Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Small ; : e2403971, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39012083

ABSTRACT

Developing low-cost and industrially viable electrode materials for efficient water-splitting performance and constructing intrinsically active materials with abundant active sites is still challenging. In this study, a self-supported porous network Ni(OH)2-CeOx heterostructure layer on a FeOOH-modified Ni-mesh (NiCe/Fe@NM) electrode is successfully prepared by a facile, scalable two-electrode electrodeposition strategy for overall alkaline water splitting. The optimized NiCe0.05/Fe@NM catalyst reaches a current density of 100 mA cm-2 at an overpotential of 163 and 262 mV for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), respectively, in 1.0 m KOH with excellent stability. Additionally, NiCe0.05/Fe@NM demonstrates exceptional HER performance in alkaline seawater, requiring only 148 mV overpotential at 100 mA cm-2. Under real water splitting conditions, NiCe0.05/Fe@NM requires only 1.701 V to achieve 100 mA cm-2 with robust stability over 1000 h in an alkaline medium. The remarkable water-splitting performance and stability of the NiCe0.05/Fe@NM catalyst result from a synergistic combination of factors, including well-optimized surface and electronic structures facilitated by an optimal Ce ratio, rapid reaction kinetics, a superhydrophilic/superaerophobic interface, and enhanced intrinsic catalytic activity. This study presents a simple two-electrode electrodeposition method for the scalable production of self-supported electrocatalysts, paving the way for their practical application in industrial water-splitting processes.

2.
J Colloid Interface Sci ; 660: 345-355, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38244501

ABSTRACT

Nitrogen- and fluorine-doped bimetallic carbide composites with graphite matrix (abbreviated as C19Cr7Mo24/NG and C19Cr7Mo24/FG) are synthesized through carbonization at 1300 °C. The C19Cr7Mo24/NG displays an initial half-wave potential (E1/2) of 0.873 V and suffers merely 3 mV decrease in E1/2 within 60,000 CV cycles for oxygen reduction reaction (ORR) in alkaline media. A H2/O2 fuel cell testing system using the C19Cr7Mo24/NG as cathode maintains 95.9% of the initial peak power density (1.08 W cm-2) within 60,000 cycles. The C19Cr7Mo24/FG shows higher ORR activity than the C19Cr7Mo24/NG. The positive and negative charge centers caused by the N or F dopants are the critical reasons to their high activities. While F and bimetallic carbide more favor electron transfer respectively than the N and monometallic carbide. Their excellent stabilities originate from interactions among atoms due to electron transfer and the intrinsic chemical inertness of graphite and bimetallic carbides.

3.
J Colloid Interface Sci ; 659: 799-810, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38218084

ABSTRACT

The catalytic activity improvement of Fe-based active sites derived from metal organic frameworks toward oxygen reduction reaction (ORR) and methanol oxidation reaction (MOR) remains a major challenge. In this study, the growth of strontium decorated 2-methylimidazole zinc salt (Sr/ZIF-8) is prepared as a carrier to vapor deposited iron formation Sr doped Fe-based nitrogen-doped carbon framework (named as Sr/FeNC). After high-temperature pyrolysis and vapor deposition, strontium carbonate nanocrystals are evenly dispersed on the shrunk dodecahedron carbon frame and multitudinous Fe-based active catalytic sites are embedded in carbon skeleton. The optimal Sr/FeNC-2 catalyst demonstrates the outstanding ORR performance in terms of a half-wave potential of 0.851 V and an onset potential of 0.90 V, while Sr/FeNC-2 exhibits a high current density of 18.2 mA cm-2 and a lower Tafel slope of 21 mV dec-1 in MOR. The exceptional catalytic activity could be ascribed to the synergistic coupling effect of strontium compounds with Fe-based catalytic sites (Fe-Nx, Fe, and iron oxide). In particular, the formation of SrCO3 affects the bonding configuration of the iron species sites, leading to an optimization of the electronic structure within the multihole carbon matrix. The synthetic approach presents a prospective strategy for future endeavors in developing innovative and advanced bifunctional catalysts for ORR and MOR.

SELECTION OF CITATIONS
SEARCH DETAIL