of SC can be maintained above 2 V when the temperature rises to 60 °C.

6.
Planta ; 259(4): 86, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38453695

ABSTRACT

MAIN CONCLUSION: MdPRX34L enhanced resistance to Botryosphaeria dothidea by increasing salicylic acid (SA) and abscisic acid (ABA) content as well as the expression of related defense genes. The class III peroxidase (PRX) multigene family is involved in complex biological processes. However, the molecular mechanism of PRXs in the pathogen defense of plants against Botryosphaeria dothidea (B. dothidea) remains unclear. Here, we cloned the PRX gene MdPRX34L, which was identified as a positive regulator of the defense response to B. dothidea, from the apple cultivar 'Royal Gala.' Overexpression of MdPRX34L in apple calli decreased sensitivity to salicylic acid (SA) and abscisic acid(ABA). Subsequently, overexpression of MdPRX34L in apple calli increased resistance to B. dothidea infection. In addition, SA contents and the expression levels of genes related to SA synthesis and signaling in apple calli overexpressing MdPRX34L were higher than those in the control after inoculation, suggesting that MdPRX34L enhances resistance to B. dothidea via the SA pathway. Interestingly, infections in apple calli by B. dothidea caused an increase in endogenous levels of ABA followed by induction of ABA-related genes expression. These findings suggest a potential mechanism by which MdPRX34L enhances plant-pathogen defense against B. dothidea by regulating the SA and ABA pathways.


Subject(s)
Ascomycota , Malus , Malus/metabolism , Disease Resistance/genetics , Abscisic Acid/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Salicylic Acid/metabolism , Plant Diseases/microbiology
7.
Opt Express ; 32(8): 13965-13977, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38859354

ABSTRACT

Light polarization rotations, created by applied optical field, are examined experimentally and theoretically in a photosensitive chiral nematic fluid. The polarization rotation of the transmitted beam is initiated by illuminating the sample with uniform UV light. The operation is tunable and reversible, depending on the UV intensity. It was revealed that the rotations can be ascribed to the optical-field-induced chirality effect, where the helical structure in chiral nematics changes in accordance with the UV intensity. The evolution of the helical structure as well as its effect on the light polarization upon illumination by uniform UV light have been monitored experimentally and compared by calculations based on the continuum theory. Our results proved that a polarization field with specific characteristics can be achieved using the remote and precise optical control.

8.
Cancer Cell Int ; 24(1): 100, 2024 Mar 09.
Article in English | MEDLINE | ID: mdl-38461238

ABSTRACT

Allogeneic tumors are eradicated by host immunity; however, it is unknown how it is initiated until the report in Nature by Yaron Carmi et al. in 2015. Currently, we know that allogeneic tumors are eradicated by allogeneic IgG via dendritic cells. AlloIgG combined with the dendritic cell stimuli tumor necrosis factor alpha and CD40L induced tumor eradication via the reported and our proposed potential signaling pathways. AlloIgG triggers systematic immune responses targeting multiple antigens, which is proposed to overcome current immunotherapy limitations. The promising perspectives of alloIgG immunotherapy would have advanced from mouse models to clinical trials; however, there are only 6 published articles thus far. Therefore, we hope this perspective view will provide an initiative to promote future discussion.

9.
Amino Acids ; 56(1): 57, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39343853

ABSTRACT

Function of HECTD2 in renal cell carcinoma malignant progression is undefined. Molecular mechanism behind anti-cancer effects of veratric acid (VA) from traditional Chinese medicine (TCM) is underexplored. The Cancer Genome Atlas was leveraged to study HECTD2 expression in renal cell carcinoma and its relationship with histological grading. Kaplan-Meier survival analysis was performed. HECTD2 expression was detected in cancer cells and tissues via qRT-PCR and immunohistochemistry. GPX4 and SLC7A11 expression in tumor samples with high or low HECTD2 expression was examined by immunohistochemistry, cell viability by CCK8, cell proliferation by colony formation assay, lipid ROS and mitochondrial superoxide levels by flow cytometry, Fe2+ and MDA content by assay kits, and GPX4 and SLC7A11 proteins by western blot. SeeSAR software screened TCM small molecule compounds with highest affinity to HECTD2, confirmed with cellular thermal shift assay. VA IC50 was measured by CCK8. Xenograft model was developed and treated with VA. Tumor size and weight were monitored, with immunohistochemistry to detect HECTD2 expression in tumors and assess ferroptosis-related markers. HECTD2 was overexpressed in tumor tissues and cells, which positively correlated with histological grading. HECTD2 depletion inhibited cell vitality and proliferation, raised intracellular lipid ROS, mitochondrial superoxide, Fe2+, and MDA. HECTD2 was a target with highest VA affinity. In vitro and vivo experiments concurred that VA treatment hindered malignancy of renal cell carcinoma and enhanced its susceptibility to ferroptosis. HECTD2 supports ferroptosis resistance in renal cell carcinoma, but VA, through its targeting of HECTD2, initiates ferroptosis, showcasing its anti-cancer efficacy.


Subject(s)
Carcinoma, Renal Cell , Ferroptosis , Kidney Neoplasms , Ferroptosis/drug effects , Carcinoma, Renal Cell/metabolism , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/genetics , Humans , Kidney Neoplasms/metabolism , Kidney Neoplasms/pathology , Kidney Neoplasms/drug therapy , Kidney Neoplasms/genetics , Animals , Mice , Cell Proliferation/drug effects , Cell Line, Tumor , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/genetics , Mice, Nude , Xenograft Model Antitumor Assays , Amino Acid Transport System y+/metabolism , Amino Acid Transport System y+/genetics , Female , Gene Expression Regulation, Neoplastic/drug effects , Male
10.
Pediatr Res ; 2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39217261

ABSTRACT

BACKGROUND: CREBBP has been extensively studied in syndromic diseases associated with skeletal dysplasia. However, there is limited research on the molecular mechanisms through which CREBBP may impact bone development. We identified a novel pathogenic CREBBP variant (c.C3862T/p.R1288W, which is orthologous to mouse c.3789 C > T/p.R1289W) in a patient with non-syndromic polydactyly. METHODS: We created a homozygous Crebbp p.R1289W mouse model and compared their skeletal phenotypes to wild-type (WT) animals. Bone marrow stem cells (BMSCs) were isolated and assessed for their proliferative capacity, proportion of apoptotic cells in culture, and differentiation to chondrocytes and osteocytes. RESULTS: We observed a significant decrease in body length in 8-week-old homozygous Crebbp p.R1289W mice. The relative length of cartilage of the digits of Crebbp p.R1289W mice was significantly increased compared to WT mice. BMSCs derived from Crebbp p.R1289W mice had significantly decreased cell proliferation and an elevated rate of apoptosis. Consistently, cell proliferative capacity was decreased and the proportion of apoptotic cells was increased in the distal femoral growth plate of Crebbp p.R1289W compared to WT mice. Chemical induction of BMSCs indicated that Crebbp p.R1289W may promote chondrocyte differentiation. CONCLUSION: The Crebbp p.R1289W variant plays a pathogenic role in skeletal development in mice. IMPACT: CREBBP has been extensively studied in syndromic diseases characterized by skeletal dysplasia. There is limited research regarding the molecular mechanism through which CREBBP may affect bone development. To our knowledge, we generated the first animal model of a novel Crebbp variant, which is predicted to be pathogenic for skeletal diseases. Certain pathogenic variants, such as Crebbp p.R1289W, can independently lead to variant-specific non-syndromic skeletal dysplasia.

11.
Eur Radiol ; 34(10): 6820-6830, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38491129

ABSTRACT

OBJECTIVES: To explore the value of the synthetic MRI (SyMRI), combined with amide proton transfer-weighted (APTw) MRI for quantitative and morphologic assessment of sinonasal lesions, which could provide relative scale for the quantitative assessment of tissue properties. METHODS: A total of 80 patients (31 malignant and 49 benign) with sinonasal lesions, who underwent the SyMRI and APTw examination, were retrospectively analyzed. Quantitative parameters (T1, T2, proton density (PD)) and APT % were obtained through outlining the region of interest (ROI) and comparing the two groups utilizing independent Student t test or a Wilcoxon test. Receiver operating characteristic curve (ROC), Delong test, and logistic regression analysis were performed to assess the diagnostic efficiency of one-parameter and multiparametric models. RESULTS: SyMRI-derived mean T1, T2, and PD were significantly higher and APT % was relatively lower in benign compared to malignant sinonasal lesions (p < 0.05). The ROC analysis showed that the AUCs of the SyMRI-derived quantitative (T1, T2, PD) values and APT % ranged from 0.677 to 0.781 for differential diagnosis between benign and malignant sinonasal lesions. The T2 values showed the best diagnostic performance among all single parameters for differentiating these two masses. The AUCs of combined SyMRI-derived multiple parameters with APT % (AUC = 0.866) were the highest than that of any single parameter, which was significantly improved (p < 0.05). CONCLUSION: The combination of SyMRI and APTw imaging has the potential to reflect intrinsic tissue characteristics useful for differentiating benign from malignant sinonasal lesions. CLINICAL RELEVANCE STATEMENT: Combining synthetic MRI with amide proton transfer-weighted imaging could function as a quantitative and contrast-free approach, significantly enhancing the differentiation of benign and malignant sinonasal lesions and overcoming the limitations associated with the superficial nature of endoscopic nasal sampling. KEY POINTS: • Synthetic MRI and amide proton transfer-weighted MRI could differentiate benign from malignant sinonasal lesions based on quantitative parameters. • The diagnostic efficiency could be significantly improved through synthetic MRI + amide proton transfer-weighted imaging. • The combination of synthetic MRI and amide proton transfer-weighted MRI is a noninvasive method to evaluate sinonasal lesions.


Subject(s)
Magnetic Resonance Imaging , Paranasal Sinus Neoplasms , Humans , Male , Female , Middle Aged , Magnetic Resonance Imaging/methods , Diagnosis, Differential , Adult , Retrospective Studies , Aged , Paranasal Sinus Neoplasms/diagnostic imaging , Protons , Adolescent , Young Adult , Amides , Paranasal Sinuses/diagnostic imaging , Aged, 80 and over , ROC Curve
12.
J Org Chem ; 89(14): 9972-9978, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-38954774

ABSTRACT

The incorporation of oxygen atoms from air under aerobic conditions plays an important role in organic synthesis. Herein, Brønsted acids are found to be a two-in-one strategic catalyst to transform enamines from ß-oxoamides and amines to pyrrolin-4-ones without an external photocatalyst under visible-light conditions. The Brønsted acid can inhibit the C-C bond fragmentation of the [2 + 2] adduct from enamine and 1O2, but most importantly, it can form photosensitizers with enamine and pyrrolin-4-one product by acidochromism to promote the 1O2 generation.

13.
J Cardiovasc Pharmacol ; 83(5): 474-481, 2024 05 01.
Article in English | MEDLINE | ID: mdl-38113918

ABSTRACT

ABSTRACT: Studies have examined the therapeutic effect of levosimendan on cardiovascular diseases such as heart failure, perioperative cardiac surgery, and septic shock, but the specific mechanism in mice remains largely unknown. This study aimed to investigate the relaxation mechanism of levosimendan in the thoracic aorta smooth muscle of mice. Levosimendan-induced relaxation of isolated thoracic aortic rings that were precontracted with norepinephrine or KCl was recorded in an endothelium-independent manner. Vasodilatation by levosimendan was not associated with the production of the endothelial relaxation factors nitric oxide and prostaglandins. The voltage-dependent K + channel (K V ) blocker (4-aminopyridine) and selective K Ca blocker (tetraethylammonium) had no effect on thoracic aortas treated with levosimendan, indicating that K V and K Ca channels may not be involved in the levosimendan-induced relaxation mechanism. Although the inwardly rectifying K + channel (K ir ) blocker (barium chloride) and the K ATP channel blocker (glibenclamide) significantly inhibited levosimendan-induced vasodilation in the isolated thoracic aorta, barium chloride had a much stronger inhibitory effect on levosimendan-induced vasodilation than glibenclamide, suggesting that levosimendan-induced vasodilation may be mediated by K ir channels. The vasodilation effect and expression of K ir 2.1 induced by levosimendan were further enhanced by the PKC inhibitor staurosporine. Extracellular calcium influx was inhibited by levosimendan without affecting intracellular Ca 2+ levels in the isolated thoracic aorta. These results suggest that K ir channels play a more important role than K ATP channels in regulating vascular tone in larger arteries and that the activity of the K ir channel is enhanced by the PKC pathway.


Subject(s)
Aorta, Thoracic , Muscle, Smooth, Vascular , Protein Kinase C , Simendan , Vasodilation , Animals , Aorta, Thoracic/drug effects , Aorta, Thoracic/metabolism , Simendan/pharmacology , Male , Vasodilation/drug effects , Protein Kinase C/metabolism , Protein Kinase C/antagonists & inhibitors , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/metabolism , Mice , Potassium Channels, Inwardly Rectifying/metabolism , Potassium Channels, Inwardly Rectifying/antagonists & inhibitors , Potassium Channels, Inwardly Rectifying/drug effects , Vasodilator Agents/pharmacology , Protein Kinase Inhibitors/pharmacology , Potassium Channel Blockers/pharmacology
14.
Mol Breed ; 44(9): 61, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39282245

ABSTRACT

The ATP-binding cassette (ABC) superfamily is involved in numerous complex biological processes. However, the understanding of ABCs in plant pathogen defense, particularly against Botryosphaeria dothidea, remains limited. In this study, we identified MdABCI17 that plays a positive role in apple resistance to B. dothidea. Overexpression of MdABCI17 significantly enhanced the resistance of apple calli and fruits to B. dothidea. Our findings revealed that the jasmonic acid (JA) content and the expression of genes associated with JA biosynthesis and signal transduction were higher in stable MdABCI17-overexpressing apple calli than that of wild-type after inoculation with B. dothidea. Similar results were obtained for apple fruits with transient overexpression of MdABCI17. Our research indicates that MdABCI17 enhances apple resistance to B. dothidea through the JA signaling pathway. We further determined that MdABCI17 plays a crucial role in the apple's response to JA signaling. Moreover, exogenous methyl jasmonate (MeJA) treatment significantly enhanced the effectiveness of MdABCI17 in boosting apple resistance to B. dothidea. We proposed a positive feedback regulatory loop between MdABCI17-mediated apple resistance to B. dothidea and JA signal. In summary, our study offers new insights into the role of ABC superfamily members in the control of plant disease resistance. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-024-01501-9.

15.
Anesth Analg ; 139(4): 734-742, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38315626

ABSTRACT

BACKGROUND: The effects of oxygenation targets (partial pressure of arterial oxygen [Pa o2 ], arterial oxygen saturation [Sa o2 ]/peripheral oxygen saturation [Sp o2 ], or inspiratory oxygen concentration [Fi o2 ] on clinical outcomes in critically ill patients remains controversial. We reviewed the existing literature to assess the effects of lower and higher oxygenation targets on the mortality rates of critically ill intensive care unit (ICU) patients. METHODS: MEDLINE, EMBASE, Cochrane Central Register of Controlled Trials, and Web of Science databases were searched from their dates of inception to December 31, 2022, for randomized controlled trials (RCTs) comparing lower and higher oxygenation targets for critically ill patients ≥18 years of age undergoing mechanical ventilation, nasal cannula, oxygen mask, or high-flow oxygen therapy in the ICU. Data extraction was conducted independently, and RoB 2.0 software was used to evaluate the quality of each RCT. A random-effects model was used for the meta-analysis to calculate the relative risk (RR). We used the I 2 statistic as a measure of statistical heterogeneity. Certainty of evidence was assessed according to the Grading of Recommendations Assessment, Development and Evaluation (GRADE) guidelines. RESULTS: We included 12 studies with a total of 7416 patients participating in RCTs. Oxygenation targets were extremely heterogeneous between studies. The meta-analysis found no differences in mortality between lower and higher oxygenation targets for critically ill ICU patients (relative risk [RR], 1.00; 95% confidence interval [CI], 0.93-1.09; moderate certainty). The incidence of serious adverse events (RR, 0.93; 95% CI, 0.85-1.00; high certainty), mechanical ventilation-free days through day 28 (mean difference [MD], -0.05; 95%CI, -1.23 to 1.13; low certainty), the number of patients requiring renal replacement therapy (RRT) (RR, 0.96; 95% CI, 0.84-1.10; low certainty), and ICU length of stay (MD, 1.05; 95% CI, -0.04 to 2.13; very low certainty) also did not differ among patients with lower or higher oxygenation targets. CONCLUSIONS: Critically ill ICU patients ≥18 years of age managed with lower and higher oxygenation targets did not differ in terms of mortality, RRT need, mechanical ventilation-free days through day 28, or ICU length of stay. However, due to considerable heterogeneity between specific targets in individual studies, no conclusion can be drawn regarding the effect of oxygenation targets on ICU outcomes.


Subject(s)
Critical Illness , Intensive Care Units , Oxygen Inhalation Therapy , Respiration, Artificial , Humans , Critical Illness/mortality , Critical Illness/therapy , Oxygen Inhalation Therapy/adverse effects , Respiration, Artificial/mortality , Randomized Controlled Trials as Topic , Oxygen/blood , Oxygen Saturation , Hospital Mortality , Critical Care , Treatment Outcome , Risk Factors
16.
BMC Musculoskelet Disord ; 25(1): 819, 2024 Oct 16.
Article in English | MEDLINE | ID: mdl-39415122

ABSTRACT

OBJECTIVE: To explore the relationship between anion gap (AG) and length of stay (LOS) in patients undergoing hip fracture surgery. METHODS: Clinical data of patients diagnosed with hip fracture and undergoing surgery were extracted from the Medical Information Mart for Intensive Care IV (MIMIC-IV) database. Logistic regression analysis by adjusting different covariables and threshold effect analysis were used to analyze the relationship between AG and LOS. Subgroup analysis and interaction test were also performed to detect their relationship. Receiver Operating Characteristic (ROC) analysis was performed to identify the prediction performance and cutoff value of AG.Kaplan-Meier (KM) survival analysis was used to explore the influence of AG on overall survival. RESULTS: A total of 1508 patients were enrolled and the median LOS was 4.9 days. The correlation between AG and LOS > 7 days was observed among 3 regression models when regarding AG as continuous variables (all OR > 1, all P < 0.05). After stratifying samples with AG quartiles, their relationship was only presented in the Q4 group both in model 1 and model 2 (all P < 0.001). The risk of LOS > 7 days gradually increased with increasing AG quartiles (all P for trend < 0.05). Further, threshold effect analysis found that their association was mainly observed when AG ≥ 14 mEq/L (OR = 1.122, P < 0.001). Subgroup analysis showed that their correlation was not influenced by sex, age, BMI, ethnicity, classification of fracture, therapeutic method, CHD, hypertension, osteoporosis, diabetes and admitted to the ICU (all P for interaction > 0.05). ROC analysis identified 14.5 as the cutoff value of AG for predicted LOS > 7 days. Survival analysis found that patients in the AG < 14.5 group had better overall survival. CONCLUSION: In patients undergoing hip fracture surgery, the AG was positively correlated with LOS, and 14.5 mEq/L AG was the cutoff value for predicting LOS > 7 days. The cutoff value can favorably distinguish the survival difference of patients.


Subject(s)
Acid-Base Equilibrium , Databases, Factual , Hip Fractures , Length of Stay , Humans , Hip Fractures/surgery , Hip Fractures/mortality , Male , Female , Aged , Length of Stay/statistics & numerical data , Aged, 80 and over , Middle Aged , Retrospective Studies
17.
Pestic Biochem Physiol ; 201: 105883, 2024 May.
Article in English | MEDLINE | ID: mdl-38685249

ABSTRACT

Trypsin is one of the most diverse and widely studied protease hydrolases. However, the diversity and characteristics of the Trypsin superfamily of genes have not been well understood, and their role in insecticide resistance is yet to be investigated. In this study, a total of 342 Trypsin genes were identified and classified into seven families based on homology, characteristic domains and phylogenetics in Anopheles sinensis, and the LY-Domain and CLECT-Domain families are specific to the species. Four Trypsin genes, (Astry2b, Astry43a, Astry90, Astry113c) were identified to be associated with pyrethroid resistance based on transcriptome analyses of three field resistant populations and qRT-PCR validation, and the knock-down of these genes significantly decrease the pyrethroid resistance of Anopheles sinensis based on RNAi. The activity of Astry43a can be reduced by five selected insecticides (indoxacarb, DDT, temephos, imidacloprid and deltamethrin); and however, the Astry43a could not directly metabolize these five insecticides, like the trypsin NYD-Tr did in earlier reports. This study provides the overall information frame of Trypsin genes, and proposes the role of Trypsin genes to insecticide resistance. Further researches are necessary to investigate the metabolism function of these trypsins to insecticides.


Subject(s)
Anopheles , Insecticide Resistance , Insecticides , Pyrethrins , Trypsin , Animals , Anopheles/genetics , Anopheles/drug effects , Insecticide Resistance/genetics , Insecticides/pharmacology , Trypsin/genetics , Trypsin/metabolism , Pyrethrins/pharmacology , Phylogeny , Mosquito Vectors/genetics , Mosquito Vectors/drug effects , Malaria/transmission , Insect Proteins/genetics , Insect Proteins/metabolism
18.
J Asian Nat Prod Res ; 26(9): 1057-1086, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38920368

ABSTRACT

Modifications at different positions on the aloperine molecule were performed to improve its anticancer activity and develop anticancer drugs. The in vitro anticancer activities of 44 synthesized compounds were evaluated. The effect of modification positions on anticancer activity was discussed and a structure-activity relationship analysis was established. A novel series of compounds with modifications at the N12 position showed much higher cytotoxicity than aloperine. Among them, compound 22 displayed promising in vitro anticancer activity against PC9 cells with a median inhibitory concentration (IC50) of 1.43 µM. The mechanism studies indicated that compound 22 induced cell apoptosis and cell cycle arrest in PC9 cells. These results demonstrate the potential of aloperine thiourea derivatives in anticancer activity.


Subject(s)
Antineoplastic Agents , Apoptosis , Drug Screening Assays, Antitumor , Piperidines , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Humans , Structure-Activity Relationship , Molecular Structure , Apoptosis/drug effects , Piperidines/pharmacology , Piperidines/chemistry , Piperidines/chemical synthesis , Drug Design , Quinolizidines/pharmacology , Quinolizidines/chemistry , Quinolizidines/chemical synthesis , Cell Line, Tumor , Cell Cycle Checkpoints/drug effects
19.
Aesthetic Plast Surg ; 2024 Oct 23.
Article in English | MEDLINE | ID: mdl-39443322

ABSTRACT

BACKGROUND: Blepharoplasty is the most prevalent cosmetic surgery procedure in Asia. There are three main types of blepharoplasty procedures: incision, threading, and spotting, with incision being the most common procedure. However, after incisional surgery, patients experience prolonged periorbital swelling, bruising, and scarring. In order to help patient reduce periorbital swelling and erythema and ease the discomfort. In this research, the authors introduce a photobiomodulation therapy and to investigate the efficacy and safety of 830 nm light-emitting diode (LED) phototherapy in improving complications after incisional blepharoplasty. METHOD: Participants were randomly assigned 830 nm LED phototherapy (novel care model) or traditional care model for postoperative care. The efficacy of different care measures on postoperative complications after incisional blepharoplasty was assessed using swelling score, pain score (VAS), wound healing grading, and anxiety scale (SAS). RESULTS: A total of 145 patients were included, including 73 in the novel care model group and 72 in the traditional care model group. The new care model based on 830 nm LED phototherapy could significantly improve the swelling, pain, wound healing, and anxiety self-assessment scale assessment of the patients compared with the traditional care model, and the difference was statistically significant (P<0.05). CONCLUSION: Photobiomodulation using 830 nm LED can markedly reduce postoperative swelling and pain, promote effective wound healing, lessen postoperative patient anxiety, and have no negative side effects. LEVEL OF EVIDENCE I: This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .

20.
J Environ Manage ; 370: 123027, 2024 Oct 24.
Article in English | MEDLINE | ID: mdl-39454383

ABSTRACT

With the large-scale development of the livestock and poultry breeding industries, swine wastewater with high nitrogen and phosphorus concentrations has become an urgent problem. Given the continuous demand for phosphorus resources in industrial production, the study of phosphate recovery in phosphorus-rich wastewater is of great value for the sustainable utilization of phosphorus resources and for alleviating the eutrophication of aquatic ecosystems. In this study, a magnesium metal corrosion method was used to recover phosphorus resources from swine wastewater using carbon felt as the cathode instead of traditional cathode materials such as graphite and titanium plates. The effects of different cathode materials on the corrosion potential of magnesium metal plates were compared, and the effects of carbon felt as a cathode plate on the removal rate and pH of phosphate from wastewater were discussed. Additionally, the economic feasibility of phosphate recovery from swine wastewater was evaluated. The experimental results showed that the effect of carbon felt on the corrosion potential of the magnesium metal plate was more evident than that of the graphite and titanium plates (Ecorr = -1.74676). When carbon felt was used as the cathode plate, the most energy-saving reaction conditions were as follows: reaction time T = 30 min, ratio of wastewater volume to plate area V: S = 500 cm3:50 cm2, aeration rate Re = 8 L/min, stirring rate r = 400 rpm, phosphate recovery rate = 92.3%, and pH = 8.83. The economic feasibility assessment shows that the proposed method is $2.047 g-1 PO4-P without considering the reuse of carbon felt. Carbon felt has good stability and can be recycled eight times or more, and the proposed method achieves a more efficient phosphate recovery rate at a relatively low cost.

SELECTION OF CITATIONS
SEARCH DETAIL