Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
Proc Natl Acad Sci U S A ; 120(44): e2304966120, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37878720

ABSTRACT

Messenger RNA (mRNA)-based therapeutics are transforming the landscapes of medicine, yet targeted delivery of mRNA to specific cell types while minimizing off-target accumulation remains challenging for mRNA-mediated therapy. In this study, we report an innovative design of a cationic lipid- and hyaluronic acid-based, dual-targeted mRNA nanoformulation that can display the desirable stability and efficiently transfect the targeted proteins into lung tissues. More importantly, the optimized dual-targeted mRNA nanoparticles (NPs) can not only accumulate primarily in lung tumor cells and inflammatory macrophages after inhalation delivery but also efficiently express any desirable proteins (e.g., p53 tumor suppressor for therapy, as well as luciferase and green fluorescence protein for imaging as examples in this study) and achieve efficacious lung tissue transfection in vivo. Overall, our findings provide proof-of-principle evidence for the design and use of dual-targeted mRNA NPs in homing to specific cell types to up-regulate target proteins in lung tissues, which may hold great potential for the future development of mRNA-based inhaled medicines or vaccines in treating various lung-related diseases.


Subject(s)
Nanoparticles , Neoplasms , RNA, Messenger/genetics , Transfection , Lung , Macrophages
2.
Chem Soc Rev ; 53(7): 3273-3301, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38507263

ABSTRACT

Oral diseases are prevalent but challenging diseases owing to the highly movable and wet, microbial and inflammatory environment. Polymeric materials are regarded as one of the most promising biomaterials due to their good compatibility, facile preparation, and flexible design to obtain multifunctionality. Therefore, a variety of strategies have been employed to develop materials with improved therapeutic efficacy by overcoming physicobiological barriers in oral diseases. In this review, we summarize the design strategies of polymeric biomaterials for the treatment of oral diseases. First, we present the unique oral environment including highly movable and wet, microbial and inflammatory environment, which hinders the effective treatment of oral diseases. Second, a series of strategies for designing polymeric materials towards such a unique oral environment are highlighted. For example, multifunctional polymeric materials are armed with wet-adhesive, antimicrobial, and anti-inflammatory functions through advanced chemistry and nanotechnology to effectively treat oral diseases. These are achieved by designing wet-adhesive polymers modified with hydroxy, amine, quinone, and aldehyde groups to provide strong wet-adhesion through hydrogen and covalent bonding, and electrostatic and hydrophobic interactions, by developing antimicrobial polymers including cationic polymers, antimicrobial peptides, and antibiotic-conjugated polymers, and by synthesizing anti-inflammatory polymers with phenolic hydroxy and cysteine groups that function as immunomodulators and electron donors to reactive oxygen species to reduce inflammation. Third, various delivery systems with strong wet-adhesion and enhanced mucosa and biofilm penetration capabilities, such as nanoparticles, hydrogels, patches, and microneedles, are constructed for delivery of antibiotics, immunomodulators, and antioxidants to achieve therapeutic efficacy. Finally, we provide insights into challenges and future development of polymeric materials for oral diseases with promise for clinical translation.


Subject(s)
Anti-Infective Agents , Polymers , Polymers/chemistry , Biocompatible Materials/chemistry , Anti-Inflammatory Agents , Immunologic Factors
3.
Nano Lett ; 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39058893

ABSTRACT

Chronic diabetic wound patients usually show high glucose levels and systemic immune disorder, resulting in high reactive oxygen species (ROS) levels and immune cell dysfunction, prolonged inflammation, and delayed wound healing. Herein, we prepared an antioxidant and immunomodulatory polymer vesicle for diabetic wound treatment. This vesicle is self-assembled from poly(ε-caprolactone)36-block-poly[lysine4-stat-(lysine-mannose)22-stat-tyrosine)16] ([PCL36-b-P[Lys4-stat-(Lys-Man)22-stat-Tyr16]). Polytyrosine is an antioxidant polypeptide that can scavenge ROS. d-Mannose was introduced to afford immunomodulatory functions by promoting macrophage transformation and Treg cell activation through inhibitory cytokines. The mice treated with polymer vesicles showed 23.7% higher Treg cell levels and a 91.3% higher M2/M1 ratio than those treated with PBS. Animal tests confirmed this vesicle accelerated healing and achieved complete healing of S. aureus-infected diabetic wounds within 8 days. Overall, this is the first antioxidant and immunomodulatory vesicle for diabetic wound healing by scavenging ROS and regulating immune homeostasis, opening new avenues for effective diabetic wound healing.

4.
Chem Soc Rev ; 51(10): 3828-3845, 2022 May 23.
Article in English | MEDLINE | ID: mdl-35437544

ABSTRACT

The great success achieved by the two highly-effective messenger RNA (mRNA) vaccines during the COVID-19 pandemic highlights the great potential of mRNA technology. Through the evolution of mRNA technology, chemistry has played an important role from mRNA modification to the synthesis of mRNA delivery platforms, which allows various applications of mRNA to be achieved both in vitro and in vivo. In this tutorial review, we provide a summary and discussion on the significant progress of emerging mRNA technologies, as well as the underlying chemical designs and principles. Various nanoparticle (NP)-based delivery strategies including protein-mRNA complex, lipid-based carriers, polymer-based carriers, and hybrid carriers for the efficient delivery of mRNA molecules are presented. Furthermore, typical mRNA delivery platforms for various biomedical applications (e.g., functional protein expression, vaccines, cancer immunotherapy, and genome editing) are highlighted. Finally, our insights into the challenges and future development towards clinical translation of these mRNA technologies are provided.


Subject(s)
COVID-19 , Nanoparticles , COVID-19/therapy , Humans , Immunotherapy , Nanoparticles/chemistry , Pandemics , Proteins , RNA, Messenger/genetics , RNA, Messenger/metabolism
5.
Chem Soc Rev ; 50(4): 2260-2279, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33367452

ABSTRACT

Pnictogens (the non-metal phosphorus, metalloids arsenic and antimony, and metal bismuth) possess diverse chemical characteristics that support the formation of extended molecular structures. As witnessed by the centuries-old (and ongoing) clinical utilities, pnictogen-based compounds have secured their places in history as "magic bullet" therapeutic drugs in medicinal contexts. Moreover, with the development of recent metalloproteomics and bio-coordination chemistry, the pnictogen-based drugs functionally binding to proteins/enzymes in biological systems have been underlaid for "drug repurposing" with promising opportunities. Furthermore, advances in the modern materials science and nonotechnology have stimulated a revolution in other newly discovered forms of pnictogens-phosphorene, arsenene, antimonene, and bismuthine (layered pnictogens). Based on their favorable optoelectronic properties, layered pnictogens have shown dramatic superiority as emerging photonic nanomedicines for the treatment of various diseases. This tutorial review outlines the history and mechanism of action of ancient pnictogen-based drugs (e.g., arsenical compounds in traditional Chinese medicine) and their repurposing into modern therapeutics. Then, the revolutionary use of emerging layered pnictogens as photonic nanomedicines, alongside assessments of their in vivo biosafety, is discussed. Finally, the challenges to further development of pnictogens are set forth and insights for further exploration of their appealing properties are offered. This tutorial review may also provide some deep insights into the fields of integrated traditional Chinese and Western medicines from the perspective of materials science and nanotechnology.


Subject(s)
Antimony/chemistry , Arsenicals/chemistry , Bismuth/chemistry , Nanostructures/chemistry , Pharmaceutical Preparations/chemistry , Phosphorus Compounds/chemistry , Animals , Antimony/pharmacology , Arsenicals/pharmacology , Biocompatible Materials/chemistry , Bismuth/pharmacology , Humans , Immunotherapy , Molecular Structure , Nanomedicine , Optical Devices , Phosphorus Compounds/pharmacology , Phototherapy , Protein Binding , Radiotherapy
6.
Nano Lett ; 21(22): 9706-9714, 2021 11 24.
Article in English | MEDLINE | ID: mdl-34723546

ABSTRACT

RNA interference (RNAi) is a powerful approach in the treatment of various diseases including cancers. The clinical translation of small interfering RNA (siRNA)-based therapy requires safe and efficient delivery vehicles. Here, we report a siRNA nanogels (NG)-based delivery vehicle, which is driven directly by the intercalation between nucleic acid bis-intercalator and siRNA molecules. The intercalation-based siRNA NG exhibits good physiological stability and can enter cells efficiently via different endocytosis pathways. Furthermore, the siRNA NG can not only silence the target genes in vitro but also significantly inhibit the tumor growth in vivo. Therefore, this study provides an intercalation-based strategy for the development of a siRNA delivery platform for cancer therapy. To the best of our knowledge, this is the first report of the intercalation-driven siRNA NG.


Subject(s)
Neoplasms , Humans , Nanogels , Neoplasms/genetics , Neoplasms/therapy , RNA Interference , RNA, Small Interfering/genetics , RNA, Small Interfering/therapeutic use
7.
J Nanobiotechnology ; 19(1): 96, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33794908

ABSTRACT

The development of two-dimensional (2D) monoelemental nanomaterials (Xenes) for biomedical applications has generated intensive interest over these years. In this paper, the biomedical applications using Xene-based 2D nanomaterials formed by group VA (e.g., BP, As, Sb, Bi) and VIA (e.g., Se, Te) are elaborated. These 2D Xene-based theranostic nanoplatforms confer some advantages over conventional nanoparticle-based systems, including better photothermal conversion, excellent electrical conductivity, and large surface area. Their versatile and remarkable features allow their implementation for bioimaging and theranostic purposes. This concise review is focused on the current developments in 2D Xenes formed by Group VA and VIA, covering the synthetic methods and various biomedical applications. Lastly, the challenges and future perspectives of 2D Xenes are provided to help us better exploit their excellent performance and use them in practice.


Subject(s)
Biomedical Technology/methods , Nanostructures/chemistry , Nanotechnology/methods , Theranostic Nanomedicine/methods , Animals , Anti-Bacterial Agents/pharmacology , Biosensing Techniques/methods , Drug Delivery Systems , Electric Conductivity , Humans , Nanoparticles , Nanostructures/therapeutic use , Phototherapy/methods , Precision Medicine
8.
Angew Chem Int Ed Engl ; 60(13): 7155-7164, 2021 03 22.
Article in English | MEDLINE | ID: mdl-33434327

ABSTRACT

Ultrasound (US)-mediated sonodynamic therapy (SDT) has emerged as a superior modality for cancer treatment owing to the non-invasiveness and high tissue-penetrating depth. However, developing biocompatible nanomaterial-based sonosensitizers with efficient SDT capability remains challenging. Here, we employed a liquid-phase exfoliation strategy to obtain a new type of two-dimensional (2D) stanene-based nanosheets (SnNSs) with a band gap of 2.3 eV, which is narrower than those of the most extensively studied nano-sonosensitizers, allowing a more efficient US-triggered separation of electron (e- )-hole (h+ ) pairs for reactive oxygen species (ROS) generation. In addition, we discovered that such SnNSs could also serve as robust near-infrared (NIR)-mediated photothermal therapy (PTT) agents owing to their efficient photothermal conversion, and serve as nanocarriers for anticancer drug delivery owing to the inherent 2D layered structure. This study not only presents general nanoplatforms for SDT-enhanced combination cancer therapy, but also highlights the utility of 2D SnNSs to the field of nanomedicine.


Subject(s)
Biocompatible Materials/chemistry , Drug Delivery Systems , Nanoparticles/chemistry , Neoplasms/therapy , Photothermal Therapy , Sesquiterpenes/chemistry , Ultrasonic Therapy , Combined Modality Therapy , Drug Carriers/chemistry , Humans , Molecular Structure , Nanomedicine , Neoplasms/metabolism , Particle Size , Reactive Oxygen Species/metabolism , Ultrasonic Waves
9.
Angew Chem Int Ed Engl ; 59(45): 19787-19795, 2020 11 02.
Article in English | MEDLINE | ID: mdl-32705745

ABSTRACT

Diabetes mellitus is a lifelong metabolic disease that requires frequent subcutaneous injections of insulin. However, this method of administration can be associated with patient discomfort and local tissue infection. Oral delivery of insulin has been pursued as a more convenient method for diabetes treatment, given its likely superior patient compliance and convenience as well as cost-effectiveness. However, various biological barriers hinder the clinical translation of oral insulin. The rapid development of nanotechnology over the last decade offers great promise in improving the bioavailability of oral insulin. This Minireview provides an overview of biological barriers to oral insulin delivery, summarizes significant technological advances, and outlines future perspectives in oral insulin formulations as well as their hypoglycaemic effects.


Subject(s)
Hypoglycemic Agents/administration & dosage , Insulin/administration & dosage , Administration, Oral , Drug Delivery Systems/methods , Humans
10.
J Am Chem Soc ; 139(22): 7640-7647, 2017 06 07.
Article in English | MEDLINE | ID: mdl-28508651

ABSTRACT

Diabetes mellitus is a chronic, life-threatening illness that affects people of every age and ethnicity. It is a long-term pain for those who are affected and must regulate their blood glucose level by frequent subcutaneous injection of insulin every day. Herein, we propose a noninsulin and antidiabetic drug-free strategy for regulating blood glucose level by a nanosized "sugar sponge" which is a lectin-bound glycopolymersome capable of regulating glucose due to the dynamic recognition between the lectin and different carbohydrates. The glycopolymersome is self-assembled from poly(ethylene oxide)-block-poly[(7-(2-methacryloyloxyethoxy)-4-methylcoumarin)-stat-2-(diethylamino)ethyl methacrylate-stat-(α-d-glucopyranosyl)ethyl methacrylate] [PEO-b-P(CMA-stat-DEA-stat-GEMA)]. The lectin bound in the glycopolymersome has different affinity for the glucose in the blood and the glucosyl group in the glycopolymersome. Therefore, this sugar sponge functions as a glucose storage unit by dynamic sugar replacement: The lectin in the sugar sponge will bind and store the glucose from its surrounding solution when the glucose concentration is too high and will release the glucose when the glucose concentration is too low. In vitro, this sugar-breathing behavior is characterized by a remarkable size change of the sugar sponge due to the swelling/shrinkage at high/low glucose levels, which can be used for blood sugar monitoring. In vivo, this sugar sponge showed an excellent antidiabetic effect for type I diabetic mice within 2 days upon one dose, which is much longer than traditional long-acting insulin. Overall, this concept of "controlling sugar levels with sugar" opens new avenues for regulating the blood glucose level without the involvement of insulin or other antidiabetic drugs.


Subject(s)
Blood Glucose , Lectins/chemistry , Methacrylates/chemistry , Animals , Diabetes Mellitus, Experimental , Humans , Liver/chemistry , Liver/cytology , Microscopy, Electron, Transmission , Models, Molecular
11.
Bioconjug Chem ; 26(4): 725-34, 2015 Apr 15.
Article in English | MEDLINE | ID: mdl-25721382

ABSTRACT

Cancer patients after chemotherapy may also suffer bacterial attack due to badly decreased immunity. Although with high bacterial efficacy, conventional antibiotics are prone to inducement of drug resistance and may be not suitable for some cancer patients. In contrast, antibacterial peptides are highly effective in inhibiting bacteria without inducing resistance in pathogens. Presented in this article is a novel kind of highly effective antibacterial peptide-based biocompatible and biodegradable block copolymer vesicle. The copolymer is poly(ε-caprolactone)-block-poly[phenylalanine-stat-lysine-stat-(lysine-folic acid)] [PCL19-b-poly[Phe12-stat-Lys9-stat-(Lys-FA)6]], which can self-assemble into vesicles in aqueous solution. The biocompatible and biodegradable PCL forms the vesicle membrane, whereas the poly[Phe12-stat-Lys9-stat-(Lys-FA)6] block constitutes the vesicle coronas. Compared to the individual polymer chains, the vesicles showed enhanced antibacterial activities against both Gram-positive and Gram-negative bacteria (16 µg mL(-1)) due to the locally concentrated antibacterial poly[Phe12-stat-Lys9-stat-(Lys-FA)6] coronas, which may avoid the inducement of antibiotic-resistant bacteria and side effects of multidrug interactions. Furthermore, folic acid is introduced into the vesicle coronas for potential further applications such as cancer-targeted drug delivery. Moreover, the amino groups can be further functionalized when necessary. This low cytotoxic, biocompatible, biodegradable, and antibacterial vesicle (without antibiotic resistance) may benefit patients after tumor surgery because it is highly anti-inflammatory, and it is possible to deliver the anticancer drug to tumor cells simultaneously.


Subject(s)
Anti-Bacterial Agents/chemical synthesis , Antimicrobial Cationic Peptides/chemistry , Drug Carriers/chemical synthesis , Folic Acid/chemistry , Polyesters/chemistry , Anti-Bacterial Agents/pharmacology , Antibiotics, Antineoplastic/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Biocompatible Materials , Cell Line, Tumor , Cell Proliferation/drug effects , Doxorubicin/pharmacology , Drug Carriers/pharmacology , Drug Liberation , Escherichia coli/drug effects , Escherichia coli/growth & development , Hepatocytes/drug effects , Hepatocytes/pathology , Humans , Kinetics , Staphylococcus aureus/drug effects , Staphylococcus aureus/growth & development , Surface Properties
12.
Nat Nanotechnol ; 2024 May 23.
Article in English | MEDLINE | ID: mdl-38783058

ABSTRACT

Therapeutic genome editing of haematopoietic stem cells (HSCs) would provide long-lasting treatments for multiple diseases. However, the in vivo delivery of genetic medicines to HSCs remains challenging, especially in diseased and malignant settings. Here we report on a series of bone-marrow-homing lipid nanoparticles that deliver mRNA to a broad group of at least 14 unique cell types in the bone marrow, including healthy and diseased HSCs, leukaemic stem cells, B cells, T cells, macrophages and leukaemia cells. CRISPR/Cas and base editing is achieved in a mouse model expressing human sickle cell disease phenotypes for potential foetal haemoglobin reactivation and conversion from sickle to non-sickle alleles. Bone-marrow-homing lipid nanoparticles were also able to achieve Cre-recombinase-mediated genetic deletion in bone-marrow-engrafted leukaemic stem cells and leukaemia cells. We show evidence that diverse cell types in the bone marrow niche can be edited using bone-marrow-homing lipid nanoparticles.

13.
Science ; 384(6701): 1196-1202, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38870301

ABSTRACT

In vivo genome correction holds promise for generating durable disease cures; yet, effective stem cell editing remains challenging. In this work, we demonstrate that optimized lung-targeting lipid nanoparticles (LNPs) enable high levels of genome editing in stem cells, yielding durable responses. Intravenously administered gene-editing LNPs in activatable tdTomato mice achieved >70% lung stem cell editing, sustaining tdTomato expression in >80% of lung epithelial cells for 660 days. Addressing cystic fibrosis (CF), NG-ABE8e messenger RNA (mRNA)-sgR553X LNPs mediated >95% cystic fibrosis transmembrane conductance regulator (CFTR) DNA correction, restored CFTR function in primary patient-derived bronchial epithelial cells equivalent to Trikafta for F508del, corrected intestinal organoids and corrected R553X nonsense mutations in 50% of lung stem cells in CF mice. These findings introduce LNP-enabled tissue stem cell editing for disease-modifying genome correction.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator , Cystic Fibrosis , Gene Editing , Liposomes , Lung , Nanoparticles , Stem Cells , Animals , Humans , Mice , CRISPR-Cas Systems , Cystic Fibrosis/therapy , Cystic Fibrosis/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Epithelial Cells/metabolism , Genetic Therapy/methods , Lung/metabolism , Organoids , Stem Cells/metabolism
14.
Med ; 4(3): 147-167, 2023 03 10.
Article in English | MEDLINE | ID: mdl-36549297

ABSTRACT

With the integration of nanotechnology into the medical field at large, great strides have been made in the development of nanomedicines for tackling different diseases, including cancers. To date, various cancer nanomedicines have demonstrated success in preclinical studies, improving therapeutic outcomes, prolonging survival, and/or decreasing side effects. However, the translation from bench to bedside remains challenging. While a number of nanomedicines have entered clinical trials, only a few have been approved for clinical applications. In this review, we highlight the most recent progress in cancer nanomedicine, discuss current clinical advances and challenges for the translation of cancer nanomedicines, and provide our viewpoints on accelerating clinical translation. We expect this review to benefit the future development of cancer nanotherapeutics specifically from the clinical perspective.


Subject(s)
Nanoparticles , Neoplasms , Humans , Nanomedicine , Neoplasms/therapy , Nanotechnology , Forecasting
15.
Adv Sci (Weinh) ; 10(16): e2207439, 2023 06.
Article in English | MEDLINE | ID: mdl-37066758

ABSTRACT

PROteolysis TArgeting Chimeras (PROTACs) are an emerging class of promising therapeutic modalities that selectively degrade intracellular proteins of interest by hijacking the ubiquitin-proteasome system. However, the lack of techniques to efficiently transport these degraders to targeted cells and consequently the potential toxicity of PROTACs limit their clinical applications. Here, a strategy of nanoengineered PROTACs, that is, Nano-PROTACs, is reported, which improves the bioavailability of PROTACs and maximizes their capacity to therapeutically degrade intracellular oncogenic proteins for tumor therapy. The Nano-PROTACs are developed by encapsulating PROTACs in glutathione (GSH)-responsive poly(disulfide amide) polymeric (PDSA) nanoparticles and show that ARV@PDSA Nano-PROTAC, nanoengineered BRD4 degrader ARV-771, improves BRD4 protein degradation and decreases the downstream oncogene c-Myc expression. Benefiting from the GSH-scavenging ability to amply the c-Myc-related ferroptosis and cell cycle arrest, this ARV@PDSA Nano-PROTACs strategy shows superior anti-tumor efficacy with a low dose administration and good biocompatibility in vivo. The findings reveal the potential of the Nano-PROTACs strategy to treat a broad range of diseases by dismantling associated pathogenic proteins.


Subject(s)
Nanoparticles , Nuclear Proteins , Proteolysis , Nuclear Proteins/metabolism , Transcription Factors/metabolism
16.
Nat Commun ; 14(1): 7322, 2023 11 11.
Article in English | MEDLINE | ID: mdl-37951948

ABSTRACT

Approximately 10% of Cystic Fibrosis (CF) patients, particularly those with CF transmembrane conductance regulator (CFTR) gene nonsense mutations, lack effective treatments. The potential of gene correction therapy through delivery of the CRISPR/Cas system to CF-relevant organs/cells is hindered by the lack of efficient genome editor delivery carriers. Herein, we report improved Lung Selective Organ Targeting Lipid Nanoparticles (SORT LNPs) for efficient delivery of Cas9 mRNA, sgRNA, and donor ssDNA templates, enabling precise homology-directed repair-mediated gene correction in CF models. Optimized Lung SORT LNPs deliver mRNA to lung basal cells in Ai9 reporter mice. SORT LNP treatment successfully corrected the CFTR mutations in homozygous G542X mice and in patient-derived human bronchial epithelial cells with homozygous F508del mutations, leading to the restoration of CFTR protein expression and chloride transport function. This proof-of-concept study will contribute to accelerating the clinical development of mRNA LNPs for CF treatment through CRISPR/Cas gene correction.


Subject(s)
Cystic Fibrosis , Humans , Mice , Animals , Cystic Fibrosis/therapy , Cystic Fibrosis/drug therapy , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , CRISPR-Cas Systems/genetics , RNA, Guide, CRISPR-Cas Systems , Lung/metabolism , RNA, Messenger/genetics , RNA, Messenger/therapeutic use
17.
Nat Protoc ; 17(3): 748-780, 2022 03.
Article in English | MEDLINE | ID: mdl-35121853

ABSTRACT

Macrophages in atherosclerotic lesions promote plaque progression and are an attractive therapeutic target in cardiovascular research. Here we present a protocol for synthesis of small interfering RNA (siRNA) nanoparticles (NP) that target lesional macrophages as a potential treatment for atherosclerosis. Ca2+/calmodulin-dependent protein kinase γ (CaMKIIγ) activity in macrophages of advanced human and mouse atherosclerotic plaques drives necrosis by downregulating the expression of the efferocytosis receptor MerTK. Therefore, selective inhibition of CaMKIIγ in lesional macrophages holds great promise for the treatment of advanced atherosclerosis. We recently developed a siRNA NP platform that can selectively silence CaMKIIγ in macrophages, resulting in increased plaque stability. We provide a detailed protocol for the synthesis of NP components, the preparation and characterization (physicochemical and in vitro) of siRNA NPs, and the evaluation of in vivo therapeutic effects of siRNA NPs and their biocompatibility in atherosclerotic mice. Our siRNA-loaded polymer-lipid hybrid NPs are constructed via a robust self-assembly method, exhibiting excellent in vivo features for systemic siRNA delivery. Following this protocol, it takes 3-5 d to prepare the siRNA NPs, 8-10 d to characterize the NPs and 4-5 weeks to evaluate their therapeutic effects in established atherosclerotic mice. By changing the RNA molecules loaded in the NPs, lesional macrophages can be targeted for the exploration and validation of new targets/pathways in atherosclerosis.


Subject(s)
Atherosclerosis , Nanoparticles , Plaque, Atherosclerotic , Animals , Atherosclerosis/drug therapy , Atherosclerosis/therapy , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Nanoparticles/chemistry , Plaque, Atherosclerotic/genetics , Plaque, Atherosclerotic/metabolism , Plaque, Atherosclerotic/therapy , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism
18.
Nat Commun ; 12(1): 4777, 2021 08 06.
Article in English | MEDLINE | ID: mdl-34362904

ABSTRACT

The modulation of intracellular reactive oxygen species (ROS) levels is crucial for cellular homeostasis and determination of cellular fate. A sublethal level of ROS sustains cell proliferation, differentiation and promotes tumor metastasis, while a drastic ROS burst directly induces apoptosis. Herein, surface-oxidized arsenene nanosheets (As/AsxOy NSs) with type II heterojunction are fabricated with efficient ·O2- and 1O2 production and glutathione consumption through prolonging the lifetime of photo-excited electron-hole pairs. Moreover, the portion of AsxOy with oxygen vacancies not only catalyzes a Fenton-like reaction, generating ·OH and O2 from H2O2, but also inactivates main anti-oxidants to cut off the "retreat routes" of ROS. After polydopamine (PDA) and cancer cell membrane (M) coating, the engineered As/AsxOy@PDA@M NSs serve as an intelligent theranostic platform with active tumor targeting and long-term blood circulation. Given its narrow-band-gap-enabled in vivo fluorescence imaging properties, As/AsxOy@PDA@M NSs could be applied as an imaging-guided non-invasive and real-time nanomedicine for cancer therapy.


Subject(s)
Nanomedicine , Neoplasms/drug therapy , Reactive Oxygen Species/metabolism , A549 Cells , Animals , Apoptosis , Arsenic , Catalysis , Cell Line, Tumor , Glutathione/metabolism , Homeostasis , Humans , Hydrogen Peroxide , Indoles , MCF-7 Cells , Mice , Mice, Inbred C57BL , Nanoparticles , Oxygen , Photochemotherapy/methods , Photosensitizing Agents/therapeutic use , Polymers , Precision Medicine , Theranostic Nanomedicine/methods
19.
Acta Pharm Sin B ; 11(11): 3447-3464, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34900529

ABSTRACT

The field of two-dimensional (2D) nanomaterial-based cancer immunotherapy combines research from multiple subdisciplines of material science, nano-chemistry, in particular nano-biological interactions, immunology, and medicinal chemistry. Most importantly, the "biological identity" of nanomaterials governed by bio-molecular corona in terms of bimolecular types, relative abundance, and conformation at the nanomaterial surface is now believed to influence blood circulation time, bio-distribution, immune response, cellular uptake, and intracellular trafficking. A better understanding of nano-bio interactions can improve utilization of 2D nano-architectures for cancer immunotherapy and immunotheranostics, allowing them to be adapted or modified to treat other immune dysregulation syndromes including autoimmune diseases or inflammation, infection, tissue regeneration, and transplantation. The manuscript reviews the biological interactions and immunotherapeutic applications of 2D nanomaterials, including understanding their interactions with biological molecules of the immune system, summarizes and prospects the applications of 2D nanomaterials in cancer immunotherapy.

20.
Nat Commun ; 12(1): 1124, 2021 02 18.
Article in English | MEDLINE | ID: mdl-33602928

ABSTRACT

Clay-based nanomaterials, especially 2:1 aluminosilicates such as vermiculite, biotite, and illite, have demonstrated great potential in various fields. However, their characteristic sandwiched structures and the lack of effective methods to exfoliate two-dimensional (2D) functional core layers (FCLs) greatly limit their future applications. Herein, we present a universal wet-chemical exfoliation method based on alkali etching that can intelligently "capture" the ultrathin and biocompatible FCLs (MgO and Fe2O3) sandwiched between two identical tetrahedral layers (SiO2 and Al2O3) from vermiculite. Without the sandwich structures that shielded their active sites, the obtained FCL nanosheets (NSs) exhibit a tunable and appropriate electron band structure (with the bandgap decreased from 2.0 eV to 1.4 eV), a conductive band that increased from -0.4 eV to -0.6 eV, and excellent light response characteristics. The great properties of 2D FCL NSs endow them with exciting potential in diverse applications including energy, photocatalysis, and biomedical engineering. This study specifically highlights their application in cancer theranostics as an example, potentially serving as a prelude to future extensive studies of 2D FCL NSs.


Subject(s)
Aluminum Silicates/chemistry , Nanoparticles/chemistry , Neoplasms/diagnosis , Neoplasms/therapy , Theranostic Nanomedicine , Animals , Antineoplastic Agents/pharmacology , Hep G2 Cells , Humans , Light , Mice, Inbred C57BL , Nanoparticles/ultrastructure , Neoplasms/pathology , Photochemotherapy , Photothermal Therapy , Polyethylene Glycols/chemistry , Reactive Oxygen Species/chemistry , Temperature , Tissue Distribution/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL