Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.386
Filter
Add more filters

Publication year range
1.
Mol Biol Evol ; 41(1)2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38175672

ABSTRACT

Although previous studies have identified human-specific accelerated regions as playing a key role in the recent evolution of the human brain, the characteristics and cellular functions of rapidly evolving conserved elements (RECEs) in ancestral primate lineages remain largely unexplored. Here, based on large-scale primate genome assemblies, we identify 888 RECEs that have been highly conserved in primates that exhibit significantly accelerated substitution rates in the ancestor of the Simiiformes. This primate lineage exhibits remarkable morphological innovations, including an expanded brain mass. Integrative multiomic analyses reveal that RECEs harbor sequences with potential cis-regulatory functions that are activated in the adult human brain. Importantly, genes linked to RECEs exhibit pronounced expression trajectories in the adult brain relative to the fetal stage. Furthermore, we observed an increase in the chromatin accessibility of RECEs in oligodendrocytes from individuals with Alzheimer's disease (AD) compared to that of a control group, indicating that these RECEs may contribute to brain aging and AD. Our findings serve to expand our knowledge of the genetic underpinnings of brain function during primate evolution.


Subject(s)
Alzheimer Disease , Animals , Humans , Alzheimer Disease/genetics , Evolution, Molecular , Primates/genetics , Brain
2.
Nano Lett ; 24(22): 6696-6705, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38796774

ABSTRACT

Ultra-high-field (UHF) magnetic resonance imaging (MRI) stands as a pivotal cornerstone in biomedical imaging, yet the challenge of false imaging persists, constraining its full potential. Despite the development of dual-mode contrast agents improving conventional MRI, their effectiveness in UHF remains suboptimal due to the high magnetic moment, resulting in diminished T1 relaxivity and excessively enhanced T2 relaxivity. Herein, we report a DNA-mediated magnetic-dimer assembly (DMA) of iron oxide nanoparticles that harnesses UHF-tailored nanomagnetism for fault-free UHF-MRI. DMA exhibits a dually enhanced longitudinal relaxivity of 4.42 mM-1·s-1 and transverse relaxivity of 26.23 mM-1·s-1 at 9 T, demonstrating a typical T1-T2 dual-mode UHF-MRI contrast agent. Importantly, DMA leverages T1-T2 dual-modality image fusion to achieve artifact-free breast cancer visualization, effectively filtering interference from hundred-micrometer-level false-positive signals with unprecedented precision. The UHF-tailored T1-T2 dual-mode DMA contrast agents hold promise for elevating the accuracy of MR imaging in disease diagnosis.


Subject(s)
Contrast Media , DNA , Magnetic Resonance Imaging , Magnetic Resonance Imaging/methods , Contrast Media/chemistry , Humans , DNA/chemistry , Mice , Magnetic Iron Oxide Nanoparticles/chemistry , Female , Animals , Breast Neoplasms/diagnostic imaging , Magnetite Nanoparticles/chemistry , Cell Line, Tumor
3.
J Am Chem Soc ; 146(17): 11811-11822, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38635880

ABSTRACT

The development of novel agents with immunoregulatory effects is a keen way to combat the growing threat of inflammatory storms to global health. To synthesize pseudo-steroidal glycosides tethered by ether bonds with promising immunomodulatory potential, we develop herein a highly effective deoxygenative functionalization of a novel steroidal donor (steroidation) facilitated by strain-release, leveraging cost-effective and readily available Sc(OTf)3 catalysis. This transformation produces a transient steroid-3-yl carbocation which readily reacts with O-, C-, N-, S-, and P-nucleophiles to generate structurally diverse steroid derivatives. DFT calculations were performed to shed light on the mechanistic details of the regioselectivity, underlying an acceptor-dependent steroidation mode. This approach can be readily extended to the etherification of sugar alcohols to enable the achievement of a diversity-oriented, pipeline-like synthesis of pseudo-steroidal glycosides in good to excellent yields with complete stereo- and regiospecific control for anti-inflammatory agent discovery. Immunological studies have demonstrated that a meticulously designed cholesteryl disaccharide can significantly suppress interleukin-6 secretion in macrophages, exhibiting up to 99% inhibition rates compared to the negative control. These findings affirm the potential of pseudo-steroidal glycosides as a prospective category of lead agents for the development of novel anti-inflammatory drugs.


Subject(s)
Anti-Inflammatory Agents , Glycosides , Steroids , Glycosides/chemistry , Glycosides/chemical synthesis , Glycosides/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemical synthesis , Steroids/chemistry , Steroids/pharmacology , Steroids/chemical synthesis , Mice , Animals , Humans , Density Functional Theory , Molecular Structure , Interleukin-6/antagonists & inhibitors , Interleukin-6/metabolism , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Macrophages/drug effects
4.
J Am Chem Soc ; 146(11): 7400-7407, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38456799

ABSTRACT

Peptidoglycan (PG), an essential exoskeletal polymer in bacteria, is a well-known antibiotic target. PG polymerization requires the action of bacterial transglycosylases (TGases), which couple the incoming glycosyl acceptor to the donor. Interfering with the TGase activity can interrupt the PG assembly. Existing TGase inhibitors like moenomycin and Lipid II analogues always occupy the TGase active sites; other strategies to interfere with proper PG elongation have not been widely exploited. Inspired by the natural 1,6-anhydro-MurNAc termini that mark the ends of PG strands in bacteria, we hypothesized that the incorporation of an anhydromuramyl-containing glycosyl acceptor by TGase into the growing PG may effectively inhibit PG elongation. To explore this possibility, we synthesized 4-O-(N-acetyl-ß-d-glucosaminyl)-1,6-anhydro-N-acetyl-ß-d-muramyl-l-Ala-γ-d-Glu-l-Lys-d-Ala-d-Ala, 1, within 15 steps, and demonstrated that this anhydromuropeptide and its analogue lacking the peptide, 1-deAA, were both utilized by bacterial TGase as noncanonical anhydro glycosyl acceptors in vitro. The incorporation of an anhydromuramyl moiety into PG strands by TGases afforded efficient termination of glycan chain extension. Moreover, the preliminary in vitro studies of 1-deAA against Staphylococcus aureus showed that 1-deAA served as a reasonable antimicrobial adjunct of vancomycin. These insights imply the potential application of such anhydromuropeptides as novel classes of PG-terminating inhibitors, pointing toward novel strategies in antibacterial agent development.


Subject(s)
Anti-Bacterial Agents , Peptidoglycan , Peptidoglycan/chemistry , Anti-Bacterial Agents/pharmacology , Bacteria/metabolism , Glycosyltransferases/metabolism
5.
Mol Biol Evol ; 40(8)2023 08 03.
Article in English | MEDLINE | ID: mdl-37494289

ABSTRACT

Although the continual expansion of the brain during primate evolution accounts for our enhanced cognitive capabilities, the drivers of brain evolution have scarcely been explored in these ancestral nodes. Here, we performed large-scale comparative genomic, transcriptomic, and epigenomic analyses to investigate the evolutionary alterations acquired by brain genes and provide comprehensive listings of innovatory genetic elements along the evolutionary path from ancestral primates to human. The regulatory sequences associated with brain-expressed genes experienced rapid change, particularly in the ancestor of the Simiiformes. Extensive comparisons of single-cell and bulk transcriptomic data between primate and nonprimate brains revealed that these regulatory sequences may drive the high expression of certain genes in primate brains. Employing in utero electroporation into mouse embryonic cortex, we show that the primate-specific brain-biased gene BMP7 was recruited, probably in the ancestor of the Simiiformes, to regulate neuronal proliferation in the primate ventricular zone. Our study provides a comprehensive listing of genes and regulatory changes along the brain evolution lineage of ancestral primates leading to human. These data should be invaluable for future functional studies that will deepen our understanding not only of the genetic basis of human brain evolution but also of inherited disease.


Subject(s)
Brain , Primates , Mice , Humans , Animals , Primates/genetics , Brain/metabolism , Evolution, Molecular
6.
Mol Biol Evol ; 40(5)2023 05 02.
Article in English | MEDLINE | ID: mdl-37134013

ABSTRACT

HIV-1 is a highly host-specific retrovirus that infects humans but not most nonhuman primates. Thus, the lack of a suitable primate model that can be directly infected with HIV-1 hinders HIV-1/AIDS research. In the previous study, we have found that the northern pig-tailed macaques (NPMs) are susceptible to HIV-1 infection but show a nonpathogenic state. In this study, to understand this macaque-HIV-1 interaction, we assembled a de novo genome and longitudinal transcriptome for this species during the course of HIV-1 infection. Using comparative genomic analysis, a positively selected gene, Toll-like receptor 8, was identified with a weak ability to induce an inflammatory response in this macaque. In addition, an interferon-stimulated gene, interferon alpha inducible protein 27, was upregulated in acute HIV-1 infection and acquired an enhanced ability to inhibit HIV-1 replication compared with its human ortholog. These findings coincide with the observation of persistently downregulated immune activation and low viral replication and can partially explain the AIDS-free state in this macaque following HIV-1 infection. This study identified a number of unexplored host genes that may hamper HIV-1 replication and pathogenicity in NPMs and provided new insights into the host defense mechanisms in cross-species infection of HIV-1. This work will facilitate the adoption of NPM as a feasible animal model for HIV-1/AIDS research.


Subject(s)
HIV Infections , HIV-1 , Simian Immunodeficiency Virus , Animals , Humans , Macaca nemestrina , HIV-1/genetics , Genomics , Simian Immunodeficiency Virus/genetics
7.
Anal Chem ; 96(5): 2264-2272, 2024 02 06.
Article in English | MEDLINE | ID: mdl-38266388

ABSTRACT

Lipid metabolism diseases have become a tremendous risk worldwide, along with the development of productivity and particular attention to public health. It has been an urgent necessity to exploit reliable imaging strategies for lipids and thus to monitor fatty liver diseases. Herein, by converting the NIR-I signal to the NIR-II signal with IR1061 for the monitoring of lipid, the in vivo imaging of fatty liver disease was promoted on the contrast and visual effect. The main advantages of the imaging promotion in this work included a long emission wavelength, rapid response, and high signal-background-ratio (SBR) value. After promoting the NIR-I signal to NIR-II signal, IR1061 achieved higher SBR value and exhibited a dose-dependent fluorescence intensity at 1100 nm along with the increase of the EtOH proportion as well as steady and selective optical responses toward liposomes. IR1061 was further applied in the in vivo imaging of lipid in fatty liver diseases. In spite of the differences in body weight gain and TC level between healthy mice and fatty liver diseases two models, IR1061 achieved high-resolution imaging in the liver region to monitor the fatty liver disease status. This work might be informatic for the clinical diagnosis and therapeutical treatments of fatty liver diseases.


Subject(s)
Borates , Lipid Metabolism , Liver Diseases , Pyrans , Animals , Mice , Optical Imaging/methods , Fluorescent Dyes , Lipids
8.
Eur Respir J ; 63(3)2024 Mar.
Article in English | MEDLINE | ID: mdl-38359962

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic substantially impacted different age groups, with children and young people not exempted. Many have experienced enduring health consequences. Presently, there is no consensus on the health outcomes to assess in children and young people with post-COVID-19 condition. Furthermore, it is unclear which measurement instruments are appropriate for use in research and clinical management of children and young people with post-COVID-19. To address these unmet needs, we conducted a consensus study, aiming to develop a core outcome set (COS) and an associated core outcome measurement set (COMS) for evaluating post-COVID-19 condition in children and young people. Our methodology comprised of two phases. In phase 1 (to create a COS), we performed an extensive literature review and categorisation of outcomes, and prioritised those outcomes in a two-round online modified Delphi process followed by a consensus meeting. In phase 2 (to create the COMS), we performed another modified Delphi consensus process to evaluate measurement instruments for previously defined core outcomes from phase 1, followed by an online consensus workshop to finalise recommendations regarding the most appropriate instruments for each core outcome. In phase 1, 214 participants from 37 countries participated, with 154 (72%) contributing to both Delphi rounds. The subsequent online consensus meeting resulted in a final COS which encompassed seven critical outcomes: fatigue; post-exertion symptoms; work/occupational and study changes; as well as functional changes, symptoms, and conditions relating to cardiovascular, neuro-cognitive, gastrointestinal and physical outcomes. In phase 2, 11 international experts were involved in a modified Delphi process, selecting measurement instruments for a subsequent online consensus workshop where 30 voting participants discussed and independently scored the selected instruments. As a result of this consensus process, four instruments met a priori consensus criteria for inclusion: PedsQL multidimensional fatigue scale for "fatigue"; PedsQL gastrointestinal symptom scales for "gastrointestinal"; PedsQL cognitive functioning scale for "neurocognitive" and EQ-5D for "physical functioning". Despite proposing outcome measurement instruments for the remaining three core outcomes ("cardiovascular", "post-exertional malaise", "work/occupational and study changes"), a consensus was not achieved. Our international, consensus-based initiative presents a robust framework for evaluating post-COVID-19 condition in children and young people in research and clinical practice via a rigorously defined COS and associated COMS. It will aid in the uniform measurement and reporting of relevant health outcomes worldwide.


Subject(s)
COVID-19 , Post-Acute COVID-19 Syndrome , Adolescent , Child , Humans , Delphi Technique , Outcome Assessment, Health Care , Research Design , Treatment Outcome
9.
J Transl Med ; 22(1): 507, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802851

ABSTRACT

BACKGROUND: Gastric cancer (GC) ranks fifth in global cancer incidence and third in mortality rate among all cancer types. Circular RNAs (circRNAs) have been extensively demonstrated to regulate multiple malignant biological behaviors in GC. Emerging evidence suggests that several circRNAs derived from FNDC3B play pivotal roles in cancer. However, the role of circFNDC3B in GC remains elusive. METHODS: We initially screened circFNDC3B with translation potential via bioinformatics algorithm prediction. Subsequently, Sanger sequencing, qRT-PCR, RNase R, RNA-FISH and nuclear-cytoplasmic fractionation assays were explored to assess the identification and localization of circ0003692, a circRNA derived from FNDC3B. qRT-PCR and ISH were performed to quantify expression of circ0003692 in human GC tissues and adjacent normal tissues. The protein-encoding ability of circ0003692 was investigated through dual-luciferase reporter assay and LC/MS. The biological behavior of circ0003692 in GC was confirmed via in vivo and in vitro experiments. Additionally, Co-IP and rescue experiments were performed to elucidate the interaction between the encoded protein and c-Myc. RESULTS: We found that circ0003692 was significantly downregulated in GC tissues. Circ0003692 had the potential to encode a novel protein FNDC3B-267aa, which was downregulated in GC cells. We verified that FNDC3B-267aa, rather than circ0003692, inhibited GC migration in vitro and in vivo. Mechanistically, FNDC3B-267aa directly interacted with c-Myc and promoted proteasomal degradation of c-Myc, resulting in the downregulation of c-Myc-Snail/Slug axis. CONCLUSIONS: Our study revealed that the novel protein FNDC3B-267aa encoded by circ0003692 suppressed GC metastasis through binding to c-Myc and enhancing proteasome-mediated degradation of c-Myc. The study offers the potential applications of circ0003692 or FNDC3B-267aa as therapeutic targets for GC.


Subject(s)
Fibronectins , Neoplasm Metastasis , Proteasome Endopeptidase Complex , Proto-Oncogene Proteins c-myc , RNA, Circular , Stomach Neoplasms , Stomach Neoplasms/pathology , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , Humans , RNA, Circular/genetics , RNA, Circular/metabolism , Proteasome Endopeptidase Complex/metabolism , Cell Line, Tumor , Proto-Oncogene Proteins c-myc/metabolism , Proto-Oncogene Proteins c-myc/genetics , Animals , Fibronectins/metabolism , Gene Expression Regulation, Neoplastic , Male , Proteolysis , Mice, Nude , Base Sequence , Cell Movement/genetics , Female , Mice
10.
New Phytol ; 242(3): 1257-1274, 2024 May.
Article in English | MEDLINE | ID: mdl-38481385

ABSTRACT

Plant pathogenic fungi elaborate numerous detoxification strategies to suppress host reactive oxygen species (ROS), but their coordination is not well-understood. Here, we show that Sirt5-mediated protein desuccinylation in Magnaporthe oryzae is central to host ROS detoxification. SIRT5 encodes a desuccinylase important for virulence via adaptation to host oxidative stress. Quantitative proteomics analysis identified a large number of succinylated proteins targeted by Sirt5, most of which were mitochondrial proteins involved in oxidative phosphorylation, TCA cycle, and fatty acid oxidation. Deletion of SIRT5 resulted in hypersuccinylation of detoxification-related enzymes, and significant reduction in NADPH : NADP+ and GSH : GSSG ratios, disrupting redox balance and impeding invasive growth. Sirt5 desuccinylated thioredoxin Trx2 and glutathione peroxidase Hyr1 to activate their enzyme activity, likely by affecting proper folding. Altogether, this work demonstrates the importance of Sirt5-mediated desuccinylation in controlling fungal process required for detoxifying host ROS during M. oryzae infection.


Subject(s)
Ascomycota , Magnaporthe , Oryza , Reactive Oxygen Species/metabolism , Lysine/metabolism , Oxidative Stress , Ascomycota/metabolism , Fungal Proteins/metabolism , Oryza/metabolism , Plant Diseases/microbiology
11.
J Med Virol ; 96(5): e29640, 2024 May.
Article in English | MEDLINE | ID: mdl-38699969

ABSTRACT

After the termination of zero-COVID-19 policy, the populace in China has experienced both Omicron BA.5 and XBB waves. Considering the poor antibody responses and severe outcomes observed among the elderly following infection, we conducted a longitudinal investigation to examine the epidemiological characteristics and antibody kinetics among 107 boosted elderly participants following the Omicron BA.5 and XBB waves. We observed that 96 participants (89.7%) were infected with Omicron BA.5, while 59 (55.1%) participants were infected with Omicron XBB. Notably, 52 participants (48.6%) experienced dual infections of both Omicron BA.5 and XBB. The proportion of symptomatic cases appeared to decrease following the XBB wave (18.6%) compared to that after the BA.5 wave (59.3%). Omicron BA.5 breakthrough infection induced lower neutralizing antibody titers against XBB.1.5, BA.2.86, and JN.1, while reinfection with Omicron XBB broadened the antibody responses against all measured Omicron subvariants and may alleviate the wild type-vaccination induced immune imprinting. Boosted vaccination type and comorbidities were the significant factors associated with antibody responses. Updated vaccines based on emerging severe acute respiratory syndrome coronavirus 2 variants are needed to control the Coronavirus Disease 2019 pandemic in the elderly.


Subject(s)
COVID-19 Vaccines , COVID-19 , Immunization, Secondary , SARS-CoV-2 , Humans , Aged , COVID-19/epidemiology , COVID-19/immunology , COVID-19/virology , COVID-19 Vaccines/administration & dosage , Male , Female , Longitudinal Studies , China/epidemiology , SARS-CoV-2/classification , SARS-CoV-2/physiology , Antibodies, Neutralizing , Kinetics , Antibodies, Viral/blood , Reinfection/epidemiology
12.
Plant Cell Environ ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38946254

ABSTRACT

Plant pathogens cause devastating diseases, leading to serious losses to agriculture. Mechanistic understanding of pathogenesis of plant pathogens lays the foundation for the development of fungicides for disease control. Mitophagy, a specific form of autophagy, is important for fungal virulence. The role of cardiolipin, mitochondrial signature phospholipid, in mitophagy and pathogenesis is largely unknown in plant pathogenic fungi. The functions of enzymes involved in cardiolipin biosynthesis and relevant inhibitors were assessed using a set of assays, including genetic deletion, plant infection, lipidomics, chemical-protein interaction, chemical inhibition, and field trials. Our results showed that the cardiolipin biosynthesis-related gene MoGEP4 of the rice blast fungus Magnaporthe oryzae regulates growth, conidiation, cardiolipin biosynthesis, and virulence. Mechanistically, MoGep4 regulated mitophagy and Mps1-MAPK phosphorylation, which are required for virulence. Chemical alexidine dihydrochloride (AXD) inhibited the enzyme activity of MoGep4, cardiolipin biosynthesis and mitophagy. Importantly, AXD efficiently inhibited the growth of 10 plant pathogens and controlled rice blast and Fusarium head blight in the field. Our study demonstrated that MoGep4 regulates mitophagy, Mps1 phosphorylation and pathogenesis in M. oryzae. In addition, we found that the MoGep4 inhibitor, AXD, displays broad-spectrum antifungal activity and is a promising candidate for fungicide development.

13.
J Exp Bot ; 75(7): 1903-1918, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-37856192

ABSTRACT

The plant cuticle is an important protective barrier on the plant surface, constructed mainly by polymerized cutin matrix and a complex wax mixture. Although the pathway of plant cuticle biosynthesis has been clarified, knowledge of the transcriptional regulation network underlying fruit cuticle formation remains limited. In the present work, we discovered that tomato fruits of the NAC transcription factor SlNOR-like1 knockout mutants (nor-like1) produced by CRISPR/Cas9 [clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9] displayed reduced cutin deposition and cuticle thickness, with a microcracking phenotype, while wax accumulation was promoted. Further research revealed that SlNOR-like1 promotes cutin deposition by binding to the promoters of glycerol-3-phosphate acyltransferase6 (SlGPAT6; a key gene for cutin monomer formation) and CUTIN DEFICIENT2 (SlCD2; a positive regulator of cutin production) to activate their expression. Meanwhile, SlNOR-like1 inhibits wax accumulation, acting as a transcriptional repressor by targeting wax biosynthesis, and transport-related genes 3-ketoacyl-CoA synthase1 (SlKCS1), ECERIFERUM 1-2 (SlCER1-2), SlWAX2, and glycosylphosphatidylinositol-anchored lipid transfer protein 1-like (SlLTPG1-like). In conclusion, SlNOR-like1 executes a dual regulatory effect on tomato fruit cuticle development. Our results provide a new model for the transcriptional regulation of fruit cuticle formation.


Subject(s)
Solanum lycopersicum , Transcription Factors , Transcription Factors/metabolism , Fruit/metabolism , Gene Expression Regulation, Plant , Phenotype , Waxes/metabolism
14.
Phys Rev Lett ; 132(21): 210202, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38856248

ABSTRACT

Einstein-Podolsky-Rosen (EPR) steering, a distinctive quantum correlation, reveals a unique and inherent asymmetry. This research delves into the multifaceted asymmetry of EPR steering within high-dimensional quantum systems, exploring both theoretical frameworks and experimental validations. We introduce the concept of genuine high-dimensional one-way steering, wherein a high Schmidt number of bipartite quantum states is demonstrable in one steering direction but not reciprocally. Additionally, we explore two criteria to certify the lower and upper bounds of the Schmidt number within a one-sided device-independent context. These criteria serve as tools for identifying potential asymmetric dimensionality of EPR steering in both directions. By preparing two-qutrit mixed states with high fidelity, we experimentally observe asymmetric structures of EPR steering in the C^{3}⊗C^{3} Hilbert space. Our Letter offers new perspectives to understand the asymmetric EPR steering beyond qubits and has potential applications in asymmetric high-dimensional quantum information tasks.

15.
Exp Eye Res ; 238: 109739, 2024 01.
Article in English | MEDLINE | ID: mdl-38042515

ABSTRACT

Corneal alkali burns often occur in industrial production and daily life, combined with infection, and may cause severe eye disease. Oxidative stress and neovascularization (NV) are important factors leading to a poor prognosis. URP20 is an antimicrobial peptide that has been proven to treat bacterial keratitis in rats through antibacterial and anti-NV effects. Therefore, in this study, the protective effect and influence mechanism of URP20 were explored in a rat model of alkali burn together with pathogenic bacteria (Staphylococcus aureus and Escherichia coli) infection. In addition, human umbilical vein endothelial cells (HUVECs) and human corneal epithelial cells (HCECs) were selected to verify the effects of URP20 on vascularization and oxidative stress. The results showed that URP20 treatment could protect corneal tissue, reduce corneal turbidity, and reduce the NV pathological score. Furthermore, URP20 significantly inhibited the expression of the vascularization marker proteins VEGFR2 and CD31. URP20 also reduced the migration ability of HUVECs. In terms of oxidative stress, URP20 significantly upregulated SOD and GSH contents in corneal tissue and HCECs (treated with 200 µM H2O2) and promoted the expression of the antioxidant protein Nrf2/HO-1. At the same time, MDA and ROS levels were also inhibited. In conclusion, URP20 could improve corneal injury combined with bacterial infection in rats caused by alkali burns through antibacterial, anti-NV, and antioxidant activities.


Subject(s)
Bacterial Infections , Burns, Chemical , Corneal Injuries , Corneal Neovascularization , Eye Burns , Rats , Humans , Animals , Burns, Chemical/complications , Burns, Chemical/drug therapy , Burns, Chemical/metabolism , Corneal Neovascularization/metabolism , Antioxidants/pharmacology , Antioxidants/therapeutic use , Hydrogen Peroxide/pharmacology , Neovascularization, Pathologic/metabolism , Corneal Injuries/drug therapy , Human Umbilical Vein Endothelial Cells , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/pharmacology , Eye Burns/chemically induced , Eye Burns/drug therapy , Eye Burns/pathology , Disease Models, Animal , Alkalies/toxicity
16.
Mol Psychiatry ; 28(7): 3092-3103, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37117459

ABSTRACT

Evidence suggests that neurometabolite alterations may be involved in the pathophysiology of autism spectrum disorders (ASDs). We performed a meta-analysis of proton magnetic resonance spectroscopy (1H-MRS) studies to examine the neurometabolite levels in the brains of patients with ASD. A systematic search of PubMed and Web of Science identified 54 studies for the meta-analysis. A random-effects meta-analysis demonstrated that compared with the healthy controls, patients with ASD had lower N-acetyl-aspartate-containing compound (NAA) and choline-containing compound (Cho) levels and NAA/(creatine-containing compound) Cr ratios in the gray matter and lower NAA and glutamate + glutamine (Glx) levels in the white matter. Furthermore, NAA and gamma-aminobutyric acid (GABA) levels, NAA/Cr ratios, and GABA/Cr ratios were significantly decreased in the frontal cortex of patients with ASD, whereas glutamate (Glu) levels were increased in the prefrontal cortex. Additionally, low NAA levels and GABA/Cr ratios in the temporal cortex, low NAA levels and NAA/Cr ratios in the parietal and dorsolateral prefrontal cortices, and low NAA levels in the cerebellum and occipital cortex were observed in patients with ASD. Meta-regression analysis revealed that age was positively associated with effect size in studies analyzing the levels of gray matter NAA and white matter Glx. Taken together, these results provide strong clinical evidence that neurometabolite alterations in specific brain regions are associated with ASD and age is a confounding factor for certain neurometabolite levels in patients with ASD.


Subject(s)
Autism Spectrum Disorder , Humans , Proton Magnetic Resonance Spectroscopy/methods , Autism Spectrum Disorder/diagnostic imaging , Brain/diagnostic imaging , Glutamic Acid , Aspartic Acid , Choline , gamma-Aminobutyric Acid
17.
EMBO Rep ; 23(12): e54911, 2022 12 06.
Article in English | MEDLINE | ID: mdl-36305233

ABSTRACT

Major depressive disorder (MDD) is a severe mental illness. Decreased brain plasticity and dendritic fields have been consistently found in MDD patients and animal models; however, the underlying molecular mechanisms remain to be clarified. Here, we demonstrate that the deletion of cancerous inhibitor of PP2A (CIP2A), an endogenous inhibitor of protein phosphatase 2A (PP2A), leads to depression-like behaviors in mice. Hippocampal RNA sequencing analysis of CIP2A knockout mice shows alterations in the PI3K-AKT pathway and central nervous system development. In primary neurons, CIP2A stimulates AKT activity and promotes dendritic development. Further analysis reveals that the effect of CIP2A in promoting dendritic development is dependent on PP2A-AKT signaling. In vivo, CIP2A deficiency-induced depression-like behaviors and impaired dendritic arborization are rescued by AKT activation. Decreased CIP2A expression and impaired dendrite branching are observed in a mouse model of chronic unpredictable mild stress (CUMS). Indicative of clinical relevance to humans, CIP2A expression is found decreased in transcriptomes from MDD patients. In conclusion, we discover a novel mechanism that CIP2A deficiency promotes depression through the regulation of PP2A-AKT signaling and dendritic arborization.


Subject(s)
Depressive Disorder, Major , Humans , Mice , Animals , Depressive Disorder, Major/genetics , Phosphatidylinositol 3-Kinases , Neurons , Neuronal Plasticity
18.
Scand J Gastroenterol ; 59(7): 843-851, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38625376

ABSTRACT

AIM: To investigate the impact of triglyceride on hypertriglyceridemic acute pancreatitis (HTG-AP) and different lipid-lowering methods on triglyceride-lowering efficiency and HTG-AP. METHODS: The patients with HTG-AP from January 2012 to December 2023 in Civil Aviation General Hospital were analyzed, retrospectively. Patients were divided and compared according to whether their triglycerides were below 5.56 mmol/L at 48 and 72 h of admission. The patients were divided into control group, insulin group, and low molecular weight heparin (LMWH)+bezafibrate group based on the different methods of lipid-lowering. Propensity score matching (PSM) was employed to balance the baseline characteristics. RESULTS: There was no correlation between the severity of HTG-AP and the triglyceride at admission. The incidence of severity, local complications, and persistent organ failure (POF) were significantly decreased in patients with 48-h and 72-h triglyceride attainment. Following PSM, the incidence of infectious pancreatic necrosis (IPN) (3.3% vs. 13.3%) was significantly reduced in insulin group compared with control group (p < .05). Compared with control group, LMWH + bezafibrate group had higher lipid reduction efficiency, and the incidence of IPN (0.9% vs. 10.1%) and POF (8.3% vs. 19.3%) was significantly decreased (p < .05). There was no significant difference in the efficiency of lipid-lowering, complications, and POF between LMWH + bezafibrate group and insulin group (p > .05). CONCLUSION: The severity of HTG-AP is not associated with the triglyceride levels at admission. However, rapid reduction of triglyceride levels can lower the incidence of local complications and respiratory failure. Compared with conservative treatment, insulin and LMWH + bezafibrate can both reduce the incidence of IPN in patients with HTG-AP.


Subject(s)
Bezafibrate , Heparin, Low-Molecular-Weight , Hypertriglyceridemia , Hypolipidemic Agents , Pancreatitis , Propensity Score , Triglycerides , Humans , Male , Female , Retrospective Studies , Triglycerides/blood , Hypertriglyceridemia/drug therapy , Hypertriglyceridemia/blood , Hypertriglyceridemia/complications , Middle Aged , Pancreatitis/blood , Pancreatitis/drug therapy , Adult , Hypolipidemic Agents/therapeutic use , Heparin, Low-Molecular-Weight/therapeutic use , Bezafibrate/therapeutic use , Insulin/blood , Insulin/therapeutic use , Prognosis , Aged , Severity of Illness Index
19.
Article in English | MEDLINE | ID: mdl-38884920

ABSTRACT

PURPOSE: Aging contributes significantly to cardiovascular diseases and cardiac dysfunction, leading to the upregulation of matrix metalloproteinase-9 (MMP-9) in the heart and a significant decrease in hydrogen sulfide (H2S) content, coupled with impaired cardiac diastolic function. This study explores whether supplementing exogenous hydrogen sulfide during aging ameliorates the decline in H2S concentration in the heart, suppresses MMP-9 expression, and improves the age-associated impairment in cardiac morphology and function. METHODS: We collected plasma from healthy individuals of different ages to determine the relationship between aging and H2S and MMP-9 levels through Elisa detection and liquid chromatography-tandem mass spectrometry (LC/MC) detection of plasma H2S content. Three-month-old mice were selected as the young group, while 18-month-old mice were selected as the old group, and sodium hydrosulfide (NaHS) was injected intraperitoneally from 15 months old until 18 months old as the old + NaHS group. Plasma MMP-9 content was detected using Elisa, plasma H2S content, cardiac H2S content, and cystathionine gamma-lyase (CSE) activity were detected using LC/MC, and cardiac function was detected using echocardiography. Heart structure was assessed using hematoxylin and eosin staining, Masone staining was used to detect the degree of cardiac fibrosis, while western blot was used to detect the expression of MMP-9, CSE, and aging marker proteins. Knockdown of MMP-9 and CSE in H9c2 cells using small interfering RNA was carried out to determine the upstream-downstream relationship between MMP-9 and CSE. RESULTS: H2S content in the plasma of healthy individuals decreases with escalating age, whereas MMP-9 level rises with age progression. Aging leads to a decrease in H2S levels in the heart and plasma of mice, severe impairment of cardiac diastolic function, interstitial relaxation, and fibrosis of the heart. Supplementing with exogenous H2S can improve these phenomena. CONCLUSION: H2S maintains the structure and function of the heart by inhibiting the expression of MMP-9 during the aging process.

20.
Phys Chem Chem Phys ; 26(7): 6292-6299, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38305764

ABSTRACT

Two-dimensional material-supported single metal atom catalysts have been extensively studied and proved effective in electrocatalytic reactions in recent years. In this work, we systematically investigate the OER catalytic properties of single metal atoms supported by the NiN2 monolayer. Several typical transition metals with high single atom catalytic activity, such as Fe, Co, Ru, Rh, Pd, Ir, and Pt, were selected as catalytic active sites. The energy calculations show that transition metal atoms (Fe, Co, Ru, Rh, Pd, Ir, and Pt) are easily embedded in the NiN2 monolayer with Ni vacancies due to the negative binding energy. The calculated OER overpotentials of Fe, Co, Ru, Rh, Pd, Ir and Pt embedded NiN2 monolayers are 0.92 V, 0.47 V, 1.13 V, 0.66 V, 1.25 V, 0.28 V, and 0.94 V, respectively. Compared to the 0.57 V OER overpotential of typical OER noble metal catalysts IrO2, Co@NiN2 and Ir@NiN2 exhibit high OER catalytic activity due to lower overpotential, especially for Ir@NiN2. The high catalytic activity of the Ir embedded NiN2 monolayer can be explained well by the d-band center model. It is found that the adsorption strength of the embedded TM atoms with intermediates follows a linear relationship with their d-band centers. Besides, the overpotential of the Ir embedded NiN2 monolayer can be further reduced to 0.24 V under -2% biaxial strain. Such findings are expected to be employed in more two-dimensional material-supported single metal atom catalyzed reactions.

SELECTION OF CITATIONS
SEARCH DETAIL