Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 93
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Fish Shellfish Immunol ; 151: 109736, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38950760

ABSTRACT

RIPK1/TAK1 are important for programmed cell death, including liver death, necroptosis and apoptosis. However, there have been few published reports on the functions of RIPK1/TAK1 in invertebrates. In this study, full-length ChRIPK1 and ChTAK1 were cloned from C. hongkongensis through the rapid amplification of cDNA ends (RACE) technology. ChRIPK1 has almost no homology with human RIPK1 and lacks a kinase domain at the N-terminus but has a DD and RHIM domain. ChTAK1 is conserved throughout evolution. qRT‒PCR was used to analyze the mRNA expression patterns of ChRIPK1 in different tissues, developmental stages, and V. coralliilyticus-infected individuals, and both were highly expressed in the mantle and gills, while ChRIPK1 was upregulated in hemocytes and gills after V. coralliilyticus or S. aureus infection, which indicates that ChRIPK1 is involved in immune regulation. Fluorescence assays revealed that ChRIPK1 localized to the cytoplasm of HEK293T cells in a punctiform manner, but the colocalization of ChRIPK1 with ChTAK1 abolished the punctiform morphology. In the dual-luciferase reporter assay, both ChRIPK1 and ChRIPK1-RIHM activated the NF-κB signaling pathway in HEK293T cells, and ChTAK1 activated ChRIPK1 in the NF-κB signaling pathway. The apoptosis rate of the hemocytes was not affected by the necroptosis inhibitor Nec-1 but was significantly decreased, and ChRIPK1 expression was knocked down in the hemocytes of C. hongkongensis. These findings indicated that ChRIPK1 induces apoptosis but not necroptosis in oysters. This study provides a theoretical basis for further research on the molecular mechanism by which invertebrates regulate the programmed cell death of hemocytes in oysters.

2.
J Appl Clin Med Phys ; : e14412, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38807292

ABSTRACT

PURPOSE: To investigate the enhancement of image quality achieved through the utilization of SnapShot Freeze 2 (SSF2), a comparison was made against the results obtained from the original SnapShot Freeze algorithm (SSF) and standard motion correction (STND) in stent patients undergoing coronary CT angiography (CCTA) across the entire range of heart rates. MATERIALS AND METHODS: A total of 118 patients who underwent CCTA, were retrospectively included in this study. Images of these patients were reconstructed using three different algorithms: SSF2, SSF, and STND. Objective assessments include signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), diameters of stents and artifact index (AI). The image quality was subjectively evaluated by two readers. RESULTS: Compared with SSF and STND, SSF2 had similar or even higher quality in the parameters (AI, SNR, CNR, inner diameters) of coronary artery, stent, myocardium, MV (mitral valve), TV (tricuspid valve), AV (aorta valve), and PV (pulmonary valve), and aortic root (AO). Besides the above structures, SSF2 also demonstrated comparable or even higher subjective scores in atrial septum (AS), ventricular septum (VS), and pulmonary artery root (PA). Furthermore, the enhancement in image quality with SSF2 was significantly greater in the high heart rate group compared to the low heart rate group. Moreover, the improvement in both high and low heart rate groups was better in the SSF2 group compared to the SSF and STND group. Besides, when using the three algorithms, an effect of heart rate variability on stent image quality was not detected. CONCLUSION: Compared to SSF and STND, SSF2 can enhance the image quality of whole-heart structures and mitigate artifacts of coronary stents. Furthermore, SSF2 has demonstrated a significant improvement in the image quality for patients with a heart rate equal to or higher than 85 bpm.

3.
Fish Shellfish Immunol ; 122: 495-500, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35202805

ABSTRACT

Serum amyloid protein (SAA) is known as an acute reactive protein of innate immunity in mammals. However, in invertebrates, the role of SAA in innate immunity is still unclear. In this study, a full-length cDNA of the SAA gene (named TcSAA) was cloned from Tridacna crocea, mollusca. The gene includes a 193 bp 5' untranslated region (UTR) and a 129 bp 3' UTR sequence, and the open reading frame (ORF) with 393 bp nucleotides encodes a polypeptide of 130 amino acids. TcSAA contains a typical signal peptide and an SAA functional domain. The mRNA expression of TcSAA was detected in all 12 selected tissues and 7 different developmental stages. Furthermore, the expression of TcSAA was increased quickly in hemocytes after challenge with V. coralliilyticus or LPS. Furthermore, rTcSAA could bind V. coralliilyticus and V. alginolyticus, and the protein could reduce the lethality rate of the clams from 80% to 55% which caused by V. coralliilyticus about 48 h after injection. In summary, these results indicate that TcSAA may act as a marker for monitoring health and protecting T. crocea.


Subject(s)
Perciformes , Amino Acid Sequence , Amyloidogenic Proteins/genetics , Amyloidogenic Proteins/metabolism , Animals , Base Sequence , Cloning, Molecular , DNA, Complementary/genetics , Fish Proteins/genetics , Gene Expression Regulation , Immunity, Innate/genetics , Mammals/genetics , Mammals/metabolism , Phylogeny
4.
Eur Radiol ; 31(10): 7913-7924, 2021 Oct.
Article in English | MEDLINE | ID: mdl-33825032

ABSTRACT

OBJECTIVE: To develop and validate a radiomics signature based on magnetic resonance imaging (MRI) from multicenter datasets for preoperative prediction of pathologic response to neoadjuvant chemotherapy (NAC) in patients with osteosarcoma. METHODS: We retrospectively enrolled 102 patients with histologically confirmed osteosarcoma who received chemotherapy before treatment from 4 hospitals (68 in the primary cohort and 34 in the external validation cohort). Quantitative imaging features were extracted from contrast-enhanced fat-suppressed T1-weighted images (CE FS T1WI). Four classification methods, i.e., the least absolute shrinkage and selection operator logistic regression (LASSO-LR), support vector machine (SVM), Gaussian process (GP), and Naive Bayes (NB) algorithm, were compared for feature selection and radiomics signature construction. The predictive performance of the radiomics signatures was assessed with the area under receiver operating characteristics curve (AUC), calibration curve, and decision curve analysis (DCA). RESULTS: Thirteen radiomics features selected based on the LASSO-LR classifier were adopted to construct the radiomics signature, which was significantly associated with the pathologic response. The prediction model achieved the best performance between good and poor responders with an AUC of 0.882 (95% CI, 0.837-0.918) in the primary cohort. Calibration curves showed good agreement. Similarly, findings were validated in the external validation cohort with good performance (AUC, 0.842 [95% CI, 0.793-0.883]) and good calibration. DCA analysis confirmed the clinical utility of the selected radiomics signature. CONCLUSION: The constructed CE FS T1WI-radiomics signature with excellent performance could provide a potential tool to predict pathologic response to NAC in patients with osteosarcoma. KEY POINTS: • The radiomics signature based on multicenter contrast-enhanced MRI was useful to predict response to NAC. • The prediction model obtained with the LASSO-LR classifier achieved the best performance. • The baseline clinical characteristics were not associated with response to NAC.


Subject(s)
Bone Neoplasms , Osteosarcoma , Bayes Theorem , Bone Neoplasms/diagnostic imaging , Bone Neoplasms/drug therapy , Humans , Magnetic Resonance Imaging , Neoadjuvant Therapy , Osteosarcoma/diagnostic imaging , Osteosarcoma/drug therapy , Retrospective Studies
5.
Mar Drugs ; 19(8)2021 Jul 26.
Article in English | MEDLINE | ID: mdl-34436258

ABSTRACT

Antimicrobial peptides are a fundamental component of mollusks' defense systems, though they remain a thinly investigated subject. Here, infection by Vibrio parahemolyticus triggered a significant increase in antimicrobial activity in oyster plasma. By using PBS-challenged oysters as a control, plasma peptides from immunologically challenged oysters were subjected to peptidomic profiling and in silico data mining to identify bioactive peptides. Thirty-five identified plasma peptides were up-regulated post infection, among which, six up-regulated peptides (URPs) showed a relatively high positive charge. URP20 was validated with significant antibacterial activity. Virtually, URP20 triggered aggregation of bacterial cells, accompanied by their membrane permeabilization. Interestingly, URP20 was found to be active against Gram-positive and Gram-negative foodborne pathogens as well as Candida albicans, with no cytotoxicity to mammalian cells and mice. Our study provides the first large-scale plasma peptidomic dataset that identifies novel bioactive peptides in marine mollusks. Further exploration of peptide diversity in marine invertebrates should prove a fruitful pursuit for designing novel AMPs with broad applications.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antimicrobial Peptides/pharmacology , Crassostrea , Animals , Aquatic Organisms , Candida albicans/drug effects , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects
6.
BMC Genomics ; 21(1): 872, 2020 Dec 07.
Article in English | MEDLINE | ID: mdl-33287701

ABSTRACT

BACKGROUND: Gonad development and differentiation is an essential function for all sexually reproducing species, and many aspects of these developmental processes are highly conserved among the metazoa. However, the mechanisms underlying gonad development and gametogenesis remain unclear in Tridacna squamosa, a large-size bivalve of great ecological value. They are protandrous simultaneous hermaphrodites, with the male gonad maturing first, eventually followed by the female gonads. In this study, nine gonad libraries representing resting, male and hermaphrodite stages in T. squamosa were performed to identify the molecular mechanisms. RESULTS: Sixteen thousand four hundred ninety-one unigenes were annotated in the NCBI non-redundant protein database. Among the annotated unigenes, 5091 and 7328 unigenes were assigned to Gene Ontology categories and the Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway database, respectively. A total of 4763 differentially expressed genes (DEGs) were identified by comparing male to resting gonads, consisting of 3499 which were comparatively upregulated in males and 1264 which were downregulated in males. Six hundred-ninteen DEGs between male and hermaphroditic gonads were identified, with 518 DEGs more strongly expressed in hermaphrodites and 101 more strongly expressed in males. GO (Gene Ontology) and KEGG pathway analyses revealed that various biological functions and processes, including functions related to the endocrine system, oocyte meiosis, carbon metabolism, and the cell cycle, were involved in regulating gonadal development and gametogenesis in T. squamosa. Testis-specific serine/threonine kinases 1 (TSSK1), TSSK4, TSSK5, Doublesex- and mab-3-related transcription factor 1 (DMRT1), SOX, Sperm surface protein 17 (SP17) and other genes were involved in male gonadal development in Tridacna squamosal. Both spermatogenesis- (TSSK4, spermatogenesis-associated protein 17, spermatogenesis-associated protein 8, sperm motility kinase X, SP17) and oogenesis-related genes (zona pellucida protein, Forkhead Box L2, Vitellogenin, Vitellogenin receptor, 5-hydroxytryptamine, 5-hydroxytryptamine receptor) were simultaneously highly expressed in the hermaphroditic gonad to maintain the hermaphroditism of T. squamosa. CONCLUSION: All these results from our study will facilitate better understanding of the molecular mechanisms underlying giant clam gonad development and gametogenesis, which can provided a base on obtaining excellent gametes during the seed production process for giant clams.


Subject(s)
Bivalvia , Sperm Motility , Animals , Female , Gametogenesis/genetics , Gene Expression Profiling , Gonads , Humans , Male , Transcriptome
7.
Fish Shellfish Immunol ; 98: 122-129, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31917320

ABSTRACT

Caspase 3 plays an important role in apoptotic pathways and contributes to maintaining the homeostasis of the immune system in organisms. The structure, functions, and characteristics of caspase 3 have been extensively investigated in many species, but the research is scarce when it comes to bivalves, particularly oysters. In this study, we identified and cloned a previously unknown caspase 3 gene, named ChCas 3, in C. hongkongensis. The full-length cDNA of ChCas 3 was 1562 bp and included a 175 bp 5'-untranslated region (UTR), a 141 bp 3'-UTR and a 1245 bp open reading frame (ORF) that encoded a polypeptide of 415 amino acids. Similar to caspase 3 in other species, ChCas 3 has a pro-domain, a conserved cysteine active site, a large p20 subunit and a small p10 subunit. Our findings demonstrated the expression of ChCas 3 in all the eight tissues via tissue-specific expression assays with the highest expression in haemocytes. ChCas 3 was confirmed to be expressed throughout the larval development stages, and fluorescence from pEGFP-N1-ChCas 3 was found to be distributed throughout the entire HEK293T cell. In addition, the relative expression of ChCas 3 significantly enhanced in hemocytes post bacterial stimulation, and overexpression of ChCas 3 led to upregulation of the transcriptional activity of NF-κB and p53 reporter genes in HEK293T cells, which indicated that it was involved in innate immune responses. Finally, the apoptosis rate of the haemocytes declined considerably compared with that of the control group after the expression of ChCas 3 was successfully silenced by dsRNA, corroborating its sentinel role in apoptosis. This study provides comprehensive underpinning evidences, affirming caspase 3 crucial role against bacterial infection and apoptosis in C. hongkongensis.


Subject(s)
Apoptosis/genetics , Caspase 3/genetics , Caspase 3/immunology , Crassostrea/genetics , Crassostrea/immunology , Gene Expression Regulation/immunology , Immunity, Innate/genetics , Animals , HEK293 Cells , Hemocytes/metabolism , Humans
8.
Fish Shellfish Immunol ; 93: 416-427, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31374314

ABSTRACT

Phagocytosis is one of the fundamental cellular immune defense parameter that helps in the elimination of the invading pathogens in both vertebrates and invertebrates, which require plenty of energy for functioning. In the present study, we identified the critical energy regulator AMP-activated protein kinase (AMPK) in Crassostrea hongkongensis which is composed of three subunits, named ChAMPK-α, ChAMPK-ß, and ChAMPK-γ, and then analyzed the function of AMPK in regulating hemocyte phagocytosis. All the three ChAMPK subunits mRNA were detected to be expressed at various embryological stages, and also constitutively expressed in multiple tissues with high expression in gill and mantle. The phylogenetic tree showed that the three subunits of AMPK were correspondingly clustered with its orthologue branches. Furthermore Western Blot analysis revealed that the AMPK pharmacological inhibitors Compound C could effectively down-regulate the Thr172 phosphorylation level of AMPK-α, and the hemocyte phagocytosis was inhibited by Compound C (CC), which indicate its existence in the oyster. Our results showed that treatment of AMPK inhibitors significantly attenuated the capacity of hemocytes phagocytosis. Moreover, Compound C could also change the organization of actin cytoskeleton in the oyster hemocytes, demonstrating the crucial role of AMPK signaling in control of phagocytosis.


Subject(s)
AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/immunology , Crassostrea/genetics , Crassostrea/immunology , Gene Expression Regulation/immunology , Immunity, Innate/genetics , AMP-Activated Protein Kinases/chemistry , Amino Acid Sequence , Animals , Base Sequence , Gene Expression Profiling , Hemocytes , Phagocytosis , Sequence Alignment , Signal Transduction
9.
Fish Shellfish Immunol ; 75: 190-197, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29407615

ABSTRACT

Cystatins are a large family of the proteins that function as reversible and tight-binding inhibitors of cysteine proteases, which consequently regulate multiple physiological activities including apoptosis and innate immunity. In the present study, we cloned a gene from Crassostrea gigas encoding cystatin, which is related to cystatin A superfamily. CgCytA was comprised of a cystatin-like domain with two conserved glycine residues (GG) near the N-terminal and a highly conserved glutamine-valine-glycine (Q-X-V-X-G) motif in the form of QVVAG loop. Transcription analysis of CgCytA indicated its constitutive expression in all tissues including mantle, gill, digestive tract, hemocytes, heart, adductor muscle, and gonads. Immune challenge with Vibrio alginolyticus, resulted in significant down-regulation of CgCytA expression at the initial stages of infection (till 12 h post infection) and the expression of cystatin increased 48 h post infection. Protease assay demonstrated the concentration of cystatin needed to inhibit half of the maximum biological response of cysteine protease is 14.4 µg/L (IC50). Furthermore, RNAi of CgCytA resulted in increase of apoptotic cell population in hemocytes of C. gigas, suggesting protection role of CgCytA from hemocytes apoptosis. Unexpectedly, knockdown of CgCytA leaded to enhancement of bacterial clearance in vivo, implying that CgCytA may negatively regulate immune defense by suppressing endogenous cysteine protease. Therefore, CgCytA plays dual roles in protection of host hemocytes from apoptosis and control of bacterial clearance, which may server as one of key endogenous balancer between apoptosis and innate immunity in oyster.


Subject(s)
Crassostrea/genetics , Crassostrea/immunology , Cystatin A/genetics , Cystatin A/immunology , Gene Expression Regulation/immunology , Immunity, Innate/genetics , Amino Acid Sequence , Animals , Base Sequence , Cystatin A/chemistry , Gene Expression Profiling , Phylogeny , RNA Interference , Sequence Alignment , Vibrio alginolyticus
10.
Fish Shellfish Immunol ; 81: 423-429, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29864587

ABSTRACT

Hemocytes are the first line of defence of the innate immune system of molluscs. For the first time hemocytes of Crassostrea hongkongensis were morphologically and functionally characterized, identifying circulating cell types and studying their involvement in immune responses. In the present study, two main populations, hyalinocytes and granulocytes, were characterized based on the presence or absence of cytoplasmic granules, using light and electron microscopy (TEM), and flow cytometry analyses. Granulocytes are 7-13 µm in diameter and present evident cytoplasmic granules, and hyalinocytes, 6-15 µm in diameter, with a few or no granules. The mean number of circulating hemocytes in the hemolymph was 2.52 × 106 cells/mL. Flow cytometry indicated that both granulocytes and hyalinocytes showed cell phagocytosis and reactive oxygen species (ROS) production. However, phagocytosis and spontaneous production of reactive oxygen species (ROS) in granulocytes are much more active compared with hyalinocytes, which demonstrated that the granulocytes are the main hemocytes involved in the immune response of Hong Kong oyster. Moreover, the cell-free hemolymph showed antibacterial activity against Vibrio alginolyticus. Our results provide the basic information of hemocytes population of Hong Kong oyster for further investigations associated with innate immunity.


Subject(s)
Crassostrea/immunology , Hemocytes/cytology , Hemocytes/immunology , Animals , Cell Count , Hemolymph/immunology , Phagocytosis , Reactive Oxygen Species/metabolism , Vibrio alginolyticus
11.
Fish Shellfish Immunol ; 71: 151-159, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29017949

ABSTRACT

Tumor necrosis factor receptor-associated factor 3 (TRAF3) is a multifunctional adaptor protein in innate and acquired immune system that plays a key role in the regulation of the RIG-I-like receptor (RLR) and Toll-like receptor (TLR) signaling pathway in mammals. However, the immune function of TRAF3 homologs in freshwater mollusks is not well understood. In this study, we identified a bivalve TRAF3 gene (AwTRAF3) from Anodonta woodiana and investigated its potential roles during immune challenges. The present AwTRAF3 encoded a polypeptide of 562 amino acids with predicted molecular mass of 64.5 kDa and PI of 7.9. Similar to other reported TRAF3s, AwTRAF3 contained a RING finger domain, two TRAF domains with zinc finger domains, a coiled coli region and a conserved C-terminal meprin and TRAF homology (MATH) domain. Quantitative real-time PCR (qRT-PCR) analysis revealed that AwTRAF3 mRNA was broadly expressed in all of the examined tissues, with high expression in hepatopancreas, gill and heart. In addition, immune challenge experiments directly showed that transcript levels of AwTRAF3 in hepatopancreas were significantly regulated upon bacterial (Vibrio alginolyticus and Staphylococcus aureus) and viral (poly (I:C)) challenges, respectively. Moreover, GFP-tagged AwTRAF3 fusion protein was found to be located primarily in the cytoplasm in HEK293T cells. Altogether, these data provided the first experimental demonstration that freshwater mollusks possess a functional TRAF3 that was involved in the innate defense against bacterial and viral infection.


Subject(s)
Anodonta/genetics , Anodonta/immunology , Immunity, Innate/genetics , TNF Receptor-Associated Factor 3/genetics , TNF Receptor-Associated Factor 3/immunology , Animals , HEK293 Cells , Humans , Poly I-C/pharmacology , Real-Time Polymerase Chain Reaction , Staphylococcus aureus/physiology , Vibrio alginolyticus/physiology
12.
Fish Shellfish Immunol ; 71: 105-115, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28986217

ABSTRACT

Tumor necrosis factor (TNF) receptor-associated factor 2 (TRAF2) is a member of the TRAF superfamily that acted as a key signal transduction protein and has been implicated in inflammatory and apoptosis processes in mammals. However, identification of TRAF2s in invertebrates is very limited and its function, in particular that under immune challenges, is still unknown. In this report, a molluscan TRAF2 gene (referred to as AwTRAF2) was cloned and characterized from the freshwater bivalve, Anodonta woodiana. The open reading frame (ORF) of AwTRAF2 was 1683 bp in length, which encoded a putative 560 amino acid-protein. The deduced AwTRAF2 sequence shared similar structural characteristics and close evolutionary relationship with mollusk TRAF2s. The tissue-specific expression analysis revealed that AwTRAF2 mRNA was broadly expressed in all tested tissues, with high expression in gill and hepatopancreas. In addition, in vivo injection experiments directly showed that AwTRAF2 mRNA levels in hepatopancreas were significantly up-regulated in response to bacterial pathogen (Vibrio alginolyticus and Staphylococcus aureus) and PAMPs (Lipopolysaccharides and Peptidoglycan) challenges. Moreover, fluorescence microscopy observations revealed that AwTRAF2 was mainly located in cytoplasm of HEK293T cells and its overexpression significantly increased the transcriptional activities of the NF-κB-Luc reporter gene in HEK293T cells. Taken together, this study provided the experimental evidence of the presence of a functional TRAF2 in freshwater bivalves, which revealed its involvement in host response to immune challenges in A. woodiana.


Subject(s)
Anodonta/genetics , Anodonta/immunology , Gene Expression Regulation/immunology , Immunity, Innate/genetics , TNF Receptor-Associated Factor 2/genetics , TNF Receptor-Associated Factor 2/immunology , Amino Acid Sequence , Animals , Base Sequence , Gene Expression Profiling , Pathogen-Associated Molecular Pattern Molecules/pharmacology , Phylogeny , Sequence Alignment , Staphylococcus aureus/physiology , TNF Receptor-Associated Factor 2/chemistry , Vibrio alginolyticus/physiology
13.
Fish Shellfish Immunol ; 68: 37-45, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28648883

ABSTRACT

Tumor necrosis factor receptor-associated factor 6 (TRAF6) has been demonstrated to be a key signaling molecule involved in adaptive and innate immunity. In this study, we obtained the full length CgTRAF6 cDNA and analyzed the characteristics of the ORF and the peptide sequence in Crassostrea gigas. The deduced protein sequence of CgTRAF6 includes a conserved C-terminal TRAF domain following the RING and the zinc finger domain. The TRAF domain is composed of coiled-coil TRAF-N and MATH (meprin and TRAF-C homology) subdomains. Furthermore, phylogenetic analysis revealed that CgTRAF6 is clustered together with other members TRAF6 family and is placed in a sub-cluster singly which had a close relationship with Drosophila melanogaster. Expression analysis of CgTRAF6 indicated its constitutive expression in all tissues including mantle, adductor muscle, digestive tract, gonads, heart, gill, and hemocyte. Immune challenge with Vibrio alginolyticus and poly I:C resulted in significant up-regulation of CgTRAF6 expression. Dual-luciferase reporter assays showed that CgTRAF6 could activate both pNF-κB-Luc and pISRE-Luc expression, suggesting CgTRAF6 is potentially involved in NF-κB and the interferon signaling pathway. Furthermore, RNAi mediated knockdown of CgTRAF6 resulted in the down-regulation of several putative anti-viral signaling (IRF) and effector (PKR & Viperin) molecules coding genes, 7 days post-injection. These results collectively indicate that CgTRAF6 is a member of TRAF6 sub-family and is potentially involved in immune defense system against invading bacteria and viruses in Crassostrea gigas.


Subject(s)
Crassostrea/genetics , Crassostrea/immunology , Immunity, Innate , TNF Receptor-Associated Factor 6/genetics , TNF Receptor-Associated Factor 6/metabolism , Amino Acid Sequence , Animals , Base Sequence , Crassostrea/microbiology , Down-Regulation , Organ Specificity , Phylogeny , Poly I-C/immunology , TNF Receptor-Associated Factor 6/chemistry , Up-Regulation , Vibrio alginolyticus/physiology
14.
Fish Shellfish Immunol ; 62: 311-319, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28159693

ABSTRACT

Extracellular signal-regulated kinases (ERKs) are a group of highly conserved serine/threonine-specific protein kinases that function as important signaling intermediates in mitogen-activated protein kinase (MAPK) pathways, which are involved in a wide variety of cellular activities, including proliferation, inflammation and cytokine production. However, little is known about the roles of this kinase in mollusk immunity. In this study, we identified a molluscan ERK homolog (ChERK) in the Hong Kong oyster (Crassostrea hongkongensis) and investigated its biological functions. The open reading frame (ORF) of ChERK encoded a polypeptide of 365 amino acids, with a predicted molecular weight of 41.96 kDa and pI of 6.43. The predicted ChERK protein contained typical characteristic motifs of the ERK family, including a dual threonine-glutamate-tyrosine (TEY) phosphorylation motif and an ATRW substrate binding site. Phylogenetic analysis revealed that ChERK belonged to the mollusk cluster and shared a close evolutionary relationship with ERK from Crassostrea gigas. In addition, quantitative real-time PCR analysis revealed that ChERK expression was detected in all of the examined tissues and stages of embryonic development; its transcript level was significantly induced upon challenge with bacterial pathogens (Vibrio alginolyticus and Staphylococcus haemolyticus) in vivo and PAMPs (lipopolysaccharide and peptidoglycan) in vitro. Moreover, ChERK was mainly located in the cytoplasm of HEK293T cells. Taken together, these findings may provide novel insights into the functions of molluscan ERKs, especially their roles in response to immune challenge in oyster.


Subject(s)
Crassostrea/genetics , Extracellular Signal-Regulated MAP Kinases/genetics , Gene Expression Regulation , Pathogen-Associated Molecular Pattern Molecules/pharmacology , Staphylococcus haemolyticus/physiology , Vibrio alginolyticus/physiology , Amino Acid Sequence , Animals , Base Sequence , Cloning, Molecular , Crassostrea/immunology , Crassostrea/microbiology , DNA, Complementary/genetics , DNA, Complementary/metabolism , Extracellular Signal-Regulated MAP Kinases/chemistry , Extracellular Signal-Regulated MAP Kinases/metabolism , HEK293 Cells , Humans , Immunity, Innate , Lipopolysaccharides/pharmacology , Peptidoglycan/pharmacology , Phylogeny , Polymerase Chain Reaction , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sequence Alignment
15.
Fish Shellfish Immunol ; 59: 288-297, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27666188

ABSTRACT

Apoptosis plays an important role in homeostasis of the immune systems. The tumor necrosis factor receptors (TNFRs) play critical roles in the extrinsic apoptosis pathways and in determining cell fate. In this study, four death receptors (DR) named ChEDAR, ChTNFR27, ChTNFR5, and ChTNFR16 were identified from the oyster Crassostrea hongkongensis. These ChDRs proteins had 382, 396, 414 and 384 amino acids, respectively, with the typical domains of death receptors, such as the signal peptide (SP), transmembrane helix region (TM) and death domains. Phylogenetic analysis showed that the ChDR proteins clustered into three distinct groups, indicating that these subfamilies had common ancestors. mRNA expression of the ChDRs were detected in all 8 of the selected oyster tissues and at different stages of development. Furthermore, expression of all the genes was increased in the hemocytes of oysters challenged with pathogens or air stress. Fluorescence microscopy revealed that the full-length proteins of the ChDRs were located in the plasma membrane of HEK293T cells. Over-expression of the ChDRs activated the NF-κB-Luc reporter in HEK293T cells in a dose-dependent manner. These results indicate that the ChDRs may play important roles in the extrinsic apoptotic pathways in oysters.


Subject(s)
Crassostrea/genetics , Crassostrea/immunology , Gene Expression Regulation, Developmental , Immunity, Innate , Receptors, Tumor Necrosis Factor/genetics , Amino Acid Sequence , Animals , Apoptosis/immunology , Base Sequence , Cloning, Molecular , Crassostrea/classification , Crassostrea/microbiology , DNA, Complementary/genetics , DNA, Complementary/metabolism , Evolution, Molecular , Organ Specificity , Phylogeny , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, Tumor Necrosis Factor/chemistry , Receptors, Tumor Necrosis Factor/immunology , Saccharomyces cerevisiae/physiology , Sequence Alignment , Signal Transduction , Staphylococcus haemolyticus/physiology , Vibrio alginolyticus/physiology
16.
J Proteome Res ; 14(1): 304-17, 2015 Jan 02.
Article in English | MEDLINE | ID: mdl-25389644

ABSTRACT

The Pacific oyster Crassostrea gigas is one of the dominant sessile inhabitants of the estuarine intertidal zone, which is a physically harsh environment due to the presence of a number of stressors. Oysters have adapted to highly dynamic and stressful environments, but the molecular mechanisms underlying such stress adaptation are largely unknown. In the present study, we examined the proteomic responses in the gills of C. gigas exposed to three stressors (high temperature, low salinity, and aerial exposure) they often encounter in the field. We quantitatively compared the gill proteome profiles using iTRAQ-coupled 2-D LC-MS/MS. There were 3165 identified proteins among which 2379 proteins could be quantified. Heat shock, hyposalinity, and aerial exposure resulted in 50, 15, and 33 differentially expressed gill proteins, respectively. Venn diagram analysis revealed substantial different responses to the three stressors. Only xanthine dehydrogenase/oxidase showed a similar expression pattern across the three stress treatments, suggesting that reduction of ROS accumulation may be a conserved response to these stressors. Heat shock caused significant overexpression of molecular chaperones and production of S-adenosyl-l-methionine, indicating their crucial protective roles against protein denature. In addition, heat shock also activated immune responses, Ca(2+) binding protein expression. By contrast, hyposalinity and aerial exposure resulted in the up-regulation of 3-demethylubiquinone-9 3-methyltransferase, indicating that increase in ubiquinone synthesis may contribute to withstanding both the osmotic and desiccation stress. Strikingly, the majority of desiccation-responsive proteins, including those involved in metabolism, ion transportation, immune responses, DNA duplication, and protein synthesis, were down-regulated, indicating conservation of energy as an important strategy to cope with desiccation stress. There was a high consistency between the expression levels determined by iTRAQ and Western blotting, highlighting the high reproducibility of our proteomic approach and its great value in revealing molecular mechanisms of stress responses.


Subject(s)
Crassostrea/metabolism , Gene Expression Regulation/physiology , Gills/metabolism , Proteome/genetics , Stress, Physiological/physiology , Animals , Blotting, Western , China , Chromatography, Liquid , Computational Biology , Crassostrea/genetics , Gene Expression Regulation/genetics , Proteomics/methods , Stress, Physiological/genetics , Tandem Mass Spectrometry
17.
Fish Shellfish Immunol ; 45(1): 59-66, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25862973

ABSTRACT

The death domain-associated protein Daxx exerts many functions including the induction and inhibition of apoptosis, regulation of chromatin remodeling and gene transcription. In this report, we have cloned and characterized a Daxx ortholog from the zebrafish, Danio rerio. The bioinformatics analysis results indicated that the open reading frame (ORF) of zebrafish Daxx is 2,151bp long and encodes a putative protein of 716 amino acids containing Daxx domain. Though quantitative PCR analyses, Daxx mRNA was detected in embryonic development from 6 h to 120 h and in all 11 selected zebrafish tissues, and the expression of Daxx was increased first and then decreased during megalocytivirus infectious spleen and kidney necrosis virus (ISKNV) infection. Fluorescence microscopy indicated that the full-length protein was located in the nuclei of the tested Hela cells uniformly but punctiform distribution in HEK293T. In the luciferase report assays, the GAL4-Daxx fusion protein inhibited the transcriptional activity of L8G5-Luc reporter gene showed that Daxx might act as a transcriptional repressor, following the over-expression in HEK293T, the activation of NF-κB-Luc and p53/p21-Luc reporter genes were repressed by the protein. These results suggested that Daxx might play definite role in apoptosis and innate immunity in zebrafish.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Apoptosis , DNA Virus Infections/veterinary , Fish Diseases/genetics , Gene Expression Regulation , Iridoviridae/physiology , Nuclear Proteins/genetics , Zebrafish Proteins/genetics , Zebrafish , Adaptor Proteins, Signal Transducing/chemistry , Adaptor Proteins, Signal Transducing/metabolism , Amino Acid Sequence , Animals , Cloning, Molecular , DNA Virus Infections/genetics , DNA Virus Infections/virology , DNA, Complementary/genetics , DNA, Complementary/metabolism , Fish Diseases/virology , Gene Expression Profiling , Humans , Nuclear Proteins/chemistry , Nuclear Proteins/metabolism , Phylogeny , RNA, Messenger/genetics , RNA, Messenger/metabolism , Zebrafish/genetics , Zebrafish/metabolism , Zebrafish Proteins/chemistry , Zebrafish Proteins/metabolism
18.
Fish Shellfish Immunol ; 45(2): 510-6, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25963623

ABSTRACT

Myeloid differentiation factor 88 (MyD88) is the classic signaling adaptor that mediates Toll/interleukin-1 receptor (TIR/IL-1R) dependent activation of nuclear factor-kappa B (NF-κB). In this study, two naturally truncated MyD88 members were identified from the Pacific oyster (Crassostrea gigas), namely CgMyD88-T1 and CgMyD88-T2. The full-length cDNA of CgMyD88-T1, CgMyD88-T2 are 976 bp and 1038 bp in length, containing an ORF of 552 bp and 555 bp, respectively. The two ORF encode a putative protein of 183 and 184 amino acids, respectively, with a calculated molecular weight of about 21 and 22 kDa. When compared to complete MyD88 paralogues, we found that both CgMyD88-T1 and CgMyD88-T2 contain only TIR domain but lack DD (Death Domain), which share 90.8% of similarity and 71.7% of identity with each other. Phylogenetic tree demonstrated that CgMyD88-T1 and CgMyD88-T2 clustered together and belonged to mollusk branch. Meanwhile, genomic arrangement analysis displayed that the two truncated MyD88s were distributed in tandem in one scaffold, revealing that they may originate from one truncated MyD88 ancestor recently. Expression profile showed that both of CgMyD88 variants were ubiquitously expressed in all tested tissues with highest expression in the gills and hemocytes, respectively. Both truncated CgMyD88 mRNAs were significantly up-regulated in hemocytes under HKLM (heat-killed Listeria monocytogenes) and HKVA (heat-killed Vibrio alginolyticus) challenge. Moreover, either CgMyD88-T1 or CgMyD88-T2 were able to inhibit MyD88 activated Rel/NF-κB activity in HEK293 cell, demonstrating their negative role in regulating MyD88-mediated immune signaling.


Subject(s)
Crassostrea/genetics , Crassostrea/immunology , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/immunology , Amino Acid Sequence , Animals , Base Sequence , Cloning, Molecular , Gene Expression , Genetic Variation , HEK293 Cells , Hemocytes/immunology , Hemocytes/microbiology , Humans , Listeria monocytogenes , Listeriosis/immunology , Molecular Sequence Data , RNA, Messenger/metabolism , Vibrio Infections/immunology , Vibrio alginolyticus
19.
Fish Shellfish Immunol ; 47(2): 1015-23, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26549179

ABSTRACT

G-protein-coupled receptors (GPCRs) are the largest class of cell-surface receptors and play crucial roles in virtually every organ system. As one of the major downstream effectors of GPCRs, Akt can acquire information from the receptors and coordinate intracellular responses for many signaling pathways, through which the serine/threonine kinase masters numerous aspects of biological processes, such as cell survival, growth, proliferation, migration, angiogenesis, and metabolism. In the present study, we have characterized the first Akt1 ortholog in mollusks using the Hong Kong oyster, Crassostrea hongkongensis (designed ChAkt1). The full-length cDNA is 2223 bp and encodes a putative protein of 493 amino acids that contains an amino-terminal pleckstin homology (PH) domain, a central catalytic domain, and a carboxy-terminal regulatory domain. Quantitative real-time PCR analysis showed that ChAkt1 mRNA is broadly expressed in various tissues and during different stages of the oyster's embryonic and larval development. Upon exposure to two stressors (microbial infection and heat shock), the expression level of ChAkt1 mRNA increases significantly. Furthermore, ChAkt1 is located in the cytoplasm in HEK293T cells, where the over-expression of ChAkt1 regulates the transcriptional activities of NF-κB and p53 reporter genes. Taken together, our results indicate that ChAkt1 most likely plays a central role in response to various stimuli in oysters and has a particular response to microbial pathogens and high temperature.


Subject(s)
Crassostrea/physiology , Heat-Shock Response , Immunity, Innate , Proto-Oncogene Proteins c-akt/genetics , Amino Acid Sequence , Animals , Base Sequence , Cloning, Molecular , Crassostrea/genetics , Crassostrea/immunology , DNA, Complementary/genetics , DNA, Complementary/metabolism , Molecular Sequence Data , Organ Specificity , Phylogeny , Proto-Oncogene Proteins c-akt/chemistry , Proto-Oncogene Proteins c-akt/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Real-Time Polymerase Chain Reaction , Sequence Alignment
20.
Fish Shellfish Immunol ; 42(2): 316-24, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25463295

ABSTRACT

Prostaglandin E receptor 4 (PTGER4) is an essential receptor that can detect various physiological and pathological stimuli and has been implicated in a wide variety of biological processes, including the regulation of immune responses, cytokine production, and apoptosis. In this report, the first mollusk PTGER4, referred to as ChPTGER4, was cloned and characterized from the Hong Kong oyster Crassostrea hongkongensis. Its full-length cDNA is 1734 bp in length, including 5'- and 3'-untranslated region (UTRs) of 354 bp and 306 bp, respectively, and an open reading frame (ORF) of 1074 bp. ChPTGER4 comprises 357 amino acids and shares significant homology with its vertebrate homologs. The results of phylogenetic analysis revealed that ChPTGER4 clusters with PTGER4 from the Pacific oyster. In addition, quantitative real-time PCR analysis revealed that ChPTGER4 was constitutively expressed in all tissues examined and that its expression was significantly up-regulated in hemocytes and gills following challenge by pathogens (Vibrio alginolyticus, Staphylococcus haemolyticus and Saccharomyces cerevisiae) and pathogen-associated molecular patterns (PAMPs: lipopolysaccharide (LPS) and peptidoglycan (PGN). Moreover, fluorescence microscopy analysis revealed that ChPTGER4 localized to the membrane, and its overexpression significantly enhanced NF-κB reporter gene activation in the HEK293T cell line. In summary, this study provides the first experimental evidence of a functional PTGER4 in mollusks, which suggests its involvement in the innate immune response in oyster.


Subject(s)
Crassostrea/immunology , Crassostrea/microbiology , Immunity, Innate , Receptors, Prostaglandin E, EP4 Subtype/genetics , Amino Acid Sequence , Animals , Base Sequence , Cloning, Molecular , Crassostrea/genetics , Crassostrea/metabolism , DNA, Complementary/genetics , DNA, Complementary/metabolism , Lipopolysaccharides/pharmacology , Molecular Sequence Data , Peptidoglycan/pharmacology , Phylogeny , RNA, Messenger/genetics , RNA, Messenger/metabolism , Random Allocation , Receptors, Prostaglandin E, EP4 Subtype/metabolism , Saccharomyces cerevisiae/physiology , Sequence Alignment , Staphylococcus haemolyticus/physiology , Vibrio alginolyticus/physiology
SELECTION OF CITATIONS
SEARCH DETAIL