Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Proc Natl Acad Sci U S A ; 120(52): e2318274120, 2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38127982

ABSTRACT

Liquid-liquid phase separation (LLPS) underlies diverse biological processes. Because most LLPS studies were performed in vitro using recombinant proteins or in cells that overexpress protein, the physiological relevance of LLPS for endogenous protein is often unclear. PERIOD, the intrinsically disordered domain-rich proteins, are central mammalian circadian clock components and interact with other clock proteins in the core circadian negative feedback loop. Different core clock proteins were previously shown to form large complexes. Circadian clock studies often rely on experiments that overexpress clock proteins. Here, we show that when Per2 transgene was stably expressed in cells, PER2 protein formed nuclear phosphorylation-dependent slow-moving LLPS condensates that recruited other clock proteins. Super-resolution microscopy of endogenous PER2, however, revealed formation of circadian-controlled, rapidly diffusing nuclear microbodies that were resistant to protein concentration changes, hexanediol treatment, and loss of phosphorylation, indicating that they are distinct from the LLPS condensates caused by protein overexpression. Surprisingly, only a small fraction of endogenous PER2 microbodies transiently interact with endogenous BMAL1 and CRY1, a conclusion that was confirmed in cells and in mice tissues, suggesting an enzyme-like mechanism in the circadian negative feedback process. Together, these results demonstrate that the dynamic interactions of core clock proteins are a key feature of mammalian circadian clock mechanism and the importance of examining endogenous proteins in LLPS and circadian clock studies.


Subject(s)
Circadian Clocks , Mice , Animals , Circadian Clocks/genetics , CLOCK Proteins/genetics , CLOCK Proteins/metabolism , Phase Separation , Period Circadian Proteins/genetics , Period Circadian Proteins/metabolism , Circadian Rhythm/genetics , Microbodies/metabolism , ARNTL Transcription Factors/genetics , ARNTL Transcription Factors/metabolism , Mammals/metabolism
2.
Mol Cell ; 68(1): 198-209.e6, 2017 Oct 05.
Article in English | MEDLINE | ID: mdl-28985504

ABSTRACT

In addition to responding to environmental entrainment with diurnal variation, metabolism is also tightly controlled by cell-autonomous circadian clock. Extensive studies have revealed key roles of transcription in circadian control. Post-transcriptional regulation for the rhythmic gating of metabolic enzymes remains elusive. Here, we show that arginine biosynthesis and subsequent ureagenesis are collectively regulated by CLOCK (circadian locomotor output cycles kaput) in circadian rhythms. Facilitated by BMAL1 (brain and muscle Arnt-like protein), CLOCK directly acetylates K165 and K176 of argininosuccinate synthase (ASS1) to inactivate ASS1, which catalyzes the rate-limiting step of arginine biosynthesis. ASS1 acetylation by CLOCK exhibits circadian oscillation in human cells and mouse liver, possibly caused by rhythmic interaction between CLOCK and ASS1, leading to the circadian regulation of ASS1 and ureagenesis. Furthermore, we also identified NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 9 (NDUFA9) and inosine-5'-monophosphate dehydrogenase 2 (IMPDH2) as acetylation substrates of CLOCK. Taken together, CLOCK modulates metabolic rhythmicity by acting as a rhythmic acetyl-transferase for metabolic enzymes.


Subject(s)
ARNTL Transcription Factors/genetics , Argininosuccinate Synthase/genetics , CLOCK Proteins/genetics , Circadian Rhythm/genetics , Protein Processing, Post-Translational , Urea/metabolism , ARNTL Transcription Factors/metabolism , Acetylation , Animals , Arginine/biosynthesis , Argininosuccinate Synthase/metabolism , CLOCK Proteins/metabolism , Cell Line, Tumor , Circadian Clocks , Electron Transport Complex I/genetics , Electron Transport Complex I/metabolism , HEK293 Cells , Hepatocytes/cytology , Hepatocytes/metabolism , Humans , IMP Dehydrogenase/genetics , IMP Dehydrogenase/metabolism , Male , Mice , Mice, Knockout , Osteoblasts/metabolism , Osteoblasts/pathology , Signal Transduction
3.
PLoS Genet ; 16(1): e1008577, 2020 01.
Article in English | MEDLINE | ID: mdl-31929527

ABSTRACT

Circadian systems provide a fitness advantage to organisms by allowing them to adapt to daily changes of environmental cues, such as light/dark cycles. The molecular mechanism underlying the circadian clock has been well characterized. However, how internal circadian clocks are entrained with regular daily light/dark cycles remains unclear. By collecting and analyzing indirect calorimetry (IC) data from more than 2000 wild-type mice available from the International Mouse Phenotyping Consortium (IMPC), we show that the onset time and peak phase of activity and food intake rhythms are reliable parameters for screening defects of circadian misalignment. We developed a machine learning algorithm to quantify these two parameters in our misalignment screen (SyncScreener) with existing datasets and used it to screen 750 mutant mouse lines from five IMPC phenotyping centres. Mutants of five genes (Slc7a11, Rhbdl1, Spop, Ctc1 and Oxtr) were found to be associated with altered patterns of activity or food intake. By further studying the Slc7a11tm1a/tm1a mice, we confirmed its advanced activity phase phenotype in response to a simulated jetlag and skeleton photoperiod stimuli. Disruption of Slc7a11 affected the intercellular communication in the suprachiasmatic nucleus, suggesting a defect in synchronization of clock neurons. Our study has established a systematic phenotype analysis approach that can be used to uncover the mechanism of circadian entrainment in mice.


Subject(s)
Circadian Rhythm/genetics , Amino Acid Transport System y+/genetics , Animals , Machine Learning , Male , Mice , Mice, Inbred C57BL , Mutation , Receptors, Oxytocin/genetics , Repressor Proteins/genetics , Serine Endopeptidases/genetics , Telomere-Binding Proteins/genetics , Ubiquitin-Protein Ligase Complexes/genetics
4.
Nucleic Acids Res ; 47(17): 9243-9258, 2019 09 26.
Article in English | MEDLINE | ID: mdl-31410471

ABSTRACT

Codon usage bias is a universal feature of eukaryotic and prokaryotic genomes and plays an important role in regulating gene expression levels. A major role of codon usage is thought to regulate protein expression levels by affecting mRNA translation efficiency, but the underlying mechanism is unclear. By analyzing ribosome profiling results, here we showed that codon usage regulates translation elongation rate and that rare codons are decoded more slowly than common codons in all codon families in Neurospora. Rare codons resulted in ribosome stalling in manners both dependent and independent of protein sequence context and caused premature translation termination. This mechanism was shown to be conserved in Drosophila cells. In both Neurospora and Drosophila cells, codon usage plays an important role in regulating mRNA translation efficiency. We found that the rare codon-dependent premature termination is mediated by the translation termination factor eRF1, which recognizes ribosomes stalled on rare sense codons. Silencing of eRF1 expression resulted in codon usage-dependent changes in protein expression. Together, these results establish a mechanism for how codon usage regulates mRNA translation efficiency.


Subject(s)
Drosophila Proteins/genetics , Peptide Termination Factors/genetics , Protein Biosynthesis , RNA, Messenger/genetics , Ribosomes/genetics , Amino Acid Sequence/genetics , Animals , Codon, Nonsense/genetics , Codon, Terminator/genetics , Drosophila/genetics , Neurospora/genetics
5.
J Biol Chem ; 292(1): 161-171, 2017 Jan 06.
Article in English | MEDLINE | ID: mdl-27879317

ABSTRACT

Understanding the mechanism underlying the physiological divergence of species is a long-standing issue in evolutionary biology. The circadian clock is a highly conserved system existing in almost all organisms that regulates a wide range of physiological and behavioral events to adapt to the day-night cycle. Here, the interactions between hCK1ϵ/δ/DBT (Drosophila ortholog of CK1δ/ϵ) and serine-rich (SR) motifs from hPER2 (ortholog of Drosophila per) were reconstructed in a Drosophila circadian system. The results indicated that in Drosophila, the SR mutant form hPER2S662G does not recapitulate the mouse or human mutant phenotype. However, introducing hCK1δ (but not DBT) shortened the circadian period and restored the SR motif function. We found that hCK1δ is catalytically more efficient than DBT in phosphorylating the SR motif, which demonstrates that the evolution of CK1δ activity is required for SR motif modulation. Moreover, an abundance of phosphorylatable SR motifs and the striking emergence of putative SR motifs in vertebrate proteins were observed, which provides further evidence that the correlated evolution between kinase activity and its substrates set the stage for functional diversity in vertebrates. It is possible that such correlated evolution may serve as a biomarker associated with the adaptive benefits of diverse organisms. These results also provide a concrete example of how functional synthesis can be achieved through introducing evolutionary partners in vivo.


Subject(s)
CLOCK Proteins/metabolism , Casein Kinase 1 epsilon/metabolism , Circadian Clocks/physiology , Drosophila melanogaster/enzymology , Evolution, Molecular , Serine/metabolism , Amino Acid Sequence , Animals , Animals, Genetically Modified , Drosophila melanogaster/genetics , Drosophila melanogaster/growth & development , Humans , Mice , Phenotype , Phosphorylation , Phylogeny , Sequence Homology, Amino Acid
6.
bioRxiv ; 2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37961341

ABSTRACT

Liquid-liquid phase separation (LLPS) underlies diverse biological processes. Because most LLPS studies were performed in vitro or in cells that overexpress protein, the physiological relevance of LLPS is unclear. PERIOD proteins are central mammalian circadian clock components and interact with other clock proteins in the core circadian negative feedback loop. Different core clock proteins were previously shown to form large complexes. Here we show that when transgene was stably expressed, PER2 formed nuclear phosphorylation-dependent LLPS condensates that recruited other clock proteins. Super-resolution microscopy of endogenous PER2, however, revealed formation of circadian-controlled, rapidly diffusing microbodies that were resistant to protein concentration changes, hexanediol treatment, and loss of phosphorylation, indicating that they are distinct from the LLPS condensates caused by overexpression. Surprisingly, only a small fraction of endogenous PER2 microbodies transiently interact with endogenous BMAL1 and CRY1, a conclusion that was confirmed in cells and in mice tissues, suggesting an enzyme-like mechanism in the circadian negative feedback process. Together, these results demonstrate that the dynamic interactions of core clock proteins is a key feature of mammalian circadian clock mechanism and the importance of examining endogenous proteins in LLPS and circadian studies.

7.
Nat Commun ; 13(1): 3991, 2022 07 09.
Article in English | MEDLINE | ID: mdl-35810166

ABSTRACT

Robust rhythms of abundances and phosphorylation profiles of PERIOD proteins were thought be the master rhythms that drive mammalian circadian clock functions. PER stability was proposed to be a major determinant of period length. In mammals, CK1 forms stable complexes with PER. Here we identify the PER residues essential for PER-CK1 interaction. In cells and in mice, their mutation abolishes PER phosphorylation and CLOCK hyperphosphorylation, resulting in PER stabilization, arrhythmic PER abundance and impaired negative feedback process, indicating that PER acts as the CK1 scaffold in circadian feedback mechanism. Surprisingly, the mutant mice exhibit robust short period locomotor activity and other physiological rhythms but low amplitude molecular rhythms. PER-CK1 interaction has two opposing roles in regulating CLOCK-BMAL1 activity. These results indicate that the circadian clock can function independently of PER phosphorylation and abundance rhythms due to another PER-CRY-dependent feedback mechanism and that period length can be uncoupled from PER stability.


Subject(s)
Circadian Clocks , Animals , CLOCK Proteins/metabolism , Circadian Clocks/genetics , Circadian Rhythm/genetics , Mammals/metabolism , Mice , Period Circadian Proteins/genetics , Period Circadian Proteins/metabolism , Phosphorylation
9.
Cell Rep ; 14(4): 823-834, 2016 Feb 02.
Article in English | MEDLINE | ID: mdl-26776516

ABSTRACT

In the core mammalian circadian negative feedback loop, the BMAL1-CLOCK complex activates the transcription of the genes Period (Per) and Cryptochrome (Cry). To close the negative feedback loop, the PER-CRY complex interacts with the BMAL1-CLOCK complex to repress its activity. These two processes are separated temporally to ensure clock function. Here, we show that histone deacetylase 3 (HDAC3) is a critical component of the circadian negative feedback loop by regulating both the activation and repression processes in a deacetylase activity-independent manner. Genetic depletion of Hdac3 results in low-amplitude circadian rhythms and dampened E-box-driven transcription. In subjective morning, HDAC3 is required for the efficient transcriptional activation process by regulating BMAL1 stability. In subjective night, however, HDAC3 blocks FBXL3-mediated CRY1 degradation and strongly promotes BMAL1 and CRY1 association. Therefore, these two opposing but temporally separated roles of HDAC3 in the negative feedback loop provide a mechanism for robust circadian gene expression.


Subject(s)
Circadian Clocks , Feedback, Physiological , Histone Deacetylases/metabolism , ARNTL Transcription Factors/metabolism , Animals , Cryptochromes/metabolism , E-Box Elements , Histone Deacetylases/genetics , Mice , Mice, Inbred C57BL , Protein Binding , Proteolysis
10.
Elife ; 52016 Sep 22.
Article in English | MEDLINE | ID: mdl-27657167

ABSTRACT

Many animals display morning and evening bimodal activities in the day/night cycle. However, little is known regarding the potential components involved in the regulation of bimodal behavioral rhythms in mammals. Here, we identified that the zinc finger protein gene Zbtb20 plays a crucial role in the regulation of bimodal activities in mice. Depletion of Zbtb20 in nerve system resulted in the loss of early evening activity, but the increase of morning activity. We found that Zbtb20-deficient mice exhibited a pronounced decrease in the expression of Prokr2 and resembled phenotypes of Prok2 and Prokr2-knockout mice. Injection of adeno-associated virus-double-floxed Prokr2 in suprachiasmatic nucleus could partly restore evening activity in Nestin-Cre; Zbtb20fl/fl (NS-ZB20KO) mice. Furthermore, loss of Zbtb20 in Foxg1 loci, but intact in the suprachiasmatic nucleus, was not responsible for the unimodal activity of NS-ZB20KO mice. Our study provides evidence that ZBTB20-mediated PROKR2 signaling is critical for the evening behavioral rhythms.

11.
Elife ; 52016 12 22.
Article in English | MEDLINE | ID: mdl-28005008

ABSTRACT

Mechanisms underlying the vein development remain largely unknown. Tie2 signaling mediates endothelial cell (EC) survival and vascular maturation and its activating mutations are linked to venous malformations. Here we show that vein formation are disrupted in mouse skin and mesentery when Tie2 signals are diminished by targeted deletion of Tek either ubiquitously or specifically in embryonic ECs. Postnatal Tie2 attenuation resulted in the degeneration of newly formed veins followed by the formation of haemangioma-like vascular tufts in retina and venous tortuosity. Mechanistically, Tie2 insufficiency compromised venous EC identity, as indicated by a significant decrease of COUP-TFII protein level, a key regulator in venogenesis. Consistently, angiopoietin-1 stimulation increased COUP-TFII in cultured ECs, while Tie2 knockdown or blockade of Tie2 downstream PI3K/Akt pathway reduced COUP-TFII which could be reverted by the proteasome inhibition. Together, our results imply that Tie2 is essential for venous specification and maintenance via Akt mediated stabilization of COUP-TFII.


Subject(s)
COUP Transcription Factor II/metabolism , Endothelial Cells/physiology , Receptor, TIE-2/metabolism , Veins/growth & development , Animals , Gene Deletion , Gene Targeting , Mesentery/anatomy & histology , Mesentery/embryology , Mice , Proto-Oncogene Proteins c-akt/metabolism , Receptor, TIE-2/genetics , Retina/anatomy & histology , Skin/anatomy & histology , Skin/embryology , Veins/embryology
SELECTION OF CITATIONS
SEARCH DETAIL