Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Sensors (Basel) ; 22(9)2022 Apr 26.
Article in English | MEDLINE | ID: mdl-35591006

ABSTRACT

In aerospace, marine, and other heavy industries, bearing fault diagnosis has been an essential part of improving machine life, reducing economic losses, and avoiding safety problems caused by machine bearing failures. Most existing bearing fault diagnosis methods face challenges in extracting the fault features from raw bearing fault data. Compared with traditional methods for bearing fault characteristics extraction, deep neural networks can automatically extract intrinsic features without expert knowledge. The convolutional neural network (CNN) was utilized most widely in extracting representative features of bearing faults. Fundamental to this, the hybrid models based on the CNN and individual classifiers were proposed to diagnose bearing faults. However, CNN may not be suitable for all bearing fault classifiers. It is crucial to identify the classifiers which can maximize the CNN feature extraction ability. In this paper, four hybrid models based on CNN were built, and their fault detection accuracy and efficiency were compared. The comparative analysis showed that the random forest (RF) and support vector machine (SVM) could make full use of the CNN feature extraction ability.


Subject(s)
Neural Networks, Computer , Support Vector Machine , Data Collection , Face , Head
SELECTION OF CITATIONS
SEARCH DETAIL