Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
Cell ; 185(5): 860-871.e13, 2022 03 03.
Article in English | MEDLINE | ID: mdl-35120603

ABSTRACT

The SARS-CoV-2 Omicron variant with increased fitness is spreading rapidly worldwide. Analysis of cryo-EM structures of the spike (S) from Omicron reveals amino acid substitutions forging interactions that stably maintain an active conformation for receptor recognition. The relatively more compact domain organization confers improved stability and enhances attachment but compromises the efficiency of the viral fusion step. Alterations in local conformation, charge, and hydrophobic microenvironments underpin the modulation of the epitopes such that they are not recognized by most NTD- and RBD-antibodies, facilitating viral immune escape. Structure of the Omicron S bound with human ACE2, together with the analysis of sequence conservation in ACE2 binding region of 25 sarbecovirus members, as well as heatmaps of the immunogenic sites and their corresponding mutational frequencies, sheds light on conserved and structurally restrained regions that can be used for the development of broad-spectrum vaccines and therapeutics.


Subject(s)
Immune Evasion/physiology , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/chemistry , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Viral/immunology , Binding Sites , COVID-19/immunology , COVID-19/pathology , COVID-19/virology , Cryoelectron Microscopy , Humans , Mutagenesis, Site-Directed , Neutralization Tests , Protein Binding , Protein Domains/immunology , Protein Structure, Quaternary , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Surface Plasmon Resonance , Virus Attachment
2.
Cell ; 185(10): 1728-1744.e16, 2022 05 12.
Article in English | MEDLINE | ID: mdl-35460644

ABSTRACT

As the emerging variants of SARS-CoV-2 continue to drive the worldwide pandemic, there is a constant demand for vaccines that offer more effective and broad-spectrum protection. Here, we report a circular RNA (circRNA) vaccine that elicited potent neutralizing antibodies and T cell responses by expressing the trimeric RBD of the spike protein, providing robust protection against SARS-CoV-2 in both mice and rhesus macaques. Notably, the circRNA vaccine enabled higher and more durable antigen production than the 1mΨ-modified mRNA vaccine and elicited a higher proportion of neutralizing antibodies and distinct Th1-skewed immune responses. Importantly, we found that the circRNARBD-Omicron vaccine induced effective neutralizing antibodies against the Omicron but not the Delta variant. In contrast, the circRNARBD-Delta vaccine protected against both Delta and Omicron or functioned as a booster after two doses of either native- or Delta-specific vaccination, making it a favorable choice against the current variants of concern (VOCs) of SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Macaca mulatta , Mice , RNA, Circular/genetics , SARS-CoV-2/genetics , Vaccines, Synthetic/genetics , mRNA Vaccines
3.
Cell ; 178(6): 1275-1276, 2019 Sep 05.
Article in English | MEDLINE | ID: mdl-31422876

ABSTRACT

In response to recent anti-Chinese sentiment in the US, Sunney Xie uses his own experiences to assert that American ideals should not be replaced by nationalism and populism and that everybody wins in Sino-US scientific collaborations, contrary to what Americans are led to believe: that China is the sole beneficiary.


Subject(s)
International Cooperation , Politics , Research , China , Fertilization in Vitro/methods , Genetic Testing/methods , Global Health , Humans , Precision Medicine/methods , United States
4.
Nature ; 625(7993): 148-156, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37993710

ABSTRACT

The continuing emergence of SARS-CoV-2 variants highlights the need to update COVID-19 vaccine compositions. However, immune imprinting induced by vaccination based on the ancestral (hereafter referred to as WT) strain would compromise the antibody response to Omicron-based boosters1-5. Vaccination strategies to counter immune imprinting are critically needed. Here we investigated the degree and dynamics of immune imprinting in mouse models and human cohorts, especially focusing on the role of repeated Omicron stimulation. In mice, the efficacy of single Omicron boosting is heavily limited when using variants that are antigenically distinct from WT-such as the XBB variant-and this concerning situation could be mitigated by a second Omicron booster. Similarly, in humans, repeated Omicron infections could alleviate WT vaccination-induced immune imprinting and generate broad neutralization responses in both plasma and nasal mucosa. Notably, deep mutational scanning-based epitope characterization of 781 receptor-binding domain (RBD)-targeting monoclonal antibodies isolated from repeated Omicron infection revealed that double Omicron exposure could induce a large proportion of matured Omicron-specific antibodies that have distinct RBD epitopes to WT-induced antibodies. Consequently, immune imprinting was largely mitigated, and the bias towards non-neutralizing epitopes observed in single Omicron exposures was restored. On the basis of the deep mutational scanning profiles, we identified evolution hotspots of XBB.1.5 RBD and demonstrated that these mutations could further boost the immune-evasion capability of XBB.1.5 while maintaining high ACE2-binding affinity. Our findings suggest that the WT component should be abandoned when updating COVID-19 vaccines, and individuals without prior Omicron exposure should receive two updated vaccine boosters.


Subject(s)
Antibodies, Viral , COVID-19 Vaccines , COVID-19 , Immunization, Secondary , Immunologic Memory , SARS-CoV-2 , Animals , Humans , Mice , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , COVID-19/prevention & control , COVID-19/virology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/immunology , Epitopes, B-Lymphocyte/immunology , Immunologic Memory/immunology , SARS-CoV-2/classification , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Mutation
5.
Nature ; 614(7948): 521-529, 2023 02.
Article in English | MEDLINE | ID: mdl-36535326

ABSTRACT

Continuous evolution of Omicron has led to a rapid and simultaneous emergence of numerous variants that display growth advantages over BA.5 (ref. 1). Despite their divergent evolutionary courses, mutations on their receptor-binding domain (RBD) converge on several hotspots. The driving force and destination of such sudden convergent evolution and its effect on humoral immunity remain unclear. Here we demonstrate that these convergent mutations can cause evasion of neutralizing antibody drugs and convalescent plasma, including those from BA.5 breakthrough infection, while maintaining sufficient ACE2-binding capability. BQ.1.1.10 (BQ.1.1 + Y144del), BA.4.6.3, XBB and CH.1.1 are the most antibody-evasive strains tested. To delineate the origin of the convergent evolution, we determined the escape mutation profiles and neutralization activity of monoclonal antibodies isolated from individuals who had BA.2 and BA.5 breakthrough infections2,3. Owing to humoral immune imprinting, BA.2 and especially BA.5 breakthrough infection reduced the diversity of the neutralizing antibody binding sites and increased proportions of non-neutralizing antibody clones, which, in turn, focused humoral immune pressure and promoted convergent evolution in the RBD. Moreover, we show that the convergent RBD mutations could be accurately inferred by deep mutational scanning profiles4,5, and the evolution trends of BA.2.75 and BA.5 subvariants could be well foreseen through constructed convergent pseudovirus mutants. These results suggest that current herd immunity and BA.5 vaccine boosters may not efficiently prevent the infection of Omicron convergent variants.


Subject(s)
Antibodies, Viral , Antigenic Drift and Shift , COVID-19 , Evolution, Molecular , Immunity, Humoral , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Humans , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Breakthrough Infections/immunology , Breakthrough Infections/virology , COVID-19/immunology , COVID-19/virology , COVID-19 Serotherapy , SARS-CoV-2/chemistry , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Protein Domains/genetics , Protein Domains/immunology , Antigenic Drift and Shift/immunology , Mutation
6.
Nature ; 602(7898): 657-663, 2022 02.
Article in English | MEDLINE | ID: mdl-35016194

ABSTRACT

The SARS-CoV-2 B.1.1.529 (Omicron) variant contains 15 mutations of the receptor-binding domain (RBD). How Omicron evades RBD-targeted neutralizing antibodies requires immediate investigation. Here we use high-throughput yeast display screening1,2 to determine the profiles of RBD escaping mutations for 247 human anti-RBD neutralizing antibodies and show that the neutralizing antibodies can be classified by unsupervised clustering into six epitope groups (A-F)-a grouping that is highly concordant with knowledge-based structural classifications3-5. Various single mutations of Omicron can impair neutralizing antibodies of different epitope groups. Specifically, neutralizing antibodies in groups A-D, the epitopes of which overlap with the ACE2-binding motif, are largely escaped by K417N, G446S, E484A and Q493R. Antibodies in group E (for example, S309)6 and group F (for example, CR3022)7, which often exhibit broad sarbecovirus neutralizing activity, are less affected by Omicron, but a subset of neutralizing antibodies are still escaped by G339D, N440K and S371L. Furthermore, Omicron pseudovirus neutralization showed that neutralizing antibodies that sustained single mutations could also be escaped, owing to multiple synergetic mutations on their epitopes. In total, over 85% of the tested neutralizing antibodies were escaped by Omicron. With regard to neutralizing-antibody-based drugs, the neutralization potency of LY-CoV016, LY-CoV555, REGN10933, REGN10987, AZD1061, AZD8895 and BRII-196 was greatly undermined by Omicron, whereas VIR-7831 and DXP-604 still functioned at a reduced efficacy. Together, our data suggest that infection with Omicron would result in considerable humoral immune evasion, and that neutralizing antibodies targeting the sarbecovirus conserved region will remain most effective. Our results inform the development of antibody-based drugs and vaccines against Omicron and future variants.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Immune Evasion/immunology , Neutralization Tests , SARS-CoV-2/immunology , Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/therapeutic use , Antibodies, Neutralizing/classification , Antibodies, Viral/classification , COVID-19/immunology , COVID-19/virology , COVID-19 Vaccines/immunology , Cells, Cultured , Convalescence , Epitopes, B-Lymphocyte/chemistry , Epitopes, B-Lymphocyte/immunology , Humans , Immune Sera/immunology , Models, Molecular , Mutation , SARS-CoV-2/chemistry , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism
7.
Nature ; 608(7923): 593-602, 2022 08.
Article in English | MEDLINE | ID: mdl-35714668

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron sublineages BA.2.12.1, BA.4 and BA.5 exhibit higher transmissibility than the BA.2 lineage1. The receptor binding and immune-evasion capability of these recently emerged variants require immediate investigation. Here, coupled with structural comparisons of the spike proteins, we show that BA.2.12.1, BA.4 and BA.5 (BA.4 and BA.5 are hereafter referred collectively to as BA.4/BA.5) exhibit similar binding affinities to BA.2 for the angiotensin-converting enzyme 2 (ACE2) receptor. Of note, BA.2.12.1 and BA.4/BA.5 display increased evasion of neutralizing antibodies compared with BA.2 against plasma from triple-vaccinated individuals or from individuals who developed a BA.1 infection after vaccination. To delineate the underlying antibody-evasion mechanism, we determined the escape mutation profiles2, epitope distribution3 and Omicron-neutralization efficiency of 1,640 neutralizing antibodies directed against the receptor-binding domain of the viral spike protein, including 614 antibodies isolated from people who had recovered from BA.1 infection. BA.1 infection after vaccination predominantly recalls humoral immune memory directed against ancestral (hereafter referred to as wild-type (WT)) SARS-CoV-2 spike protein. The resulting elicited antibodies could neutralize both WT SARS-CoV-2 and BA.1 and are enriched on epitopes on spike that do not bind ACE2. However, most of these cross-reactive neutralizing antibodies are evaded by spike mutants L452Q, L452R and F486V. BA.1 infection can also induce new clones of BA.1-specific antibodies that potently neutralize BA.1. Nevertheless, these neutralizing antibodies are largely evaded by BA.2 and BA.4/BA.5 owing to D405N and F486V mutations, and react weakly to pre-Omicron variants, exhibiting narrow neutralization breadths. The therapeutic neutralizing antibodies bebtelovimab4 and cilgavimab5 can effectively neutralize BA.2.12.1 and BA.4/BA.5, whereas the S371F, D405N and R408S mutations undermine most broadly sarbecovirus-neutralizing antibodies. Together, our results indicate that Omicron may evolve mutations to evade the humoral immunity elicited by BA.1 infection, suggesting that BA.1-derived vaccine boosters may not achieve broad-spectrum protection against new Omicron variants.


Subject(s)
Antibodies, Viral , Antigenic Drift and Shift , COVID-19 , Epitopes, B-Lymphocyte , Immune Tolerance , Mutation , SARS-CoV-2 , Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Antigenic Drift and Shift/genetics , Antigenic Drift and Shift/immunology , COVID-19/immunology , COVID-19/transmission , COVID-19/virology , COVID-19 Vaccines/immunology , Epitopes, B-Lymphocyte/chemistry , Epitopes, B-Lymphocyte/genetics , Epitopes, B-Lymphocyte/immunology , Humans , Immunity, Humoral , Immunization, Secondary , Neutralization Tests , SARS-CoV-2/classification , SARS-CoV-2/genetics , SARS-CoV-2/immunology , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism
8.
Proc Natl Acad Sci U S A ; 121(3): e2315354120, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38194459

ABSTRACT

The emergence of Omicron lineages and descendent subvariants continues to present a severe threat to the effectiveness of vaccines and therapeutic antibodies. We have previously suggested that an insufficient mucosal immunoglobulin A (IgA) response induced by the mRNA vaccines is associated with a surge in breakthrough infections. Here, we further show that the intramuscular mRNA and/or inactivated vaccines cannot sufficiently boost the mucosal secretory IgA response in uninfected individuals, particularly against the Omicron variant. We thus engineered and characterized recombinant monomeric, dimeric, and secretory IgA1 antibodies derived from four neutralizing IgG monoclonal antibodies (mAbs 01A05, rmAb23, DXP-604, and XG014) targeting the receptor-binding domain of the spike protein. Compared to their parental IgG antibodies, dimeric and secretory IgA1 antibodies showed a higher neutralizing activity against different variants of concern (VOCs), in part due to an increased avidity. Importantly, the dimeric or secretory IgA1 form of the DXP-604 antibody significantly outperformed its parental IgG antibody, and neutralized the Omicron lineages BA.1, BA.2, and BA.4/5 with a 25- to 75-fold increase in potency. In human angiotensin converting enzyme 2 (ACE2) transgenic mice, a single intranasal dose of the dimeric IgA DXP-604 conferred prophylactic and therapeutic protection against Omicron BA.5. Thus, dimeric or secretory IgA delivered by nasal administration may potentially be exploited for the treatment and prevention of Omicron infection, thereby providing an alternative tool for combating immune evasion by the current circulating subvariants and, potentially, future VOCs.


Subject(s)
Antibodies, Monoclonal , Immunoglobulin A, Secretory , Animals , Mice , Humans , Immunoglobulin G , Immunoglobulin A , Administration, Intranasal , Mice, Transgenic
9.
Proc Natl Acad Sci U S A ; 120(49): e2310367120, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38011566

ABSTRACT

Existing single-cell bisulfite-based DNA methylation analysis is limited by low DNA recovery, and the measurement of 5hmC at single-base resolution remains challenging. Here, we present a bisulfite-free single-cell whole-genome 5mC and 5hmC profiling technique, named Cabernet, which can characterize 5mC and 5hmC at single-base resolution with high genomic coverage. Cabernet utilizes Tn5 transposome for DNA fragmentation, which enables the discrimination between different alleles for measuring hemi-methylation status. Using Cabernet, we revealed the 5mC, hemi-5mC and 5hmC dynamics during early mouse embryo development, uncovering genomic regions exclusively governed by active or passive demethylation. We show that hemi-methylation status can be used to distinguish between pre- and post-replication cells, enabling more efficient cell grouping when integrated with 5mC profiles. The property of Tn5 naturally enables Cabernet to achieve high-throughput single-cell methylome profiling, where we probed mouse cortical neurons and embryonic day 7.5 (E7.5) embryos, and constructed the library for thousands of single cells at high efficiency, demonstrating its potential for analyzing complex tissues at substantially low cost. Together, we present a way of high-throughput methylome and hydroxymethylome detection at single-cell resolution, enabling efficient analysis of the epigenetic status of biological systems with complicated nature such as neurons and cancer cells.


Subject(s)
5-Methylcytosine , DNA Methylation , Animals , Mice , Sulfites , Sequence Analysis, DNA/methods , Cytosine
10.
Proc Natl Acad Sci U S A ; 119(51): e2206938119, 2022 12 20.
Article in English | MEDLINE | ID: mdl-36508663

ABSTRACT

Correlations in gene expression are used to infer functional and regulatory relationships between genes. However, correlations are often calculated across different cell types or perturbations, causing genes with unrelated functions to be correlated. Here, we demonstrate that correlated modules can be better captured by measuring correlations of steady-state gene expression fluctuations in single cells. We report a high-precision single-cell RNA-seq method called MALBAC-DT to measure the correlation between any pair of genes in a homogenous cell population. Using this method, we were able to identify numerous cell-type specific and functionally enriched correlated gene modules. We confirmed through knockdown that a module enriched for p53 signaling predicted p53 regulatory targets more accurately than a consensus of ChIP-seq studies and that steady-state correlations were predictive of transcriptome-wide response patterns to perturbations. This approach provides a powerful way to advance our functional understanding of the genome.


Subject(s)
Gene Regulatory Networks , Tumor Suppressor Protein p53 , Tumor Suppressor Protein p53/genetics , Gene Expression Profiling , Transcriptome , Signal Transduction , Single-Cell Analysis/methods
11.
Mol Cell ; 62(2): 284-294, 2016 04 21.
Article in English | MEDLINE | ID: mdl-27105118

ABSTRACT

Natural variations in gene expression provide a mechanism for multiple phenotypes to arise in an isogenic bacterial population. In particular, a sub-group termed persisters show high tolerance to antibiotics. Previously, their formation has been attributed to cell dormancy. Here we demonstrate that bacterial persisters, under ß-lactam antibiotic treatment, show less cytoplasmic drug accumulation as a result of enhanced efflux activity. Consistently, a number of multi-drug efflux genes, particularly the central component TolC, show higher expression in persisters. Time-lapse imaging and mutagenesis studies further establish a positive correlation between tolC expression and bacterial persistence. The key role of efflux systems, among multiple biological pathways involved in persister formation, indicates that persisters implement a positive defense against antibiotics prior to a passive defense via dormancy. Finally, efflux inhibitors and antibiotics together effectively attenuate persister formation, suggesting a combination strategy to target drug tolerance.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacterial Outer Membrane Proteins/metabolism , Boron Compounds/pharmacology , Drug Resistance, Bacterial , Escherichia coli Proteins/metabolism , Escherichia coli/drug effects , Membrane Transport Proteins/metabolism , Penicillins/pharmacology , Anti-Bacterial Agents/metabolism , Bacterial Outer Membrane Proteins/genetics , Biological Transport , Boron Compounds/metabolism , Colony Count, Microbial , Dose-Response Relationship, Drug , Drug Resistance, Bacterial/genetics , Escherichia coli/genetics , Escherichia coli/growth & development , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Gene Expression Regulation, Bacterial , Genotype , High-Throughput Nucleotide Sequencing , Membrane Transport Proteins/genetics , Microbial Viability/drug effects , Mutation , Optical Imaging , Penicillins/metabolism , Phenotype , Time Factors , Up-Regulation
12.
Proc Natl Acad Sci U S A ; 117(26): 15036-15046, 2020 06 30.
Article in English | MEDLINE | ID: mdl-32541019

ABSTRACT

Mammalian DNA replication is initiated at numerous replication origins, which are clustered into thousands of replication domains (RDs) across the genome. However, it remains unclear whether the replication origins within each RD are activated stochastically or preferentially near certain chromatin features. To understand how DNA replication in single human cells is regulated at the sub-RD level, we directly visualized and quantitatively characterized the spatiotemporal organization, morphology, and in situ epigenetic signatures of individual replication foci (RFi) across S-phase at superresolution using stochastic optical reconstruction microscopy. Importantly, we revealed a hierarchical radial pattern of RFi propagation dynamics that reverses directionality from early to late S-phase and is diminished upon caffeine treatment or CTCF knockdown. Together with simulation and bioinformatic analyses, our findings point to a "CTCF-organized REplication Propagation" (CoREP) model, which suggests a nonrandom selection mechanism for replication activation at the sub-RD level during early S-phase, mediated by CTCF-organized chromatin structures. Collectively, these findings offer critical insights into the key involvement of local epigenetic environment in coordinating DNA replication across the genome and have broad implications for our conceptualization of the role of multiscale chromatin architecture in regulating diverse cell nuclear dynamics in space and time.


Subject(s)
CCCTC-Binding Factor/metabolism , Chromatin/metabolism , DNA Replication , CCCTC-Binding Factor/genetics , Chromatin/genetics , Epigenomics , Humans , S Phase
13.
Clin Infect Dis ; 74(8): 1485-1488, 2022 04 28.
Article in English | MEDLINE | ID: mdl-34498683

ABSTRACT

A false-positive severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) reverse-transcription polymerase chain reaction result can lead to unnecessary public health measures. We report 2 individuals whose respiratory specimens were contaminated by an inactivated SARS-CoV-2 vaccine strain (CoronaVac), likely at vaccination premises. Incidentally, whole genome sequencing of CoronaVac showed adaptive deletions on the spike protein, which do not result in observable changes of antigenicity.


Subject(s)
COVID-19 Vaccines , COVID-19 , COVID-19/prevention & control , Humans , SARS-CoV-2/genetics , Vaccination
14.
Proc Natl Acad Sci U S A ; 116(28): 14105-14112, 2019 07 09.
Article in English | MEDLINE | ID: mdl-31235575

ABSTRACT

Preimplantation genetic testing for aneuploidy (PGT-A) with trophectoderm (TE) biopsy is widely applied in in vitro fertilization (IVF) to identify aneuploid embryos. However, potential safety concerns regarding biopsy and restrictions to only those embryos suitable for biopsy pose limitations. In addition, embryo mosaicism gives rise to false positives and false negatives in PGT-A because the inner cell mass (ICM) cells, which give rise to the fetus, are not tested. Here, we report a critical examination of the efficacy of noninvasive preimplantation genetic testing for aneuploidy (niPGT-A) in the spent culture media of human blastocysts by analyzing the cell-free DNA, which reflects ploidy of both the TE and ICM. Fifty-two frozen donated blastocysts with TE biopsy results were thawed; each of their spent culture medium was collected after 24-h culture and analyzed by next-generation sequencing (NGS). niPGT-A and TE-biopsy PGT-A results were compared with the sequencing results of the corresponding embryos, which were taken as true results for aneuploidy reporting. With removal of all corona-cumulus cells, the false-negative rate (FNR) for niPGT-A was found to be zero. By applying an appropriate threshold for mosaicism, both the positive predictive value (PPV) and specificity for niPGT-A were much higher than TE-biopsy PGT-A. Furthermore, the concordance rates for both embryo ploidy and chromosome copy numbers were higher for niPGT-A than TE-biopsy PGT-A. These results suggest that niPGT-A is less prone to errors associated with embryo mosaicism and is more reliable than TE-biopsy PGT-A.


Subject(s)
Aneuploidy , Blastocyst/pathology , Genetic Testing , Karyotype , Adult , Biopsy , Blastocyst/metabolism , Blastocyst Inner Cell Mass/pathology , Cell-Free Nucleic Acids/genetics , Culture Media/analysis , Female , Fertilization in Vitro/standards , High-Throughput Nucleotide Sequencing , Humans , Noninvasive Prenatal Testing/standards , Pregnancy , Preimplantation Diagnosis/standards
15.
PLoS Comput Biol ; 14(3): e1006051, 2018 03.
Article in English | MEDLINE | ID: mdl-29529037

ABSTRACT

Within an isogenic population, even in the same extracellular environment, individual cells can exhibit various phenotypic states. The exact role of stochastic gene-state switching regulating the transition among these phenotypic states in a single cell is not fully understood, especially in the presence of positive feedback. Recent high-precision single-cell measurements showed that, at least in bacteria, switching in gene states is slow relative to the typical rates of active transcription and translation. Hence using the lac operon as an archetype, in such a region of operon-state switching, we present a fluctuating-rate model for this classical gene regulation module, incorporating the more realistic operon-state switching mechanism that was recently elucidated. We found that the positive feedback mechanism induces bistability (referred to as deterministic bistability), and that the parameter range for its occurrence is significantly broadened by stochastic operon-state switching. We further show that in the absence of positive feedback, operon-state switching must be extremely slow to trigger bistability by itself. However, in the presence of positive feedback, which stabilizes the induced state, the relatively slow operon-state switching kinetics within the physiological region are sufficient to stabilize the uninduced state, together generating a broadened parameter region of bistability (referred to as stochastic bistability). We illustrate the opposite phenotype-transition rate dependence upon the operon-state switching rates in the two types of bistability, with the aid of a recently proposed rate formula for fluctuating-rate models. The rate formula also predicts a maximal transition rate in the intermediate region of operon-state switching, which is validated by numerical simulations in our model. Overall, our findings suggest a biological function of transcriptional "variations" among genetically identical cells, for the emergence of bistability and transition between phenotypic states.


Subject(s)
Feedback , Gene Expression Regulation, Bacterial/physiology , Gene Expression Regulation/physiology , Computer Simulation , Escherichia coli/metabolism , Gene Expression Regulation/genetics , Gene Expression Regulation, Bacterial/genetics , Gene Regulatory Networks , Kinetics , Lac Operon/genetics , Lac Operon/physiology , Models, Biological , Operon/genetics , Phenotype , Stochastic Processes
16.
J Assist Reprod Genet ; 36(6): 1263-1271, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31187331

ABSTRACT

PURPOSE: This study is aimed at increasing the accuracy of preimplantation genetic test for monogenic defects (PGT-M). METHODS: We applied Bayesian statistics to optimize data analyses of the mutated allele revealed by sequencing with aneuploidy and linkage analyses (MARSALA) method for PGT-M. In doing so, we developed a Bayesian algorithm for linkage analyses incorporating PCR SNV detection with genome sequencing around the known mutation sites in order to determine quantitatively the probabilities of having the disease-carrying alleles from parents with monogenic diseases. Both recombination events and sequencing errors were taken into account in calculating the probability. RESULTS: Data of 28 in vitro fertilized embryos from three couples were retrieved from two published research articles by Yan et al. (Proc Natl Acad Sci. 112:15964-9, 2015) and Wilton et al. (Hum Reprod. 24:1221-8, 2009). We found the embryos deemed "normal" and selected for transfer in the previous publications were actually different in error probability of 10-4-4%. Notably, our Bayesian model reduced the error probability to 10-6-10-4%. Furthermore, a proband sample is no longer required by our new method, given a minimum of four embryos or sperm cells. CONCLUSION: The error probability of PGT-M can be significantly reduced by using the Bayesian statistics approach, increasing the accuracy of selecting healthy embryos for transfer with or without a proband sample.


Subject(s)
Fertilization in Vitro , Genetic Linkage/genetics , Genetic Testing , Preimplantation Diagnosis , Alleles , Bayes Theorem , Embryo Transfer , Female , High-Throughput Nucleotide Sequencing , Humans , Mutation , Pregnancy
17.
Annu Rev Genomics Hum Genet ; 16: 79-102, 2015.
Article in English | MEDLINE | ID: mdl-26077818

ABSTRACT

We present a survey of single-cell whole-genome amplification (WGA) methods, including degenerate oligonucleotide-primed polymerase chain reaction (DOP-PCR), multiple displacement amplification (MDA), and multiple annealing and looping-based amplification cycles (MALBAC). The key parameters to characterize the performance of these methods are defined, including genome coverage, uniformity, reproducibility, unmappable rates, chimera rates, allele dropout rates, false positive rates for calling single-nucleotide variations, and ability to call copy-number variations. Using these parameters, we compare five commercial WGA kits by performing deep sequencing of multiple single cells. We also discuss several major applications of single-cell genomics, including studies of whole-genome de novo mutation rates, the early evolution of cancer genomes, circulating tumor cells (CTCs), meiotic recombination of germ cells, preimplantation genetic diagnosis (PGD), and preimplantation genomic screening (PGS) for in vitro-fertilized embryos.


Subject(s)
Genomics/methods , High-Throughput Nucleotide Sequencing/methods , Single-Cell Analysis/methods , Female , Fertilization in Vitro , Genome, Human , Germ Cells/physiology , Humans , Male , Mutation Rate , Neoplasms/genetics , Polymerase Chain Reaction , Pregnancy , Preimplantation Diagnosis
18.
Chem Senses ; 43(6): 427-432, 2018 07 05.
Article in English | MEDLINE | ID: mdl-29796642

ABSTRACT

Different regions of the mammalian nose smell different odors. In the mouse olfactory system, spatially regulated expression of >1000 olfactory receptors (ORs) along the dorsomedial-ventrolateral (DV) axis forms a topological map in the main olfactory epithelium (MOE). However, the locations of most ORs along the DV axis are currently unknown. By sequencing mRNA of 12 isolated MOE pieces, we mapped out the DV locations-as quantified by "zone indices" on a scale of 1-5-of 1033 OR genes with an estimated error of 0.3 zone indices. Our map covered 81% of all intact OR genes and 99.4% of the total OR mRNA abundance. Spatial regulation tended to vary gradually along chromosomes. We further identified putative non-OR genes that may exhibit spatial expression along the DV axis.


Subject(s)
Olfactory Mucosa/innervation , Olfactory Receptor Neurons/cytology , Olfactory Receptor Neurons/physiology , Receptors, Odorant/metabolism , Animals , Gene Expression Regulation , Mice , Transcriptome
19.
J Am Chem Soc ; 139(2): 583-586, 2017 01 18.
Article in English | MEDLINE | ID: mdl-28027644

ABSTRACT

Acetylcholine is an important neurotransmitter that relays neural excitation from lower motor neurons to muscles. It also plays significant roles in the central nervous system by modulating neurotransmission. However, there is a lack of tools to directly measure the quantity and distribution of acetylcholine at the subcellular level. In this Communication, we demonstrate for the first time that label-free imaging of acetylcholine is achieved with frequency-modulated spectral-focusing stimulated Raman scattering (FMSF-SRS) microscopy: a technical improvement over traditional SRS microscopy that effectively removes imaging backgrounds. Moreover, we directly quantified the local concentration of acetylcholine at the neuromuscular junction of frog cutaneous pectoris muscle.


Subject(s)
Acetylcholine/chemistry , Neuromuscular Junction/chemistry , Pectoralis Muscles/chemistry , Animals , Anura , Molecular Structure , Spectrum Analysis, Raman/methods , Staining and Labeling , Vibration
20.
Gastroenterology ; 150(4): 998-1008, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26752112

ABSTRACT

BACKGROUND & AIMS: Many patients with hepatocellular carcinoma (HCC) have multiple lesions (primary tumors, intrahepatic metastases, multiple occurrences, satellite nodules, and tumor thrombi); these have been associated with a poor prognosis and tumor recurrence after surgery. We investigated the clonal relationship among these lesions on the basis of genetic features. METHODS: We collected 43 lesions and 10 matched control samples (blood or nontumorous liver) from 10 patients with hepatitis B virus-associated HCC treated at Tianjin Cancer Hospital (China) from January 2013 through May 2014. We performed exome and low-depth, whole-genome sequencing on these samples. Genomic aberrations, including somatic mutations and copy number variations, were identified using germline DNA as control. We compared the genetic features of different lesions from each patient and constructed phylogenetic trees to depict their evolutionary histories. RESULTS: In each patient, mutations shared by all the lesions were called ubiquitous mutations. The percentage of ubiquitous mutations varied from 8% to 97% among patients, indicating variation in the extent of intratumor heterogeneity. Branched evolution was evident, with somatic mutations, hepatitis B virus integrations, and copy number variations identified on both the trunks and branches of the phylogenetic trees. Intrahepatic metastases and tumor thrombi contained some, but not all, of the mutations detected in their matched primary lesions. By contrast, satellite nodules shared approximately 90% of mutations detected in primary lesions. In a patient with multicentric tumors, 6 lesions were assigned to 2 distinct groups, based on significant differences in genetic features. In another patient with combined hepatocellular and intrahepatic cholangiocarcinoma, the physically separate HCC and cholangiocarcinoma lesions shared 102 mutations. CONCLUSIONS: The extent of intratumor heterogeneity varies considerably among patients with HCC. Therefore, sequence analysis of a single lesion cannot completely characterize the genomic features of HCC in some patients. Genomic comparisons of multiple lesions associated with HCCs will provide important information on the genetic changes associated with tumor progression.


Subject(s)
Biomarkers, Tumor/genetics , Carcinoma, Hepatocellular/genetics , Liver Neoplasms/genetics , Mutation , Neoplasms, Multiple Primary/genetics , Carcinoma, Hepatocellular/secondary , Carcinoma, Hepatocellular/virology , China , DNA Copy Number Variations , DNA Mutational Analysis , Disease Progression , Exome , Gene Dosage , Gene Expression Profiling , Genetic Predisposition to Disease , Genome-Wide Association Study , Hepatitis B/complications , Humans , Liver Neoplasms/pathology , Liver Neoplasms/virology , Neoplasms, Multiple Primary/pathology , Neoplasms, Multiple Primary/virology , Phenotype , Phylogeny , Predictive Value of Tests , Prognosis
SELECTION OF CITATIONS
SEARCH DETAIL