ABSTRACT
OBJECTIVE: In osteoarthritis (OA) models, histology is commonly used to evaluate the severity of joint damage. Unfortunately, semi-quantitative histological grading systems include some level of subjectivity, and quantitative grading systems can be tedious to implement. The objective of this work is to introduce an open source, graphic user interface (GUI) for quantitative grading of knee OA. METHODS: Inspired by the 2010 OARSI histopathology recommendations for the rat, our laboratory has developed a GUI for the evaluation of knee OA, nicknamed GEKO. In this work, descriptions of the quantitative measures acquired by GEKO are presented and measured in 42 histological images from a rat knee OA model. Using these images, across-session and within-session reproducibility for individual graders is evaluated, and inter-grader reliability across different levels of OA severity is also assessed. RESULTS: GEKO allowed histological images to be quantitatively scored in less than 1 min per image. In addition, intra-class coefficients (ICCs) were largely above 0.8 for across-session reproducibility, within-session reproducibility, and inter-grader reliability. These data indicate GEKO aided in the reproducibility and repeatability of quantitative OA grading across graders and grading sessions. CONCLUSIONS: Our data demonstrate GEKO is a reliable and efficient method to calculate quantitative histological measures of knee OA in a rat model. GEKO reduced quantitative grading times relative to manual grading systems and allowed grader reproducibility and repeatability to be easily assessed within a grading session and across time. Moreover, GEKO is being provided as a free, open-source tool for the OA research community.
Subject(s)
Arthritis, Experimental/pathology , Osteoarthritis, Knee/pathology , User-Computer Interface , Animals , Cartilage, Articular/pathology , Male , Observer Variation , Rats, Inbred Lew , Reproducibility of Results , Severity of Illness Index , SoftwareABSTRACT
123I- and 131I-labeled hexadecenoic acid (IHDA, radiochemical purity over 92%, dissolved in 6% bovine serum albumin solution) was investigated in vivo. ICR mice were administered IHDA via the tail vein. Maximum myocardial uptake (27.3 +/- 5.1%) was reached about 0.5 min after the injection. The ratio of uptake in the heart to that in the lungs was 2.3, to that in liver 1.5 and to that in other organs 2.4 to 6.4. The dog myocardium was visualized distinctly within 3-5 min with a gamma camera after i.v. 131I-IHDA, and not interfered with by activities in the lungs, liver and other organs. The low blood levels at 20 min had little effect on the quality of the heart images.