Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Nat Commun ; 14(1): 4924, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37582782

ABSTRACT

Thermal homeostasis is vital for mammals and is controlled by brain neurocircuits. Yet, the neural pathways responsible for cold defense regulation are still unclear. Here, we found that a pathway from the lateral parabrachial nucleus (LPB) to the dorsomedial hypothalamus (DMH), which runs parallel to the canonical LPB to preoptic area (POA) pathway, is also crucial for cold defense. Together, these pathways make an equivalent and cumulative contribution, forming a parallel circuit. Specifically, activation of the LPB → DMH pathway induced strong cold-defense responses, including increases in thermogenesis of brown adipose tissue (BAT), muscle shivering, heart rate, and locomotion. Further, we identified somatostatin neurons in the LPB that target DMH to promote BAT thermogenesis. Therefore, we reveal a parallel circuit governing cold defense in mice, which enables resilience to hypothermia and provides a scalable and robust network in heat production, reshaping our understanding of neural circuit regulation of homeostatic behaviors.


Subject(s)
Hypothermia , Thermogenesis , Mice , Animals , Thermogenesis/physiology , Preoptic Area/metabolism , Neural Pathways/physiology , Homeostasis , Hypothermia/metabolism , Adipose Tissue, Brown/metabolism , Cold Temperature , Mammals
2.
Front Endocrinol (Lausanne) ; 13: 1065263, 2022.
Article in English | MEDLINE | ID: mdl-36714578

ABSTRACT

Overweight and obesity have become a world-wide problem. However, effective intervention approaches are limited. Brown adipose tissue, which helps maintain body temperature and contributes to thermogenesis, is dependent on uncoupling protein1. Over the last decade, an in-creasing number of studies have found that activating brown adipose tissue and browning of white adipose tissue can protect against obesity and obesity-related metabolic disease. Brown adipose tissue has gradually become an appealing therapeutic target for the prevention and re-versal of obesity. However, some important issues remain unresolved. It is not certain whether increasing brown adipose tissue activity is the cause or effect of body weight loss or what the risks might be for sympathetic nervous system-dependent non-shivering thermogenesis. In this review, we comprehensively summarize approaches to activating brown adipose tissue and/or browning white adipose tissue, such as cold exposure, exercise, and small-molecule treatment. We highlight the functional mechanisms of small-molecule treatment and brown adipose tissue transplantation using batokine, sympathetic nervous system and/or gut microbiome. Finally, we discuss the causality between body weight loss induced by bariatric surgery, exercise, and brown adipose tissue activity.


Subject(s)
Adipose Tissue, Brown , Obesity , Humans , Adipose Tissue, Brown/metabolism , Obesity/therapy , Obesity/metabolism , Adipose Tissue, White/metabolism , Sympathetic Nervous System/metabolism , Weight Loss
3.
Sci Adv ; 6(36)2020 09.
Article in English | MEDLINE | ID: mdl-32917598

ABSTRACT

Heat defense is crucial for survival and fitness. Transmission of thermosensory signals into hypothalamic thermoregulation centers represents a key layer of regulation in heat defense. Yet, how these signals are transmitted into the hypothalamus remains poorly understood. Here, we reveal that lateral parabrachial nucleus (LPB) glutamatergic prodynorphin and cholecystokinin neuron populations are progressively recruited to defend elevated body temperature. These two nonoverlapping neuron types form circuits with downstream preoptic hypothalamic neurons to inhibit the thermogenesis of brown adipose tissues (BATs) and activate tail vasodilation, respectively. Both circuits are activated by warmth and can limit fever development. The prodynorphin circuit is further required for regulating energy expenditure and body weight homeostasis. Thus, these findings establish that the genetic and functional specificity of heat defense neurons occurs as early as in the LPB and uncover categorical neuron types for encoding two heat defense variables, inhibition of BAT thermogenesis and activation of vasodilation.

4.
Int J Endocrinol ; 2019: 1394097, 2019.
Article in English | MEDLINE | ID: mdl-30984260

ABSTRACT

INTRODUCTION: Gut microbiota is involved in the progression of metabolic diseases such as obesity and type 2 diabetes. The ob/ob and db/db mice are extensively used as models in studies on the pathogenesis of these diseases. The goal of this study is to characterize the composition and structure of gut microbiota in these model mice at different ages. MATERIALS AND METHODS: High-throughput sequencing was used to obtain the sequences of the highly variable 16S rRNA V3-V4 region from fecal samples. The taxa with high abundance in both model mice were identified by bioinformatics analysis. Moreover, the taxa with divergent abundance in one model mice at different ages or in both model mice at the same age were also recognized. DISCUSSION AND CONCLUSION: The high abundance of Bacteroidetes and Firmicutes in microbiota composition and their imbalanced ratio in both model mice reflect the state of metabolic disorders of these mice. Differences in microbiota composition between the two model mice of the same age or in one model mice with different ages were assumed to be closely linked to the fluctuation of their blood glucose levels with age. The data on gut microbiota in ob/ob and db/db mice investigated herein has broad implications for the pathogenesis study and drug discovery on obesity and related complications.

5.
Nat Neurosci ; 22(6): 921-932, 2019 06.
Article in English | MEDLINE | ID: mdl-31127258

ABSTRACT

The neural substrates for predatory hunting, an evolutionarily conserved appetitive behavior, remain largely undefined. Photoactivation of zona incerta (ZI) GABAergic neurons strongly promotes hunting of both live and artificial prey. Conversely, photoinhibition of these neurons or deletion of their GABA function severely impairs hunting. Here electrophysiological recordings reveal that ZI neurons integrate prey-related multisensory signals and discriminate prey from non-prey targets. Visual or whisker sensory deprivation reduces calcium responses induced by prey introduction and attack and impair hunting. ZI photoactivation largely corrects the hunting impairment caused by sensory deprivations. Motivational and reinforcing assays reveal that ZI photoactivation is associated with a strong appetitive drive, causing repetitive self-stimulatory behaviors. These ZI neurons project to the periaqueductal gray matter to induce hunting and motivation. Thus, we have delineated the function of ZI GABAergic neurons in hunting, which integrates prey-related sensory signals into prey detection and attack and induces a strong appetitive motivational drive.


Subject(s)
GABAergic Neurons/physiology , Predatory Behavior/physiology , Zona Incerta/physiology , Animals , Mice
6.
PLoS One ; 9(6): e98672, 2014.
Article in English | MEDLINE | ID: mdl-24896090

ABSTRACT

A new protocol was established for the regeneration of Solanum nigrum by frog egg-like bodies (FELBs), which are novel somatic embryogenesis (SE) structures induced from the root, stem, and leaf explants. The root, stem, and leaf explants (93.33%, 85.10%, and 100.00%, respectively) were induced to form special embryonic calli on Murashige and Skoog (MS) medium containing 1.0 mg/L 2,4-dichlorophenoxyacetic acid, under dark condition. Further, special embryonic calli from the root, stem, and leaf explants (86.97%, 83.30%, and 99.47%, respectively) were developed into FELBs. Plantlets of FELBs from the three explants were induced in vitro on MS medium supplemented with 5.0 mg/L 6-benzylaminopurine and 0.1 mg/L gibberellic acid, and 100.00% plantlet induction rates were noted. However, plantlet induction in vivo on MS medium supplemented with 20 mg/L thidiazuron showed rates of 38.63%, 15.63%, and 61.30% for the root, stem, and leaf explants, respectively, which were lower than those of the in vitro culture. Morphological and histological analyses of FELBs at different development stages revealed that they are a novel type of SE structure that developed from the mesophyll (leaf) or cortex (stem and root) cells of S. nigrum.


Subject(s)
Embryonic Development , Regeneration , Solanum nigrum/physiology , Embryonic Development/drug effects , Indoleacetic Acids/pharmacology , Phenotype , Plant Growth Regulators/pharmacology , Plant Leaves/growth & development , Plant Shoots/growth & development , Plant Stems/growth & development , Regeneration/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL