Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 175
Filter
Add more filters

Country/Region as subject
Publication year range
1.
J Biol Chem ; 300(7): 107472, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38879005

ABSTRACT

African swine fever virus (ASFV) causes severe disease in domestic pigs and wild boars, seriously threatening the development of the global pig industry. Type I interferon (IFN-I) is an important component of innate immunity, inducing the transcription and expression of antiviral cytokines by activating Janus-activated kinase-signal transducer and activator of transcription (STAT). However, the underlying molecular mechanisms by which ASFV antagonizes IFN-I signaling have not been fully elucidated. Therefore, using coimmunoprecipitation, confocal microscopy, and dual luciferase reporter assay methods, we investigated these mechanisms and identified a novel ASFV immunosuppressive protein, pB475L, which interacts with the C-terminal domain of STAT2. Consequently, pB475L inhibited IFN-I signaling by inhibiting STAT1 and STAT2 heterodimerization and nuclear translocation. Furthermore, we constructed an ASFV-B475L7PM mutant strain by homologous recombination, finding that ASFV-B475L7PM attenuated the inhibitory effects on IFN-I signaling compared to ASFV-WT. In summary, this study reveals a new mechanism by which ASFV impairs host innate immunity.


Subject(s)
African Swine Fever Virus , Immunity, Innate , Interferon Type I , STAT2 Transcription Factor , Signal Transduction , Viral Proteins , Animals , Humans , African Swine Fever/immunology , African Swine Fever/virology , African Swine Fever/metabolism , African Swine Fever/genetics , African Swine Fever Virus/immunology , African Swine Fever Virus/genetics , HEK293 Cells , Immune Evasion , Interferon Type I/metabolism , Interferon Type I/immunology , STAT1 Transcription Factor/metabolism , STAT1 Transcription Factor/genetics , STAT2 Transcription Factor/metabolism , STAT2 Transcription Factor/genetics , Swine , Viral Proteins/genetics , Viral Proteins/metabolism , Viral Proteins/immunology
2.
Nature ; 556(7700): 255-258, 2018 04.
Article in English | MEDLINE | ID: mdl-29618817

ABSTRACT

Cross-species transmission of viruses from wildlife animal reservoirs poses a marked threat to human and animal health 1 . Bats have been recognized as one of the most important reservoirs for emerging viruses and the transmission of a coronavirus that originated in bats to humans via intermediate hosts was responsible for the high-impact emerging zoonosis, severe acute respiratory syndrome (SARS) 2-10 . Here we provide virological, epidemiological, evolutionary and experimental evidence that a novel HKU2-related bat coronavirus, swine acute diarrhoea syndrome coronavirus (SADS-CoV), is the aetiological agent that was responsible for a large-scale outbreak of fatal disease in pigs in China that has caused the death of 24,693 piglets across four farms. Notably, the outbreak began in Guangdong province in the vicinity of the origin of the SARS pandemic. Furthermore, we identified SADS-related CoVs with 96-98% sequence identity in 9.8% (58 out of 591) of anal swabs collected from bats in Guangdong province during 2013-2016, predominantly in horseshoe bats (Rhinolophus spp.) that are known reservoirs of SARS-related CoVs. We found that there were striking similarities between the SADS and SARS outbreaks in geographical, temporal, ecological and aetiological settings. This study highlights the importance of identifying coronavirus diversity and distribution in bats to mitigate future outbreaks that could threaten livestock, public health and economic growth.


Subject(s)
Alphacoronavirus/isolation & purification , Alphacoronavirus/pathogenicity , Animal Diseases/epidemiology , Animal Diseases/virology , Chiroptera/virology , Coronavirus Infections/veterinary , Diarrhea/veterinary , Swine/virology , Alphacoronavirus/classification , Alphacoronavirus/genetics , Animal Diseases/transmission , Animals , Biodiversity , China/epidemiology , Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , Diarrhea/pathology , Diarrhea/virology , Disease Reservoirs/veterinary , Disease Reservoirs/virology , Genome, Viral/genetics , Humans , Jejunum/pathology , Jejunum/virology , Phylogeny , Severe Acute Respiratory Syndrome/epidemiology , Severe Acute Respiratory Syndrome/veterinary , Severe Acute Respiratory Syndrome/virology , Spatio-Temporal Analysis , Zoonoses/epidemiology , Zoonoses/transmission , Zoonoses/virology
3.
Microb Pathog ; 184: 106336, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37683832

ABSTRACT

Pasteurella multocida.(PM) infection is a major cause of avian cholera, but the pathogenesis of the disease is unknown. The purpose of this study was to further understand the host response to infection by using a duck model of PM, 20 female ducks were divided into two groups (n = 10). One group was infected with PM, while the other served as an uninfected control group. The ducks were observed after infection and samples were collected for testing. In this study, we report the mechanism of PM-induced inflammation to further mediate apoptosis and autophagic signaling pathways in liver cells. Our results demonstrated that PM infection initially induces hemorrhagic and necrotic lesions in the liver tissue of duck, promoting inflammasome assembly and release, triggering inflammation. The TLR4/NF-κB axis activated and interacted with multiple inflammation-related proteins, including TNF-α and IL-1ß, which affected apoptosis and autophagy. Tumor necrosis factor induced hepatocyte apoptosis was implicated in a wide range of liver diseases; the release of TNF-α and activation with NF-κB further incite apoptotic pathways,such as Bax/BCL2/caspase to promote apoptotic genes APAF1, Bax, Caspase3, BCL-2, p53, and Cytc expression. Finally, PM-induced autophagy suppressed liver injury by promoting the Beclin-1, LC3B, p62, and mTOR. Thus, liver injury caused by PM via promoting autophagy was induced. In conclusion, we analyzed the liver injury of ducks infected with PM, and confirmed that inflammation appeared in the liver; this was followed by the intricate interplay between inflammation, apoptosis, and autophagy signaling pathways. The observed results provided a reference basis for studying pathogenic mechanisms of PM-host interactions.


Subject(s)
Pasteurella multocida , Animals , Female , Pasteurella multocida/metabolism , Ducks , NF-kappa B/metabolism , Tumor Necrosis Factor-alpha , bcl-2-Associated X Protein , Liver/pathology , Inflammation/pathology , Autophagy , Apoptosis
4.
BMC Genomics ; 23(1): 825, 2022 Dec 13.
Article in English | MEDLINE | ID: mdl-36513979

ABSTRACT

BACKGROUND: The transition from fertilized egg to embryo in chicken requires activation of hundreds of genes that were mostly inactivated before fertilization, which is accompanied with various biological processes. Undoubtedly, transcription factors (TFs) play important roles in regulating the changes in gene expression pattern observed at early development. However, the contribution of TFs during early embryo development of chicken still remains largely unknown that need to be investigated. Therefore, an understanding of the development of vertebrates would be greatly facilitated by study of the dynamic changes in transcription factors during early chicken embryo. RESULTS: In the current study, we selected five early developmental stages in White Leghorn chicken, gallus gallus, for transcriptome analysis, cover 17,478 genes with about 807 million clean reads of RNA-sequencing. We have compared global gene expression patterns of consecutive stages and noted the differences. Comparative analysis of differentially expressed TFs (FDR < 0.05) profiles between neighboring developmental timepoints revealed significantly enriched biological categories associated with differentiation, development and morphogenesis. We also found that Zf-C2H2, Homeobox and bHLH were three dominant transcription factor families that appeared in early embryogenesis. More importantly, a TFs co-expression network was constructed and 16 critical TFs were identified. CONCLUSION: Our findings provide a comprehensive regulatory framework of TFs in chicken early embryo, revealing new insights into alterations of chicken embryonic TF expression and broadening better understanding of TF function in chicken embryogenesis.


Subject(s)
Chickens , Transcription Factors , Chick Embryo , Animals , Transcription Factors/genetics , Transcription Factors/metabolism , Chickens/genetics , Chickens/metabolism , Transcriptome , Gene Expression Profiling , Embryonic Development/genetics
5.
Microb Pathog ; 160: 105196, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34534643

ABSTRACT

Pasteurella multocida, an important gram-negative pathogen that mainly inhibits the upper respiratory tracts of domestic and wild animals such as chicken, duck, cattle and pig, which can cause cholera fowl, haemorrhagic septicaemia and infectious pneumonia. Currently, the prevalence and infection of P.multocida is still one of the most serious threats to the poultry industry in China, but studies on its characteristics are still insufficient. Here, this study was conducted to isolate and identify P.multocida in infected ducks and determined the leading serotypes and epidemiology of the diseases this pathogen causes. Results indicated that all the isolates were positive for KMT1 gene and the PCR amplified products were approximately 460 bp, demonstrating that these strains were all P.multocida. Moreover, all the isolated strains were identified as capsular type A and lipopolysaccharide type L1. Virulence factor identification results revealed that all strains possessed genes related to pili, adhesin, iron metabolism and uptake. In contrast, toxin coding gene (toxA) and sialidase encodes genes (nan B and nan H) were not detected in any isolates. The drug susceptibility results indicated that all the isolates were resistant to Lincomycin, Chloramphenicol, Clindamycin and Oxacillin but were sensitive to Ceftriaxone and Cefalotin. The animal experiments were also performed to further determine the pathogenicity of these isolated strains. Animal experiment revealed that the liver, kidney, and heart of infected ducks were swollen and had bleeding spots. We also observed hepatocyte hypertrophy, hepatic sinus congestion and single-cell infiltration in infected ducks through H&E staining. In summary, this study demonstrated that all the isolated strains belong to capsular A and lipopolysaccharide type L1 P.multocida, but their virulence factors, drug resistance and pathogenicity were different.


Subject(s)
Pasteurella Infections , Pasteurella multocida , Poultry Diseases , Animals , Cattle , China/epidemiology , Ducks , Pasteurella Infections/veterinary , Pasteurella multocida/genetics , Poultry Diseases/epidemiology , Swine
6.
Vet Res ; 51(1): 19, 2020 Feb 24.
Article in English | MEDLINE | ID: mdl-32093775

ABSTRACT

Marek's disease (MD) is a contagious disease of domestic chickens caused by MD viruses. MD has been controlled primarily by vaccinations, yet sporadic outbreaks of MD take place worldwide. Commonly used MD vaccines include HVT, SB-1 and CVI988/Rispens and their efficacies are reportedly dependent of multiple factors including host genetics. Our previous studies showed protective efficacy of a MD vaccine can differ drastically from one chicken line to the next. Advanced understanding on the underlying genetic and epigenetic factors that modulate vaccine efficacy would greatly improve the strategy in design and development of more potent vaccines. Two highly inbred lines of White Leghorn were inoculated with HVT and CVI988/Rispens. Bursa samples were taken 26 days post-vaccination and subjected to small RNA sequencing analysis to profile microRNAs (miRNA). A total of 589 and 519 miRNAs was identified in one line, known as line 63, 490 and 630 miRNAs were identified in the other, known as line 72, in response to HVT or CVI988/Rispens inoculation, respectively. HVT and CVI988/Rispens induced mutually exclusive 4 and 13 differentially expressed (DE) miRNAs in line 63 birds in contrast to a non-vaccinated group of the same line. HVT failed to induce any DE miRNA and CVI988/Rispens induced a single DE miRNA in line 72 birds. Thousands of target genes for the DE miRNAs were predicted, which were enriched in a variety of gene ontology terms and pathways. This finding suggests the epigenetic factor, microRNA, is highly likely involved in modulating vaccine protective efficacy in chicken.


Subject(s)
Bursa of Fabricius/metabolism , Chickens/immunology , Gene Expression Regulation , Lymphoid Tissue/metabolism , Marek Disease Vaccines/metabolism , MicroRNAs/genetics , Animals , Bursa of Fabricius/immunology , Lymphoid Tissue/immunology , Marek Disease Vaccines/administration & dosage , MicroRNAs/metabolism
7.
Arch Virol ; 165(6): 1409-1417, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32318833

ABSTRACT

Chicken anemia virus (CAV) causes severe anemia and immunosuppression in young chickens and a compromised immune response in older birds, resulting in great economic losses to the poultry industry worldwide. Here, we report the molecular epidemiology and characterization of CAV circulating in poultry in Guangdong province, China. Ninety-one of 277 chickens collected from 2016 to 2017 were CAV positive. Full-genome sequencing revealed the presence of eight separate strains. Phylogenetic analysis based on the genome sequences obtained in this study and related sequences available in the GenBank database showed that all of the CAV isolates exhibit a close relationship to each other and belong to the same genotypic group. Putative recombination events were also detected in the genomes of the newly isolated CAVs. Collectively, our findings underscore the importance of CAV surveillance and provide information that will lead to a better understanding of the evolution of CAV.


Subject(s)
Chicken anemia virus/classification , Circoviridae Infections/veterinary , Genetic Variation , Genotype , Poultry Diseases/virology , Recombination, Genetic , Animals , Base Sequence , Chicken anemia virus/isolation & purification , Chickens , China/epidemiology , Circoviridae Infections/virology , Molecular Epidemiology , Phylogeny , Sequence Analysis, DNA/veterinary
8.
J Virol ; 92(8)2018 04 15.
Article in English | MEDLINE | ID: mdl-29263268

ABSTRACT

The group of highly related avian leukosis viruses (ALVs) in chickens are thought to have evolved from a common retroviral ancestor into six subgroups, A to E and J. These ALV subgroups use diverse cellular proteins encoded by four genetic loci in chickens as receptors to gain entry into host cells. Hosts exposed to ALVs might be under selective pressure to develop resistance to ALV infection. Indeed, resistance alleles have previously been identified in all four receptor loci in chickens. The tvb gene encodes a receptor, which determines the susceptibility of host cells to ALV subgroup B (ALV-B), ALV-D, and ALV-E. Here we describe the identification of two novel alleles of the tvb receptor gene, which possess independent insertions each within exon 4. The insertions resulted in frameshift mutations that reveal a premature stop codon that causes nonsense-mediated decay of the mutant mRNA and the production of truncated Tvb protein. As a result, we observed that the frameshift mutations in the tvb gene significantly lower the binding affinity of the truncated Tvb receptors for the ALV-B, ALV-D, and ALV-E envelope glycoproteins and significantly reduce susceptibility to infection by ALV-B, ALV-D and ALV-E in vitro and in vivo Taken together, these findings suggest that frameshift mutation can be a molecular mechanism of reducing susceptibility to ALV and enhance our understanding of virus-host coevolution.IMPORTANCE Avian leukosis virus (ALV) once caused devastating economic loss to the U.S. poultry industry prior the current eradication schemes in place, and it continues to cause severe calamity to the poultry industry in China and Southeast Asia, where deployment of a complete eradication scheme remains a challenge. The tvb gene encodes the cellular receptor necessary for subgroup B, D, and E ALV infection. Two tvb allelic variants that resulted from frameshift mutations have been identified in this study, which have been shown to have significantly reduced functionality in mediating subgroup B, D, and E ALV infection. Unlike the control of herpesvirus-induced diseases by vaccination, the control of avian leukosis in chickens has relied totally on virus eradication measures and host genetic resistance. This finding enriches the allelic pool of the tvb gene and expands the potential for genetic improvement of ALV resistance in varied chicken populations by selection.


Subject(s)
Avian Leukosis Virus/metabolism , Avian Leukosis , Avian Proteins , Chickens , Frameshift Mutation , Genetic Predisposition to Disease , Receptors, Virus , Animals , Avian Leukosis/genetics , Avian Leukosis/metabolism , Avian Leukosis Virus/genetics , Avian Proteins/genetics , Avian Proteins/metabolism , Cell Line , Chickens/genetics , Chickens/metabolism , Chickens/virology , Receptors, Virus/genetics , Receptors, Virus/metabolism
9.
Microb Pathog ; 126: 40-44, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30366127

ABSTRACT

Aberrant expression of microRNAs (miRNAs) is known to be involved in cancer progression caused by subgroup J avian leukosis virus (ALV-J) in liver tissues. To advance our understanding of the related pathological mechanisms and virus-host interactions, seven previously reported miRNAs were selected for a comparative analysis of miRNA expression between infected and uninfected DF-1 cells, including six miRNAs related to tumorigenesis (let-7b/7i, miR-221/222, miR-125b, miR-375 and miR-2127. The results showed that six of the seven miRNAs except gga-miR-375 were upregulated in cells infected with NX0101 (caused myeloma (ML)) and GD1109 (caused hemangioma (HE)) at 1 h post infection. On day 2 post-infection, all seven miRNAs were upregulated in infected DF-1 cells. On day 6 post-infection, gga-let-7b, gga-miR-125b, and gga-miR-375 were downregulated whereas gga-miR-221 and gga-miR-222 were upregulated in DF-1 cells infected with the two ALV-J strains of different phenotypes. However, expression of gga-let-7i was reduced in DF-1 cells infected with NX0101 and was increased in those infected with GD1109; gga-miR-2127 expression showed no significant difference between infected and uninfected cells. This study is the first to report the changes in the miRNA expression levels in DF-1 cells during the course of ALV-J infection, and suggests a relationship between its pathological mechanisms and miRNAs.


Subject(s)
Avian Leukosis Virus/genetics , Avian Leukosis Virus/pathogenicity , Host-Pathogen Interactions/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Animals , Avian Leukosis/virology , Carcinogenesis , Cell Line , Chick Embryo , Chickens , Down-Regulation , Fibroblasts/virology , Gene Expression Regulation , Genes, Viral , Poultry Diseases/virology
10.
Virol J ; 16(1): 24, 2019 02 21.
Article in English | MEDLINE | ID: mdl-30791956

ABSTRACT

BACKGROUND: As a low pathogenic influenza virus, avian influenza virus subtype H9N2 (H9N2 AIV) often induces high morbidity in association with secondary bacterial infections in chickens or mammals. To explore this phenomenon, the relationship between intestinal microflora changes and bacterial translocations was studied post H9N2 AIV challenge and post AIV infection plus Ageratum-liquid treatment. METHODS: Illumina sequencing, histological examination and Neongreen-tagged bacteria were used in this study to research the microbiota composition, intestinal barrier, and bacterial translocation in six weeks of BALB/c mice. RESULTS: H9N2 AIV infection caused intestinal dysbacteriosis and mucosal barrier damages. Notably, the villus length was significantly reduced (p < 0.01) at 12 dpi and the crypt depth was significantly increased (p < 0.01) at 5 dpi and 12 dpi with infection, resulting in the mucosal regular villus-length/crypt-depth (V/C) was significantly reduced (p < 0.01) at 5 dpi and 12 dpi. Moreover, degeneration and dissolution of the mucosal epithelial cells, loose of the connective tissue and partial glandular atrophy were found in infection group, indicating that intestinal barrier function was weakened. Eventually, intestinal microbiota (Staphylococcus, E. coli, etc.) overrun the intestinal barrier and migrated to liver and lung tissues of the mice at 5 and 12 dpi. Furthermore, the bacteria transferred in mesentery tissue sites from intestine at 36 h through tracking the Neongreen-tagged bacteria. Then the Neongreen-tagged bacteria were isolated from liver at 48 h post intragastrical administration. Simultaneously, Ageratum-liquid could inhibit the intestinal microbiota disorder post H9N2 AIV challenge via the respiratory tract. In addition, this study also illustrated that Ageratum-liquid could effectively prevent intestinal bacterial translocation post H9N2 AIV infection in mice. CONCLUSION: In this study, we report the discovery that H9N2 AIV infection could damage the ileal mucosal barrier and induce the disturbance of the intestinal flora in BALB/c mice resulting in translocation of intestinal bacteria. In addition, this study indicated that Ageratum-liquid can effectively prevent bacterial translocation following H9N2 infection. These findings are of important theoretical and practical significance in prevention and control of H9N2 AIV infection.


Subject(s)
Ageratum/chemistry , Bacterial Infections/drug therapy , Bacterial Translocation/drug effects , Drugs, Chinese Herbal/pharmacology , Intestinal Mucosa/virology , Orthomyxoviridae Infections/drug therapy , Animals , Coinfection/drug therapy , Gastrointestinal Microbiome , Genome, Bacterial , Influenza A Virus, H9N2 Subtype/pathogenicity , Influenza A Virus, H9N2 Subtype/physiology , Intestinal Mucosa/microbiology , Intestinal Mucosa/pathology , Mice , Mice, Inbred BALB C
11.
RNA Biol ; 16(1): 118-132, 2019 01.
Article in English | MEDLINE | ID: mdl-30608205

ABSTRACT

Circular RNAs (circRNAs) are evolutionarily conserved and widely present, but their functions remain largely unknown. Recent development has highlighted the importance of circRNAs as the sponge of microRNA (miRNA) in cancer. We previously reported that gga-miR-375 was downregulated in the liver tumors of chickens infected with avian leukosis virus subgroup J (ALV-J) by microRNA microarray assay. It can be reasonably assumed in accordance with previous studies that the gga-miR-375 may be related to circRNAs. However, the question as to which circRNA acts as the sponge for gga-miR-375 remains to be answered. In this study, circRNA sequencing results revealed that a circRNA Vav3 termed circ-Vav3 was upregulated in the liver tumors of chickens infected with ALV-J. In addition, RNA immunoprecipitation (RIP), biotinylated RNA pull-down and RNA-fluorescence in situ hybridization (RNA-FISH) experiments were conducted to confirm that circ-Vav3 serves as the sponge of gga-miR-375. Furthermore, we confirmed through dual luciferase reporter assay that YAP1 is the target gene of gga-miR-375. The effect of the sponge function of circ-Vav3 on its downstream genes has been further verified by our conclusion that the sponge function of circ-Vav3 can abrogate gga-miR-375 target gene YAP1 and increase the expression level of YAP1. We further confirmed that the circ-Vav3/gga-miR-375/YAP1 axis induces epithelial-mesenchymal transition (EMT) through influencing EMT markers to promote tumorigenesis. Finally, clinical ALV-J-induced tumor livers were collected to detect core gene expression levels to provide a proof to the concluded tumorigenic mechanism. Together, our results suggest that circ-Vav3/gga-miR-375/YAP1 axis is another regulator of tumorigenesis.


Subject(s)
Epithelial-Mesenchymal Transition/genetics , MicroRNAs/genetics , RNA Interference , RNA/genetics , 3' Untranslated Regions , Animals , Avian Leukosis/complications , Avian Leukosis/virology , Binding Sites , Cell Movement/genetics , Chickens , Gene Expression Profiling , Gene Expression Regulation , Humans , Phosphoproteins/genetics , Phosphoproteins/metabolism , RNA, Circular
13.
Arch Virol ; 163(9): 2395-2404, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29767299

ABSTRACT

Avian encephalomyelitis virus (AEV) causes typical neurological symptoms in young chicks and a transient drop in egg production and hatchability in adult laying birds, resulting in huge economic losses in the poultry industry. An effective way to control and prevent this disease is vaccination of the flocks. Here, we assessed the efficacy of the live vaccine candidate strain GDt29 against avian encephalomyelitis virus. The GDt29 strain has low virulence, was confirmed safe, and showed no signs of pathogenicity. High titers of AEV-specific antibodies were detected in GDt29-vaccinated hens (S/P > 3.0) and their progeny (S/P > 2.0). Moreover, the eggs of GDt29-vaccinated hens with high levels of maternal antibodies were hatched successfully regardless of challenge with a heterologous AEV strain, and the GDt29 attenuated vaccine showed higher protective efficacy against AEV than the commercial vaccine. Furthermore, contact-exposed chicks bred with GDt29-vaccinated birds generated high titers against AE virus (S/P > 2.8). Collectively, our studies are proof of the principle that GDt29 might be an ideal vaccine candidate to prevent AEV infection, and they highlight the utility of using a live vaccine against AEV.


Subject(s)
Encephalomyelitis Virus, Avian/immunology , Picornaviridae Infections/prevention & control , Poultry Diseases/prevention & control , Vaccines, Attenuated/immunology , Viral Vaccines/immunology , Animals , Antibodies, Viral/immunology , Chickens , Encephalomyelitis Virus, Avian/genetics , Female , Picornaviridae Infections/immunology , Picornaviridae Infections/virology , Poultry Diseases/immunology , Poultry Diseases/virology , Vaccination , Vaccines, Attenuated/administration & dosage , Viral Vaccines/administration & dosage
14.
Arch Virol ; 161(11): 3039-46, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27503348

ABSTRACT

Members of avian leukosis virus subgroup J (ALV-J) cause various diseases associated with tumor formation and decreased fertility, resulting in major economic losses in the poultry industry worldwide. To assess the status of ALV-J infection in meat-type chickens in southern China, the molecular epidemiology of ALV-J strains was investigated. A total of 265 clinical samples collected from southern China from 2013 to 2014 were investigated in this study for the presence of ALV-J, which resulted in 12 virus isolates. Phylogenetic analysis showed that 91.7 % (11/12) of the ALV-J isolates have possessed high homology to Chinese layer isolates and belong to one subgroup. One of the ALV isolates (designated GD1411-1) was relatively closely related to the ALV-J broiler isolates, indicating that the GD1411-1 isolate might be a transition strain. Several unique nucleotide substitutions in gp85 and the U3 region were detected in all 12 ALV-J isolates. This study provides some interesting information on the molecular characterization of ALV-J isolates. These findings will be beneficial for understanding of the pathogenic mechanism of ALV-J infection.


Subject(s)
Avian Leukosis Virus/classification , Avian Leukosis Virus/isolation & purification , Avian Leukosis/epidemiology , Avian Leukosis/virology , Genotype , Poultry Diseases/epidemiology , Poultry Diseases/virology , Animals , Avian Leukosis Virus/genetics , Chickens , China/epidemiology , Molecular Epidemiology , Phylogeny , Point Mutation , Sequence Analysis, DNA
15.
Arch Virol ; 161(10): 2717-25, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27422398

ABSTRACT

Avian leukosis virus (ALV) causes high mortality associated with tumor formation and decreased fertility, and results in major economic losses in the poultry industry worldwide. Recently, a putative novel ALV subgroup virus named ALV-K was observed in Chinese local chickens. In this study, a novel ALV strain named GD14LZ was isolated from a Chinese local yellow broiler in 2014. The proviral genome was sequenced and phylogenetically analyzed. The replication ability and pathogenicity of this virus were also evaluated. The complete proviral genome sequence of GD14LZ was 7482 nt in length, with a genetic organization typical of replication-competent type C retroviruses lacking viral oncogenes. Sequence analysis showed that the gag, pol and gp37 genes of GD14LZ have high sequence similarity to those of other ALV strains (A-E subgroups), especially to those of ALV-E. The gp85 gene of the GD14LZ isolate showed a low sequence similarity to those other ALV strains (A-E subgroups) but showed high similarity to strains previously described as ALV-K. Phylogenetic analysis of gp85 also suggested that the GD14LZ isolate was related to ALV-K strains. Further study showed that this isolate replicated more slowly and was less pathogenic than other ALV strains. These results indicate that the GD14LZ isolate belongs to the novel subgroup ALV-K and probably arose by recombination of ALV-K with endogenous viruses with low replication and pathogenicity. This virus might have existed in local Chinese chickens for a long time.


Subject(s)
Avian Leukosis Virus/genetics , Avian Leukosis Virus/isolation & purification , Chickens/virology , Evolution, Molecular , Genetic Variation , Proviruses/genetics , Proviruses/isolation & purification , Animals , Avian Leukosis Virus/classification , Avian Leukosis Virus/physiology , China , Cluster Analysis , DNA, Viral/genetics , Genome, Viral , Phylogeny , Sequence Analysis, DNA , Sequence Homology , Virus Replication
16.
Virus Genes ; 49(2): 292-303, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25000989

ABSTRACT

Sixty-two strains of avian infectious bronchitis virus (IBV) were isolated from diseased chickens at different farms in southern China during 2011-2012, and 66.1 % of the isolated strains were associated with typical nephritis. Analysis of the S1 gene sequences amplified from the 62 isolated strains together with 40 reference strains published in Genbank showed nucleotide homologies ranging from 63.5 to 99.9 % and amino acid homologies ranging from 57.9 to 100 %. Phylogenetic analysis revealed that all Chinese IBV strains were clustered into six distinct genetic groups (I-VI). Most of the isolated strains belonged to group I, and the isolation of group V strains was increased compared with an earlier period of surveillance. Current vaccine strains used in China (H120, H52, W93, and Ma5) formed the group Mass which is evolutionarily distant from Chinese isolates. Alignment of S1 amino acid sequences revealed polymorphic and diverse substitutions, insertions, and deletions, and the S1 protein of major pandemic strains contained 540 amino acids with a cleavage site sequence of HRRRR or RRF(L/S)RR. Further analysis showed that recombination events formed a new subgroup. Taken together, these findings suggest that various IBV variants were co-circulating and undergoing genetic evolution in southern China during the observation period. Therefore, long-term continuing surveillance is significantly important for prevention and control of IBV infection.


Subject(s)
Coronavirus Infections/veterinary , Genetic Variation , Infectious bronchitis virus/genetics , Infectious bronchitis virus/isolation & purification , Poultry Diseases/virology , Viral Proteins/genetics , Animals , Chickens , China/epidemiology , Cluster Analysis , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Genotype , Molecular Epidemiology , Molecular Sequence Data , Phylogeny , Poultry Diseases/epidemiology , Sequence Analysis, DNA , Sequence Homology, Amino Acid , Sequence Homology, Nucleic Acid
17.
Virus Genes ; 48(3): 479-85, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24682938

ABSTRACT

Subtype H9N2 avian influenza viruses (AIVs) circulating in China have aroused increasing concerns for their impact on poultry and risk to public health. The present study was an attempt to elucidate the phylogenetic relationship of H9N2 AIVs in two geographically distinct regions of China where vaccination is routinely practiced. A total of 18 emerging H9N2 isolates were identified and genetically characterized. Phylogenetic analysis of hemagglutinin (HA) and neuraminidase (NA) genes confirmed that the isolates belonged to the Y280 lineage. Based on the HA genes, the isolates were subdivided into two subgroups. The viruses from Zhejiang Province were clustered together in Group I, while the isolates from Guangdong Province were clustered together in Group II. Antigenic characterization showed that the tested viruses were antigenically different when compared to the current used vaccine strain. It was notable that 14 out of total 18 isolates had an amino acid exchange (Q→L) at position 216 (226 by H3 Numbering) in the receptor-binding site, which indicated that the virus had potential affinity of binding to human like receptor. These results suggest that the emerging viruses have potential risk to public health than previously thought. Therefore, continuous surveillance studies of H9N2 influenza virus are very important to the prognosis and control of future influenza pandemics.


Subject(s)
Influenza A Virus, H9N2 Subtype/classification , Influenza A Virus, H9N2 Subtype/genetics , Influenza in Birds/virology , Phylogeny , Poultry Diseases/virology , Amino Acid Sequence , Amino Acid Substitution , Animals , Chick Embryo , Chickens , China , Drosophila Proteins , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Influenza A Virus, H9N2 Subtype/chemistry , Influenza A Virus, H9N2 Subtype/isolation & purification , Molecular Sequence Data , Protein Serine-Threonine Kinases , Sequence Homology, Amino Acid
18.
Microorganisms ; 12(7)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-39065085

ABSTRACT

Infectious bronchitis virus (IBV) causes infectious bronchitis in chicken, an acute, highly contagious respiratory infection. Because of genetic mutations and recombination, IBV forms many subtypes, which makes it difficult to treat the disease and apply commercial vaccines. Therefore, to detect IBV in time and stop the virus from spreading, a novel and convenient IBV detection technology based on reverse transcription recombinase-aided amplification (RT-RAA) was established in this study. According to the S1 gene of IBV CH I-V and Mass genotypes and S1 gene of IBV CH VI genotype, a set of optimal primers were designed and selected to establish a real-time dual fluorescence RT-RAA method. The lowest detection line was 10 copies/µL of RNA molecules and the method exhibited no cross-reactivity with avian reticuloendotheliosis virus (REV), infectious bursal disease virus (IBDV), avian leukosis virus (ALV), Newcastle disease virus (NDV), chicken infectious anemia virus (CIAV), infectious laryngotracheitis virus (ILTV), Marek's disease virus (MDV), and H9N2 avian influenza virus (H9N2), demonstrating high specificity. When compared to qPCR detection results, our method achieved a sensitivity of 96.67%, a specificity of 90%, and a Kappa value of 0.87 for the IBV CH I-V and Mass genotypes, and achieved a sensitivity of 100%, a specificity of 97.73%, and a Kappa value of 0.91 for the IBV CH VI genotype.

19.
Vet Sci ; 11(4)2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38668407

ABSTRACT

Epigenetic factors, including microRNAs (miRNAs), play an important role in affecting gene expression and, therefore, are involved in various biological processes including immunity protection against tumors. Marek's disease (MD) is a highly contagious disease of chickens caused by the MD virus (MDV). MD has been primarily controlled by vaccinations. MD vaccine efficacy might, in part, be dependent on modulations of a complex set of factors including host epigenetic factors. This study was designed to identify differentially expressed miRNAs in the primary lymphoid organ, bursae of Fabricius, in response to MD vaccination followed by MDV challenge in two genetically divergent inbred lines of White Leghorns. Small RNA sequencing and bioinformatic analyses of the small RNA sequence reads identified hundreds of miRNAs among all the treatment groups. A small portion of the identified miRNAs was differentially expressed within each of the four treatment groups, which were HVT or CVI988/Rispens vaccinated line 63-resistant birds and line 72-susceptible birds. A direct comparison between the resistant line 63 and susceptible line 72 groups vaccinated with HVT followed by MDV challenge identified five differentially expressed miRNAs. Gene Ontology analysis of the target genes of those five miRNAs revealed that those target genes, in addition to various GO terms, are involved in multiple signaling pathways including MAPK, TGF-ß, ErbB, and EGFR1 signaling pathways. The general functions of those pathways reportedly play important roles in oncogenesis, anti-cancer immunity, cancer cell migration, and metastatic progression. Therefore, it is highly likely that those miRNAs may, in part, influence vaccine protection through the pathways.

20.
Vet Sci ; 11(5)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38787163

ABSTRACT

Duck hepatitis B virus (DHBV) is widely prevalent in global ducks and has been identified in Chinese geese with a high prevalence; the available detection techniques are time-consuming and require sophisticated equipment. In this study, an assay combining multienzyme isothermal rapid amplification (MIRA) and lateral flow dipstick (LFD) was developed for the efficient and rapid detection of DHBV. The primary reaction condition of the MIRA assay for DHBV detection was 10 min at 38 °C without a temperature cycler. Combined with the LFD assay, the complete procedure of the newly developed MIRA assay for DHBV detection required only 15 min, which is about one-fourth of the reaction time for routine polymerase chain reaction assay. And electrophoresis and gel imaging equipment were not required for detection and to read the results. Furthermore, the detection limit of MIRA was 45.6 copies per reaction, which is approximately 10 times lower than that of a routine polymerase chain reaction assay. The primer set and probe had much simpler designs than loop-mediated isothermal amplification, and they were only specific to DHBV, with no cross-reactivity with duck hepatitis A virus subtype 1 and duck hepatitis A virus subtype 3, goose parvovirus, duck enteritis virus, duck circovirus, or Riemerella anatipestifer. In this study, we offer a simple, fast, and accurate assay method to identify DHBV in clinical serum samples of ducks and geese, which would be suitable for widespread application in field clinics.

SELECTION OF CITATIONS
SEARCH DETAIL