Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 78
Filter
1.
Nature ; 624(7992): 557-563, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37913815

ABSTRACT

Perovskite solar cells with the formula FA1-xCsxPbI3, where FA is formamidinium, provide an attractive option for integrating high efficiency, durable stability and compatibility with scaled-up fabrication. Despite the incorporation of Cs cations, which could potentially enable a perfect perovskite lattice1,2, the compositional inhomogeneity caused by A-site cation segregation is likely to be detrimental to the photovoltaic performance of the solar cells3,4. Here we visualized the out-of-plane compositional inhomogeneity along the vertical direction across perovskite films and identified the underlying reasons for the inhomogeneity and its potential impact for devices. We devised a strategy using 1-(phenylsulfonyl)pyrrole to homogenize the distribution of cation composition in perovskite films. The resultant p-i-n devices yielded a certified steady-state photon-to-electron conversion efficiency of 25.2% and durable stability.

2.
Nano Lett ; 24(18): 5513-5520, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38634689

ABSTRACT

P-type self-doping is known to hamper tin-based perovskites for developing high-performance solar cells by increasing the background current density and carrier recombination processes. In this work, we propose a gradient homojunction structure with germanium doping that generates an internal electric field across the perovskite film to deplete the charge carriers. This structure reduces the dark current density of perovskite by over 2 orders of magnitude and trap density by an order of magnitude. The resultant tin-based perovskite solar cells exhibit a higher power conversion efficiency of 13.3% and excellent stability, maintaining 95% and 85% of their initial efficiencies after 250 min of continuous illumination and 3800 h of storage, respectively. We reveal the homojunction formation mechanism using density functional theory calculations and molecular level characterizations. Our work provides a reliable strategy for controlling the spatial energy levels in tin perovskite films and offers insights into designing intriguing lead-free perovskite optoelectronics.

3.
Opt Express ; 31(24): 39638-39646, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-38041280

ABSTRACT

In this work, periodic rectangular arrays were fabricated on quartz substrates using the femtosecond laser ablation technique, on which inorganic cesium lead bromide thin films were grown using the spin coating method. Enhanced photoluminescence emission was investigated using a homebuilt confocal microscope, and increased light absorption due to the engineered structures was also measured. High-performance amplified spontaneous emission with typical narrow lasing emission peaks excited using a nanosecond laser centered at 266 nm was obtained. This work provides a method to modify the performance of optoelectrical devices, which helps develop light-emitting diodes, photodetectors, solar cells, and lasers.

4.
Opt Express ; 31(20): 32263-32272, 2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37859033

ABSTRACT

GaN is a one of promising materials for nonlinear optical applications. In this work, the broadband nonlinear optical response and potential applications for all-optical switching (AOS) are evaluated in low-defect GaN. In the pump-probe experiments, the ultrafast optical switching times are consistent with pulse widths accompanied with relative weak free-carrier absorption response, and the modulation contrast can reach ∼60% by varying the polarization orientations between the pump and probe lights. In the visible region, the broadband two-photon absorption effect exhibits excellent values for the imaginary part of figure of merit (FOM), providing the possibility of AOS based on nonlinear absorption (magnitude). While in the near-infrared region and under the presence of three-photon absorption, not only the real part of FOM based on Kerr effect is evaluated, but also the maximum light intensity for the usage of AOS based on nonlinear refraction (phase) is determined. The broadband nonlinear optical and AOS features in low-defect GaN will be highly favorable for the applications in the field of integrated nonlinear photonics and photonic circuits.

5.
Angew Chem Int Ed Engl ; 62(5): e202213932, 2023 Jan 26.
Article in English | MEDLINE | ID: mdl-36353929

ABSTRACT

Ion migration is a notorious phenomenon observed in ionic perovskite materials. It causes several severe issues in perovskite optoelectronic devices such as instability, current hysteresis, and phase segregation. Here, we report that, in contrast to lead halide perovskites (LHPs), no ion migration or phase segregation was observed in tin halide perovskites (THPs) under illumination or an electric field. The origin is attributed to a much stronger Sn-halide bond and higher ion migration activation energy (Ea ) in THPs, which remain nearly constant under illumination. We further figured out the threshold Ea for the absence of ion migration to be around 0.65 eV using the CsSny Pb1-y (I0.6 Br0.4 )3 system whose Ea varies with Sn ratios. Our work shows that ion migration does not necessarily exist in all perovskites and suggests metallic doping to be a promising way of stopping ion migration and improving the intrinsic stability of perovskites.

6.
Nano Lett ; 21(19): 8426-8432, 2021 Oct 13.
Article in English | MEDLINE | ID: mdl-34525802

ABSTRACT

Photon recycling (PR), reabsorption and reemission of photons, can randomize the propagation direction of photons trapped in the waveguide mode and potentially increase the outcoupling efficiency of perovskite light-emitting diodes (PeLEDs). However, the contribution of PR in PeLEDs has not been experimentally quantified in real device structures. Here, we show that, with the PR effect, the external quantum efficiency (EQE) of PeLEDs remains above 15% with extraordinary thick perovskite layers up to 2200 nm, which is much higher than the outcoupling efficiency (4.3%) of the thick emissive layer device with an emission zone near the TPBi layer without PR. We designed monolithic device structures to experimentally quantify the PR contribution under device working conditions and reveal that the PR can contribute 2.4%-40.4% of the total emission in PeLEDs depending on film thickness. This work provides an important way of manipulation and quantification of PR contribution in perovskite optoelectronic devices.

7.
Nano Lett ; 17(11): 6863-6869, 2017 11 08.
Article in English | MEDLINE | ID: mdl-28968126

ABSTRACT

One merit of organic-inorganic hybrid perovskites is their tunable bandgap by adjusting the halide stoichiometry, an aspect critical to their application in tandem solar cells, wavelength-tunable light emitting diodes (LEDs), and lasers. However, the phase separation of mixed-halide perovskites caused by light or applied bias results in undesirable recombination at iodide-rich domains, meaning open-circuit voltage (VOC) pinning in solar cells and infrared emission in LEDs. Here, we report an approach to suppress halide redistribution by self-assembled long-chain organic ammonium capping layers at nanometer-sized grain surfaces. Using the stable mixed-halide perovskite films, we are able to fabricate efficient and wavelength-tunable perovskite LEDs from infrared to green with high external quantum efficiencies of up to 5%, as well as linearly tuned VOC from 1.05 to 1.45 V in solar cells.

8.
Parasitol Res ; 116(5): 1515-1522, 2017 May.
Article in English | MEDLINE | ID: mdl-28378195

ABSTRACT

Ostertagiosis remains an economically important parasitic disease in cattle in the temperate regions of the world. Repeated exposures to Ostertagia ostertagi in calves cause significant pathology in the abomasum but elicit little protective immunity. The larvae use the host's gastric glands as a niche for development, where the parasite completes its parasitic stages, while in the gastric glands, the larvae must down-regulate the host inflammatory immune responses. Annexin (ANX) A1, commonly found in most eukaryotes, is heavily involved in controlling anti-inflammatory responses by binding receptors on leukocytes. We hypothesized, therefore, that parasite proteins of the ANX family may be involved in host-parasite interactions during ostertagiosis. BLASTN search with the bovine ANXA1 identified two families of Oos-ANX like proteins (Oos-ANXL), each of which was highly conserved at the genetic level and identical at the amino acid sequence level. Oos-ANXL-1 is encoded by two transcripts and Oos-ANXL-2 by 20 transcripts. The present study characterized one Oos-ANXL, representing the most abundant Oos-ANXL, which was further defined as Oost-ANXL-2.1. Oos-ANXL-2.1 with a coding sequence of 519 bp was PCR-amplified, cloned, and expressed. Oos-ANXL-2.1 was immunolocalized to both L3 and adult, but not L4. The staining appeared to be associated with the gut and hypodermis in L3, but it was specifically localized to the hypodermis in adult worms. Western blots detected three protein bands in parasite lysates using anti-recombinant Oos-ANXL-2.1 antibody. Integrated optical density for each of the 3 Oos-ANXL-2s or the total Oos-ANXL-2s detected by Western blots (P < 0.05) was higher in adult worms than in L3 or L4. The results indicate that the production of Oos-ANXL-2s is developmentally regulated and most abundant in the adult worm. This rather large family of proteins could be a potential vaccine target against O. ostertagi infection and warrants further investigation.


Subject(s)
Annexin A1/metabolism , Annexin A2/immunology , Cattle Diseases/parasitology , Host-Parasite Interactions , Ostertagia/embryology , Ostertagiasis/veterinary , Abomasum/parasitology , Amino Acid Sequence/genetics , Animals , Annexin A1/genetics , Annexin A2/genetics , Cattle , Gastric Mucosa/parasitology , Larva/metabolism , Ostertagia/physiology , Protein Binding , Recombinant Proteins/metabolism
9.
Biochem Biophys Res Commun ; 473(4): 1255-1260, 2016 05 13.
Article in English | MEDLINE | ID: mdl-27084449

ABSTRACT

Adoptive cell transfer therapy (ACT) is one of the most promising immunotherapies against cancer, using tumor-infiltrating lymphocytes (TILs) expanded in vitro. Tumor-infiltrating cytotoxic T lymphocytes (TICTLs) play a prominent role in cancer control. TILs terminally differentiate in response to immunosuppressive environments within tumors, and thus are slow to expand and challenging to maintain both in vitro and in patients. To reverse this exhaustion, we utilize a nuclear protein delivery system that exposes TICTLs to the SOX2, Oct-4, and NANOG (SON) proteins. Unlike activated naïve CTLs (effector CTLs), TICTLs respond favorably to SON treatment, exhibiting steady proliferation and extended survivability independent of cytokine and antigen stimulation. Though TICTLs treated with SON (STICTLs) still express T cell receptors as well as other critical downstream components, they are unresponsive to antigen challenge, suggesting that SON treatment regresses TICTLs into a state similar to that of an early double negative T cell. Our findings indicate the TICTL response to SON proteins is unique when compared to effector CTLs, suggesting TICTLs may be sensitive to regulation by other lineage-specific transcription factors and opening a promising new avenue into cancer immunotherapy. To our knowledge, this is the first report on lineage reprogramming of TILs using protein stem cell transcription factors delivered directly to the nucleus.


Subject(s)
Immunotherapy, Adoptive/methods , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/transplantation , Nanog Homeobox Protein/immunology , Octamer Transcription Factor-3/immunology , SOXB1 Transcription Factors/immunology , Animals , Cells, Cultured , Mice , Mice, Transgenic , T-Lymphocytes/immunology , T-Lymphocytes/transplantation
10.
Nat Mater ; 14(2): 193-8, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25485985

ABSTRACT

Organolead trihalide perovskite (OTP) materials are emerging as naturally abundant materials for low-cost, solution-processed and highly efficient solar cells. Here, we show that, in OTP-based photovoltaic devices with vertical and lateral cell configurations, the photocurrent direction can be switched repeatedly by applying a small electric field of <1 V µm(-1). The switchable photocurrent, generally observed in devices based on ferroelectric materials, reached 20.1 mA cm(-2) under one sun illumination in OTP devices with a vertical architecture, which is four orders of magnitude larger than that measured in other ferroelectric photovoltaic devices. This field-switchable photovoltaic effect can be explained by the formation of reversible p-i-n structures induced by ion drift in the perovskite layer. The demonstration of switchable OTP photovoltaics and electric-field-manipulated doping paves the way for innovative solar cell designs and for the exploitation of OTP materials in electrically and optically readable memristors and circuits.

11.
Small ; 11(18): 2164-9, 2015 May 13.
Article in English | MEDLINE | ID: mdl-25641931

ABSTRACT

The nonexcitonic character for organometal trihalide perovskites is demonstrated by examining the field-dependent exciton dissociation behavior. It is found that photogenerated excitons can be effectively dissociated into free charges inside perovskite without the assistance of charge extraction layer or external field, which is a stark contrast to the charge-separation behavior in excitonic materials in the same photovoltaic operation system.

12.
Phys Chem Chem Phys ; 17(2): 896-902, 2015 Jan 14.
Article in English | MEDLINE | ID: mdl-25407902

ABSTRACT

The electronic properties of interfaces formed between Au and organometal triiodide perovskite (CH3NH3PbI3) are investigated using ultraviolet photoemission spectroscopy (UPS), inverse photoemission spectroscopy (IPES) and X-ray photoemission spectroscopy (XPS). It is found that the CH3NH3PbI3 film coated onto the substrate of poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS)/indium tin oxide (ITO) by a two-step method presents n-type semiconductor behavior, with a band gap of 1.7 eV and a valence band (VB) edge of 1.0 eV below the Fermi energy (EF). An interface dipole of 0.1 eV is observed at the CH3NH3PbI3/Au interface. The energy levels of CH3NH3PbI3 shift upward by ca. 0.4 eV with an Au coverage of 64 Å upon it, resulting in band bending, hence a built-in field in CH3NH3PbI3 that encourages hole transport to the interface. Hole accumulation occurs in the vicinity of the interface, facilitating the hole transfer from CH3NH3PbI3 to Au. Furthermore, the shift of the VB maximum of CH3NH3PbI3 toward the EF indicates a decrease of energy loss as holes transfer from CH3NH3PbI3 to Au.

13.
Proc Natl Acad Sci U S A ; 109(6): 2072-7, 2012 Feb 07.
Article in English | MEDLINE | ID: mdl-22308317

ABSTRACT

The ability to induce humoral and cellular immunity via antigen delivery through the unbroken skin (epicutaneous immunization, EPI) has immediate relevance for vaccine development. However, it is unclear which adjuvants induce protective memory CD8 T-cell responses by this route, and the molecular and cellular requirements for priming through intact skin are not defined. We report that cholera toxin (CT) is superior to other adjuvants in its ability to prime memory CD8 T cells that control bacterial and viral challenges. Epicutaneous immunization with CT does not require engagement of classic toll-like receptor (TLR) and inflammasome pathways and, surprisingly, is independent of skin langerin-expressing cells (including Langerhans cells). However, CT adjuvanticity required type-I IFN sensitivity, participation of a Batf3-dependent dendritic cell (DC) population and engagement of CT with suitable gangliosides. Chemoenzymatic generation of CT-antigen fusion proteins led to efficient priming of the CD8 T-cell responses, paving the way for development of this immunization strategy as a therapeutic option.


Subject(s)
Adjuvants, Immunologic/metabolism , CD8-Positive T-Lymphocytes/immunology , Cholera Toxin/administration & dosage , Cholera Toxin/immunology , Signal Transduction/drug effects , Vaccination , Administration, Cutaneous , Animals , Antigens/immunology , Antigens, Surface/metabolism , Basic-Leucine Zipper Transcription Factors/metabolism , CD8-Positive T-Lymphocytes/drug effects , Cells, Cultured , G(M1) Ganglioside/immunology , Immunologic Memory/drug effects , Interferon Type I/immunology , Lectins, C-Type/metabolism , Mannose-Binding Lectins/metabolism , Mice , Mice, Inbred C57BL , Oligodeoxyribonucleotides/pharmacology , Repressor Proteins/metabolism , Signal Transduction/immunology , Toll-Like Receptors/immunology
14.
Molecules ; 20(4): 5554-65, 2015 Mar 27.
Article in English | MEDLINE | ID: mdl-25826790

ABSTRACT

meso-Tetraphenylporphyrin (TPP) and its two substituted derivatives (meso-tetrakis(4-cyanophenyl)porphyrin [TPP(CN)4] and meso-tetrakis(4-methoxyphenyl)porphyrin [TPP(OMe)4]) were synthesized. Their nonlinear absorption and refraction properties were studied using the Z-scan technique in the picosecond (ps) and nanosecond (ns) regimes. The open aperture Z-scan results reveal that TPP and TPP(CN)4 display an identical reverse saturable absorption (RSA) character in the ps and ns regimes. While TPP(OMe)4 exhibits a transition from saturable absorption (SA) to RSA in the ps regime and a typical RSA character in the ns regime. The closed aperture Z-scan results show that TPP(CN)4 and TPP(OMe)4 have regular enhancement of the magnitude of nonlinear refraction as compared to their parent TPP in both the ps and ns regimes. In addition, the second-order molecular hyperpolarizabilities (γ) of these three porphyrins are calculated, and the γ values of TPP(CN)4 and TPP(OMe)4 are remarkable larger than that of TPP. The introduction of the electron-withdrawing group CN and the electron-donating group OMe into TPP has enhanced its nonlinear refraction and γ value, and tuned its nonlinear absorption (TPP(OMe)4), which could be useful for porphyrin-related applications based on the desired NLO properties.


Subject(s)
Porphyrins/chemical synthesis , Molecular Structure , Optical Phenomena , Porphyrins/chemistry
15.
J Zoo Wildl Med ; 46(2): 306-13, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26056884

ABSTRACT

Peripheral blood mononuclear cells (PBMCs) were isolated from the whole blood of cheetahs (Acinonyx jubatus ; n=3) and stimulated with lipopolysaccharides (LPS) to induce the production of proinflammatory cytokines TNF-α, IL-1ß, and IL-6 for establishment of cross-reactivity between these cheetah cytokines and feline-specific cytokine antibodies provided in commercially available Feline DuoSet® ELISA kits (R&D Systems, Inc., Minneapolis, Minnesota 55413, USA). This study found that feline-specific cytokine antibodies bind specifically to cheetah proinflammatory cytokines TNF-α, IL-1ß, and IL-6 from cell culture supernatants. The assays also revealed that cheetah PBMCs produce a measurable, cell concentration-dependent increase in proinflammatory cytokine production after LPS stimulation. To enable the use of these kits, which are designed for cell culture supernatants for analyzing cytokine concentrations in cheetah serum, percent recovery and parallelism of feline cytokine standards in cheetah serum were also evaluated. Cytokine concentrations in cheetah serum were approximated based on the use of domestic cat standards in the absence of cheetah standard material. In all cases (for cytokines TNF-α, IL-1ß, and IL-6), percent recovery increased as the serum sample dilution increased, though percent recovery varied between cytokines at a given dilution factor. A 1:2 dilution of serum resulted in approximately 45, 82, and 7% recovery of TNF-α, IL-1ß, and IL-6 standards, respectively. Adequate parallelism was observed across a large range of cytokine concentrations for TNF-α and IL-1ß; however, a significant departure from parallelism was observed between the IL-6 standard and the serum samples (P=0.004). Therefore, based on our results, the Feline DuoSet ELISA (R&D Systems, Inc.) kits are valid assays for the measurement of TNF-α and IL-1ß in cheetah serum but should not be used for accurate measurement of IL-6.


Subject(s)
Acinonyx/blood , Cytokines/metabolism , Gene Expression Regulation/drug effects , Leukocytes, Mononuclear/metabolism , Lipopolysaccharides/toxicity , Animals , Antibodies/immunology , Antibody Affinity , Cells, Cultured , Cytokines/genetics , Enzyme-Linked Immunosorbent Assay/veterinary , Male , Reagent Kits, Diagnostic
16.
Immunogenetics ; 66(11): 625-33, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25113844

ABSTRACT

Memory programming of cytotoxic T cells (CTLs) by inflammatory cytokines can be regulated by mammalian target of rapamycin (mTOR). We have shown that inhibition of mTOR during CTL activation leads to the enhancement of memory, but the molecular mechanisms remain largely unknown. Using high-throughput RNA-Seq, we identified genes and functions in mouse CTLs affected by mTOR inhibition through rapamycin. Of the 43,221 identified transcripts, 184 transcripts were differentially expressed after rapamycin treatment, corresponding to 128 annotated genes. Of these genes, 114 were downregulated and only 14 were upregulated. Most importantly, 50 of them are directly related to cell death and survival. In addition, several genes such as CD62L are related to migration. Furthermore, we predicted downregulation of transcriptional regulators based on the total differentially expressed genes, as well as the subset of apoptosis-related genes. Quantitative PCR confirmed the differential expressions detected in RNA-Seq. We conclude that the regulatory function of rapamycin may work through inhibition of multiple genes related to apoptosis and migration, which enhance CTL survival into memory.


Subject(s)
RNA/genetics , Sirolimus/pharmacology , T-Lymphocytes, Cytotoxic/drug effects , T-Lymphocytes, Cytotoxic/metabolism , Transcriptome/genetics , Animals , Apoptosis/drug effects , Apoptosis/genetics , Cell Death/drug effects , Cell Death/genetics , Cell Movement/drug effects , Cell Movement/genetics , Cell Survival/drug effects , Cell Survival/genetics , Down-Regulation/drug effects , Down-Regulation/genetics , Gene Expression Profiling/methods , High-Throughput Nucleotide Sequencing/methods , Mice , Sequence Analysis, RNA/methods , TOR Serine-Threonine Kinases/genetics , Transcriptome/drug effects , Up-Regulation/drug effects , Up-Regulation/genetics
17.
Cells ; 13(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38727273

ABSTRACT

Bovine Th2 cells have usually been characterized by IL4 mRNA expression, but it is unclear whether their IL4 protein expression corresponds to transcription. We found that grass-fed healthy beef cattle, which had been regularly exposed to parasites on the grass, had a low frequency of IL4+ Th2 cells during flow cytometry, similar to animals grown in feedlots. To assess the distribution of IL4+ CD4+ T cells across tissues, samples from the blood, spleen, abomasal (draining), and inguinal lymph nodes were examined, which revealed limited IL4 protein detection in the CD4+ T cells across the examined tissues. To determine if bovine CD4+ T cells may develop into Th2 cells, naïve cells were stimulated with anti-bovine CD3 under a Th2 differentiation kit in vitro. The cells produced primarily IFNγ proteins, with only a small fraction (<10%) co-expressing IL4 proteins. Quantitative PCR confirmed elevated IFNγ transcription but no significant change in IL4 transcription. Surprisingly, GATA3, the master regulator of IL4, was highest in naïve CD4+ T cells but was considerably reduced following differentiation. To determine if the differentiated cells were true Th2 cells, an unbiased proteomic assay was carried out. The assay identified 4212 proteins, 422 of which were differently expressed compared to those in naïve cells. Based on these differential proteins, Th2-related upstream components were predicted, including CD3, CD28, IL4, and IL33, demonstrating typical Th2 differentiation. To boost IL4 expression, T cell receptor (TCR) stimulation strength was reduced by lowering anti-CD3 concentrations. Consequently, weak TCR stimulation essentially abolished Th2 expansion and survival. In addition, extra recombinant bovine IL4 (rbIL4) was added during Th2 differentiation, but, despite enhanced expansion, the IL4 level remained unaltered. These findings suggest that, while bovine CD4+ T cells can respond to Th2 differentiation stimuli, the bovine IL4 pathway is not regulated in the same way as in mice and humans. Furthermore, Ostertagia ostertagi (OO) extract, a gastrointestinal nematode in cattle, inhibited signaling via CD3, CD28, IL4, and TLRs/MYD88, indicating that external pathogens can influence bovine Th2 differentiation. In conclusion, though bovine CD4+ T cells can respond to IL4-driven differentiation, IL4 expression is not a defining feature of differentiated bovine Th2 cells.


Subject(s)
Cell Differentiation , Th2 Cells , Animals , Cattle , Th2 Cells/immunology , Th2 Cells/metabolism , Interleukin-4/metabolism , GATA3 Transcription Factor/metabolism , GATA3 Transcription Factor/genetics , Interferon-gamma/metabolism , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism
18.
Adv Mater ; 36(8): e2309921, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38016083

ABSTRACT

Metal halide perovskite light-emitting diodes (PeLEDs) are attracting increasing attention due to their potential applications in flat panel lighting and displays. The solution process, large-area fabrication, and flexibility are attractive properties of PeLEDs over traditional inorganic LEDs. However, it is still very challenging to deposit uniform perovskite films on flexible substrates using a blade or slot-die coating, as the flexible substrate is not perfectly flat. Here, the inkjet printing technique is adopted, and the key challenges are overcome step-by-step in preparing large-area films on flexible substrates. Double-hole transporting layers are first used and a wetting interfacial layer to improve the surface wettability so that the printed perovskite droplets can form a continuous wet film. The fluidic and evaporation dynamics of the perovskite wet layer is manipulated to suppress the coffee ring effect by solvent engineering. Uniform perovskite films are obtained finally on flexible substrates with different perovskite compositions. The peak external quantum efficiency of the inkjet-printed PeLEDs reaches 14.3%. Large-area flexible PeLEDs (4 × 7 cm2 ) also show very uniform emission. This work represents a significant step toward real applications of large-area PeLEDs in flexible flat-panel lighting.

19.
Nat Commun ; 15(1): 1066, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38316825

ABSTRACT

Presynthesized perovskite quantum dots are very promising for making films with different compositions, as they decouple crystallization and film-formation processes. However, fabricating large-area uniform films using perovskite quantum dots is still very challenging due to the complex fluidic dynamics of the solvents. Here, we report a robust film-formation approach using an environmental-friendly binary-solvent strategy. Nonbenzene solvents, n-octane and n-hexane, are mixed to manipulate the fluidic and evaporation dynamics of the perovskite quantum dot inks, resulting in balanced Marangoni flow, enhanced ink spreadability, and uniform solute-redistribution. We can therefore blade-coat large-area uniform perovskite films with different compositions using the same fabrication parameters. White and red perovskite light-emitting diodes incorporating blade-coated films exhibit a decent external quantum efficiency of 10.6% and 15.3% (0.04 cm2), and show a uniform emission up to 28 cm2. This work represents a significant step toward the application of perovskite light-emitting diodes in flat panel solid-state lighting.

20.
Adv Mater ; 36(24): e2313524, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38453665

ABSTRACT

Crystallization orientation plays a crucial role in determining the performance and stability of perovskite solar cells (PVSCs), whereas effective strategies for realizing oriented perovskite crystallization is still lacking. Herein, a facile and efficient top-down strategy is reported to manipulate the crystallization orientation via treating perovskite wet film with propylamine chloride (PACl) before annealing. The PA+ ions tend to be adsorbed on the (001) facet of the perovskite surface, resulting in the reduced cleavage energy to induce (001) orientation-dominated growth of perovskite film and then reduce the temperature of phase transition, meanwhile, the penetrating Cl ions further regulate the crystallization process. As-prepared (001)-dominant perovskite films exhibit the ameliorative film homogeneity in terms of vertical and horizontal scale, leading to alleviated lattice mismatch and lowered defect density. The resultant PVSC devices deliver a champion power conversion efficiency (PCE) of 25.07% with enhanced stability, and the unencapsulated PVSC device maintains 95% of its initial PCE after 1000 h of operation at the maximum power point under simulated AM 1.5G illumination.

SELECTION OF CITATIONS
SEARCH DETAIL