Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.869
Filter
Add more filters

Publication year range
1.
Immunity ; 56(6): 1410-1428.e8, 2023 06 13.
Article in English | MEDLINE | ID: mdl-37257450

ABSTRACT

Although host responses to the ancestral SARS-CoV-2 strain are well described, those to the new Omicron variants are less resolved. We profiled the clinical phenomes, transcriptomes, proteomes, metabolomes, and immune repertoires of >1,000 blood cell or plasma specimens from SARS-CoV-2 Omicron patients. Using in-depth integrated multi-omics, we dissected the host response dynamics during multiple disease phases to reveal the molecular and cellular landscapes in the blood. Specifically, we detected enhanced interferon-mediated antiviral signatures of platelets in Omicron-infected patients, and platelets preferentially formed widespread aggregates with leukocytes to modulate immune cell functions. In addition, patients who were re-tested positive for viral RNA showed marked reductions in B cell receptor clones, antibody generation, and neutralizing capacity against Omicron. Finally, we developed a machine learning model that accurately predicted the probability of re-positivity in Omicron patients. Our study may inspire a paradigm shift in studying systemic diseases and emerging public health concerns.


Subject(s)
Blood Platelets , COVID-19 , Humans , SARS-CoV-2 , Breakthrough Infections , Multiomics , Antibodies, Neutralizing , Antibodies, Viral
2.
Nature ; 617(7962): 717-723, 2023 05.
Article in English | MEDLINE | ID: mdl-37225883

ABSTRACT

Flexible solar cells have a lot of market potential for application in photovoltaics integrated into buildings and wearable electronics because they are lightweight, shockproof and self-powered. Silicon solar cells have been successfully used in large power plants. However, despite the efforts made for more than 50 years, there has been no notable progress in the development of flexible silicon solar cells because of their rigidity1-4. Here we provide a strategy for fabricating large-scale, foldable silicon wafers and manufacturing flexible solar cells. A textured crystalline silicon wafer always starts to crack at the sharp channels between surface pyramids in the marginal region of the wafer. This fact enabled us to improve the flexibility of silicon wafers by blunting the pyramidal structure in the marginal regions. This edge-blunting technique enables commercial production of large-scale (>240 cm2), high-efficiency (>24%) silicon solar cells that can be rolled similarly to a sheet of paper. The cells retain 100% of their power conversion efficiency after 1,000 side-to-side bending cycles. After being assembled into large (>10,000 cm2) flexible modules, these cells retain 99.62% of their power after thermal cycling between -70 °C and 85 °C for 120 h. Furthermore, they retain 96.03% of their power after 20 min of exposure to air flow when attached to a soft gasbag, which models wind blowing during a violent storm.

3.
EMBO J ; 43(9): 1898-1918, 2024 May.
Article in English | MEDLINE | ID: mdl-38565952

ABSTRACT

We introduce MolPhase, an advanced algorithm for predicting protein phase separation (PS) behavior that improves accuracy and reliability by utilizing diverse physicochemical features and extensive experimental datasets. MolPhase applies a user-friendly interface to compare distinct biophysical features side-by-side along protein sequences. By additional comparison with structural predictions, MolPhase enables efficient predictions of new phase-separating proteins and guides hypothesis generation and experimental design. Key contributing factors underlying MolPhase include electrostatic pi-interactions, disorder, and prion-like domains. As an example, MolPhase finds that phytobacterial type III effectors (T3Es) are highly prone to homotypic PS, which was experimentally validated in vitro biochemically and in vivo in plants, mimicking their injection and accumulation in the host during microbial infection. The physicochemical characteristics of T3Es dictate their patterns of association for multivalent interactions, influencing the material properties of phase-separating droplets based on the surrounding microenvironment in vivo or in vitro. Robust integration of MolPhase's effective prediction and experimental validation exhibit the potential to evaluate and explore how biomolecule PS functions in biological systems.


Subject(s)
Algorithms , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Proteins/chemistry , Proteins/metabolism , Type III Secretion Systems/metabolism , Type III Secretion Systems/chemistry , Phase Separation
4.
Am J Hum Genet ; 111(3): 544-561, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38307027

ABSTRACT

Cervical cancer is caused by human papillomavirus (HPV) infection, has few approved targeted therapeutics, and is the most common cause of cancer death in low-resource countries. We characterized 19 cervical and four head and neck cancer cell lines using long-read DNA and RNA sequencing and identified the HPV types, HPV integration sites, chromosomal alterations, and cancer driver mutations. Structural variation analysis revealed telomeric deletions associated with DNA inversions resulting from breakage-fusion-bridge (BFB) cycles. BFB is a common mechanism of chromosomal alterations in cancer, and our study applies long-read sequencing to this important chromosomal rearrangement type. Analysis of the inversion sites revealed staggered ends consistent with exonuclease digestion of the DNA after breakage. Some BFB events are complex, involving inter- or intra-chromosomal insertions or rearrangements. None of the BFB breakpoints had telomere sequences added to resolve the dicentric chromosomes, and only one BFB breakpoint showed chromothripsis. Five cell lines have a chromosomal region 11q BFB event, with YAP1-BIRC3-BIRC2 amplification. Indeed, YAP1 amplification is associated with a 10-year-earlier age of diagnosis of cervical cancer and is three times more common in African American women. This suggests that individuals with cervical cancer and YAP1-BIRC3-BIRC2 amplification, especially those of African ancestry, might benefit from targeted therapy. In summary, we uncovered valuable insights into the mechanisms and consequences of BFB cycles in cervical cancer using long-read sequencing.


Subject(s)
Papillomavirus Infections , Uterine Cervical Neoplasms , Female , Humans , Uterine Cervical Neoplasms/genetics , Chromosome Aberrations , Telomere/genetics , DNA
5.
Chem Rev ; 124(2): 420-454, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38146851

ABSTRACT

The past few decades have witnessed a notable increase in transition metal dichalcogenide (TMD) related research not only because of the large family of TMD candidates but also because of the various polytypes that arise from the monolayer configuration and layer stacking order. The peculiar physicochemical properties of TMD nanosheets enable an enormous range of applications from fundamental science to industrial technologies based on the preparation of high-quality TMDs. For polymorphic TMDs, the 1T/1T' phase is particularly intriguing because of the enriched density of states, and thus facilitates fruitful chemistry. Herein, we comprehensively discuss the most recent strategies for direct synthesis of phase-pure 1T/1T' TMD nanosheets such as mechanical exfoliation, chemical vapor deposition, wet chemical synthesis, atomic layer deposition, and more. We also review frequently adopted methods for phase engineering in TMD nanosheets ranging from chemical doping and alloying, to charge injection, and irradiation with optical or charged particle beams. Prior to the synthesis methods, we discuss the configuration of TMDs as well as the characterization tools mostly used in experiments. Finally, we discuss the current challenges and opportunities as well as emphasize the promising fields for the future development.

6.
Arterioscler Thromb Vasc Biol ; 44(6): 1225-1245, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38511325

ABSTRACT

BACKGROUND: Restoring the capacity of endothelial progenitor cells (EPCs) to promote angiogenesis is the major therapeutic strategy of diabetic peripheral artery disease. The aim of this study was to investigate the effects of GLP-1 (glucagon-like peptide 1; 32-36)-an end product of GLP-1-on angiogenesis of EPCs and T1DM (type 1 diabetes) mice, as well as its interaction with the classical GLP-1R (GLP-1 receptor) pathway and its effect on mitochondrial metabolism. METHODS: In in vivo experiments, we conducted streptozocin-induced type 1 diabetic mice as a murine model of unilateral hind limb ischemia to examine the therapeutic potential of GLP-1(32-36) on angiogenesis. We also generated Glp1r-/- mice to detect whether GLP-1R is required for angiogenic function of GLP-1(32-36). In in vitro experiments, EPCs isolated from the mouse bone marrow and human umbilical cord blood samples were used to detect GLP-1(32-36)-mediated angiogenic capability under high glucose treatment. RESULTS: We demonstrated that GLP-1(32-36) did not affect insulin secretion but could significantly rescue angiogenic function and blood perfusion in ischemic limb of streptozocin-induced T1DM mice, a function similar to its parental GLP-1. We also found that GLP-1(32-36) promotes angiogenesis in EPCs exposed to high glucose. Specifically, GLP-1(32-36) has a causal role in improving fragile mitochondrial function and metabolism via the GLP-1R-mediated pathway. We further demonstrated that GLP-1(32-36) rescued diabetic ischemic lower limbs by activating the GLP-1R-dependent eNOS (endothelial NO synthase)/cGMP/PKG (protein kinase G) pathway. CONCLUSIONS: Our study provides a novel mechanism with which GLP-1(32-36) acts in modulating metabolic reprogramming toward glycolytic flux in partnership with GLP-1R for improved angiogenesis in high glucose-exposed EPCs and T1DM murine models. We propose that GLP-1(32-36) could be used as a monotherapy or add-on therapy with existing treatments for peripheral artery disease. REGISTRATION: URL: www.ebi.ac.uk/metabolights/; Unique identifier: MTBLS9543.


Subject(s)
Diabetes Mellitus, Experimental , Endothelial Progenitor Cells , Glucagon-Like Peptide 1 , Glucagon-Like Peptide-1 Receptor , Glycolysis , Hindlimb , Ischemia , Mice, Inbred C57BL , Mice, Knockout , Neovascularization, Physiologic , Signal Transduction , Animals , Ischemia/drug therapy , Ischemia/physiopathology , Ischemia/metabolism , Glucagon-Like Peptide-1 Receptor/metabolism , Glucagon-Like Peptide-1 Receptor/agonists , Neovascularization, Physiologic/drug effects , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Glycolysis/drug effects , Glucagon-Like Peptide 1/analogs & derivatives , Glucagon-Like Peptide 1/pharmacology , Humans , Hindlimb/blood supply , Male , Endothelial Progenitor Cells/metabolism , Endothelial Progenitor Cells/drug effects , Diabetic Angiopathies/metabolism , Diabetic Angiopathies/physiopathology , Diabetic Angiopathies/drug therapy , Diabetic Angiopathies/etiology , Nitric Oxide Synthase Type III/metabolism , Diabetes Mellitus, Type 1/drug therapy , Diabetes Mellitus, Type 1/metabolism , Cells, Cultured , Angiogenesis Inducing Agents/pharmacology , Peptide Fragments/pharmacology , Mice , Muscle, Skeletal/blood supply , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Disease Models, Animal , Incretins/pharmacology , Angiogenesis
7.
Nano Lett ; 24(22): 6545-6552, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38781416

ABSTRACT

Extracting interior photoinduced species to the surface before their recombination is of great importance in pursuing high-efficiency semiconductor-based photocatalysis. Traditional strategies toward charge-carrier extraction, mostly relying on the construction of an electric field gradient, would be invalid toward the neutral-exciton counterpart in low-dimensional systems. In this work, by taking bismuth oxybromide (BiOBr) as an example, we manipulate interior exciton extraction to the surface by implementing iodine doping at the edges of BiOBr plates. Spatial- and time-resolved spectroscopic analyses verified the accumulation of excitons and charge carriers at the edges of iodine-doped BiOBr (BiOBr-I) plates. This phenomenon could be associated with interior exciton extraction, driven by an energy-level gradient between interior and edge exciton states, and the following exciton dissociation processes. As such, BiOBr-I shows remarkable performance in photocatalytic C-H fluorination, mediated by both energy- and charge-transfer processes. This work uncovers the importance of spatial regulation of excitonic properties in low-dimensional semiconductor-based photocatalysis.

8.
Nano Lett ; 24(7): 2392-2399, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38334492

ABSTRACT

Direct electrosynthesis of high-value amino acids from carbon and nitrogen monomers remains a challenge. Here, we design a tandem dual-site PbCu electrocatalyst for efficient amino acid electrosynthesis. Using oxalic acid (H2C2O4) and hydroxylamine (NH2OH) as the raw reactants, for the first time, we have realized the flow-electrosynthesis of glycine at the industrial current density of 200 mA cm-2 with Faradaic efficiency over 78%. In situ ATR-FTIR spectroscopy characterizations reveal a favorable tandem pathway on the dual-site catalyst. Specifically, the Pb site drives the highly selective electroreduction of H2C2O4 to form glyoxylic acid, and the Cu site accelerates the fast hydrogenation of oxime to form a glycine product. A glycine electrosynthesis (GES)-formaldehyde electrooxidation (FOR) assembly is further established, which synthesizes more valuable chemicals (HCOOH, H2) while minimizing energy consumption. Altogether, we introduce a new strategy to enable the one-step electrosynthesis of high-value amino acid from widely accessible monomers.

9.
Nano Lett ; 24(2): 696-702, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38175193

ABSTRACT

Selectively achieving the photoreduction of carbon dioxide (CO2) to methane (CH4) remains a significant challenge, which primarily arises from the complexity of the protonation process. In this work, we designed metal-vacancy pair sites in defective metal oxide semiconductors, which anchor the reactive intermediates with a bridged linkage for the selective protonation to produce CH4. As an example, oxygen-deficient Nb2O5 nanosheets are synthesized, in which the niobium-oxygen vacancy pair sites are demonstrated by X-ray photoelectron spectroscopy and electron paramagnetic resonance spectra. In situ Fourier transform infrared spectroscopy monitors the *CH3O intermediate, a key intermediate for CH4 production, during the CO2 photoreduction in oxygen-deficient Nb2O5 nanosheets. Importantly, the built metal-vacancy pair sites regulate the *CH3O formation step as a spontaneous process, making the reduction of CO2 to CH4 the preferred method. Therefore, the oxygen-deficient Nb2O5 nanosheets exhibit a CH4 formation rate of 19.14 µmol g-1 h-1, with an electron selectivity of ∼94.1%.

10.
Nano Lett ; 24(15): 4610-4617, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38564191

ABSTRACT

The intricate protonation process in carbon dioxide reduction usually makes the product unpredictable. Thus, it is significant to control the reactive intermediates to manipulate the reaction steps. Here, we propose that the synergistic La-Ti active sites in the N-La2Ti2O7 nanosheets enable the highly selective carbon dioxide photoreduction into methane. In the photoreduction of CO2 over N-La2Ti2O7 nanosheets, in situ Fourier transform infrared spectra are utilized to monitor the *CH3O intermediate, pivotal for methane production, whereas such monitoring is not conducted for La2Ti2O7 nanosheets. Also, theoretical calculations testify to the increased charge densities on the Ti and La atoms and the regulated formation energy barrier of *CO and *CH3O intermediates by the constructed synergistic active sites. Accordingly, the methane formation rate of 7.97 µL h-1 exhibited by the N-La2Ti2O7 nanosheets, along with an electron selectivity of 96.6%, exceeds that of most previously reported catalysts under similar conditions.

11.
Carcinogenesis ; 45(6): 424-435, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38302114

ABSTRACT

T-cell acute lymphoblastic leukemia (T-ALL) is a highly aggressive hematologic malignancy originating from T progenitor cells. It accounts for 15% of childhood and 25% of adult ALL cases. GNE-987 is a novel chimeric molecule developed using proteolysis-targeting chimeras (PROTAC) technology for targeted therapy. It consists of a potent inhibitor of the bromodomain and extraterminal (BET) protein, as well as the E3 ubiquitin ligase Von Hippel-Lindau (VHL), which enables the effective induction of proteasomal degradation of BRD4. Although GNE-987 has shown persistent inhibition of cell proliferation and apoptosis, its specific antitumor activity in T-ALL remains unclear. In this study, we aimed to investigate the molecular mechanisms underlying the antitumor effect of GNE-987 in T-ALL. To achieve this, we employed technologies including RNA sequencing (RNA-seq), chromatin immunoprecipitation sequencing (ChIP-seq) and CUT&Tag. The degradation of BET proteins, specifically BRD4, by GNE-987 has a profound impact on T-ALL cell. In in vivo experiments, sh-BRD4 lentivirus reduced T-ALL cell proliferation and invasion, extending the survival time of mice. The RNA-seq and CUT&Tag analyses provided further insights into the mechanism of action of GNE-987 in T-ALL. These analyses revealed that GNE-987 possesses the ability to suppress the expression of various genes associated with super-enhancers (SEs), including lymphoblastic leukemia 1 (LCK). By targeting these SE-associated genes, GNE-987 effectively inhibits the progression of T-ALL. Importantly, SE-related oncogenes like LCK were identified as critical targets of GNE-987. Based on these findings, GNE-987 holds promise as a potential novel candidate drug for the treatment of T-ALL.


Subject(s)
Apoptosis , Cell Proliferation , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Transcription Factors , Xenograft Model Antitumor Assays , Humans , Animals , Mice , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Cell Proliferation/drug effects , Apoptosis/drug effects , Transcription Factors/genetics , Transcription Factors/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/antagonists & inhibitors , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Enhancer Elements, Genetic , Bromodomain Containing Proteins
12.
J Cell Mol Med ; 28(9): e18321, 2024 May.
Article in English | MEDLINE | ID: mdl-38712979

ABSTRACT

As a main extraction compound from Scutellaria baicalensis Georgi, Baicalin exhibits various biological activities. However, the underlying mechanism of Baicalin on hypertension-induced heart injury remains unclear. In vivo, mice were infused with angiotensin II (Ang II; 500 ng/kg/min) or saline using osmotic pumps, followed by intragastrically administrated with Baicalin (5 mg/kg/day) for 4 weeks. In vitro, H9C2 cells were stimulated with Ang II (1 µM) and treated with Baicalin (12.5, 25 and 50 µM). Baicalin treatment significantly attenuated the decrease in left ventricular ejection fraction and left ventricular fractional shortening, increase in left ventricular mass, left ventricular systolic volume and left ventricular diastolic volume of Ang II infused mice. Moreover, Baicalin treatment reversed 314 differentially expressed transcripts in the cardiac tissues of Ang II infused mice, and enriched multiple enriched signalling pathways (including apoptosis, autophagy, AMPK/mTOR signalling pathway). Consistently, Baicalin treatment significantly alleviated Ang II-induced cell apoptosis in vivo and in vitro. Baicalin treatment reversed the up-regulation of Bax, cleaved-caspase 3, cleaved-caspase 9, and the down-regulation of Bcl-2. Meanwhile, Baicalin treatment alleviated Ang II-induced increase of autophagosomes, restored autophagic flux, and down-regulated LC3II, Beclin 1, as well as up-regulated SQSTM1/p62 expression. Furthermore, autophagy inhibitor 3-methyladenine treatment alleviated the increase of autophagosomes and the up-regulation of Beclin 1, LC3II, Bax, cleaved-caspase 3, cleaved-caspase 9, down-regulation of SQSTM1/p62 and Bcl-2 expression after Ang II treated, which similar to co-treatment with Baicalin. Baicalin treatment reduced the ratio of p-AMPK/AMPK, while increased the ratio of p-mTOR/mTOR. Baicalin alleviated Ang II-induced cardiomyocyte apoptosis and autophagy, which might be related to the inhibition of the AMPK/mTOR pathway.


Subject(s)
Angiotensin II , Apoptosis , Autophagy , Flavonoids , Myocytes, Cardiac , Signal Transduction , Animals , Male , Mice , Rats , AMP-Activated Protein Kinases/metabolism , Angiotensin II/metabolism , Apoptosis/drug effects , Autophagy/drug effects , Cell Line , Flavonoids/pharmacology , Mice, Inbred C57BL , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/metabolism
13.
J Am Chem Soc ; 146(8): 5274-5282, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38363827

ABSTRACT

The practical application of the H2/O2 proton-exchange membrane fuel cell (PEMFC) is being greatly limited by the use of high-cost Pt as electrode catalysts. Furthermore, the H2/O2 PEMFC is nonrechargeable and thus precludes kinetics energy recovery when equipped on electric vehicles and peak power regulation when combined to power grids. Here, we demonstrate a rechargeable H2/O2 PEMFC through embedding a redox flow battery into a conventional H2/O2 PEMFC. This flow battery employs H2/O2 reactive redox pairs such as NO3-/NO-Br2/Br- and H4SiW12O40/H5SiW12O40 whose redox potentials are as close as possible to those of O2/H2O and H2/H2O, respectively, so that the chemical potential losses during their reactions with O2 at the cathode and H2 at the anode were minimized. More importantly, the electrochemical reversibility allows the H2/O2 reacted redox pairs to be easily regenerated through fuel cell discharging on catalyst-free carbon electrodes at a low overpotential and brings in the fuel cell both chemical and electrical rechargeability, thereby realizing integrated functions of electricity generation- storage as well as efficient operation (achieving an open-circuit potential of 0.96 V and a peak power density of 0.57 W/cm2, which are comparable to a conventional H2/air PEMFC) with catalyst-free carbon electrodes.

14.
J Am Chem Soc ; 146(25): 16950-16962, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38832898

ABSTRACT

Nowadays, plastic waste threatens public health and the natural ecosystems of our lives. It is highly beneficial to recycle plastic waste in order to maximize the reuse of its contained carbon sources for the development of other valuable products. Unfortunately, traditional techniques usually require significant energy consumption and result in the generation of hazardous waste. Herein, the up-to-date developments on the "green" strategies under mild conditions including electrocatalysis, photocatalysis, and photoelectrocatalysis of plastic wastes are presented. During the oxidation of plastics in these "green" strategies, corresponding reduction reactions usually exist, which affect the property of catalytic plastics conversion. Particularly, we mainly focus on how to design the corresponding half reactions, such as the water reduction, carbon dioxide reduction, and nitrate reduction. Finally, we provide forward-looking insight into the enhancement of these "green" strategies, the extension of more half reactions into other organic catalysis, a comprehensive exploration of the underlying mechanisms through in situ studies and theoretical analysis and the problems for practical applications that needs to be solved.

15.
J Am Chem Soc ; 146(20): 14318-14327, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38718345

ABSTRACT

Multiband convergence has attracted significant interest due to its positive effects on further improving thermoelectric performance. However, the current research mainly focuses on two- or three-band convergence in lead chalcogenides through doping and alloying. Therefore, exploring a new strategy to facilitate more-band convergence has instructive significance and practical value in thermoelectric research. Herein, we first propose a high-entropy strategy to achieve four-band convergence for optimizing thermoelectric performance. Taking high-entropy AgSbPbSnGeTe5 as an example, we found that the emergence of more-band convergence occurs as the configuration entropy increases; in particular, the four-band convergence occurs in high-entropy AgSbPbSnGeTe5. The overlap of multiatom orbitals in the high-entropy sample contributes to the convergence of four valence bands, promoting the improvement of electrical performance. Meanwhile, due to large lattice distortion and disordered atoms, the phonon mean free path is effectively compressed, resulting in low lattice thermal conductivity of high-entropy AgSbPbSnGeTe5. Consequently, AgSbPbSnGeTe5 achieved an intrinsically high ZT value of 1.22 at 673 K, providing a cornerstone for further optimizing thermoelectric performance. For example, by generally optimizing the carrier concentration, a peak ZT value of ∼1.75 at 723 K is achieved. These insights offer a comprehensive understanding of the band structure affected by unique structures of high-entropy materials and also shed useful light on innovation mechanisms and functionalities for future improvement of thermoelectric performance.

16.
J Am Chem Soc ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38842530

ABSTRACT

Photocatalytic C2H6-to-C2H4 conversion is very promising, yet it remains a long-lasting challenge due to the high C-H bond dissociation energy of 420 kJ mol-1. Herein, partially oxidized Pdδ+ species anchored on ZnO nanosheets are designed to weaken the C-H bond by the electron interaction between Pdδ+ species and H atoms, with efforts to achieve high-rate and selective C2H6-to-C2H4 conversion. X-ray photoelectron spectra, Bader charge calculations, and electronic localization function demonstrate the presence of partially oxidized Pdδ+ sites, while quasi-in situ X-ray photoelectron spectra disclose the Pdδ+ sites initially adopt and then donate the photoexcited electrons for C2H6 dehydrogenation. In situ electron paramagnetic resonance spectra, in situ Fourier transform infrared spectra, and trapping agent experiments verify C2H6 initially converts to CH3CH2OH via ·OH radicals, then dehydroxylates to CH3CH2· and finally to C2H4, accompanied by H2 production. Density-functional theory calculations elucidate that loading Pd site can lengthen the C-H bond of C2H6 from 1.10 to 1.12 Å, which favors the C-H bond breakage, affirmed by a lowered energy barrier of 0.04 eV. As a result, the optimized 5.87% Pd-ZnO nanosheets achieve a high C2H4 yield of 16.32 mmol g-1 with a 94.83% selectivity as well as a H2 yield of 14.49 mmol g-1 from C2H6 dehydrogenation in 4 h, outperforming all the previously reported photocatalysts under similar conditions.

17.
J Am Chem Soc ; 146(1): 892-900, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38151507

ABSTRACT

Layered compounds characterized by van der Waals gaps are often associated with relatively weak interlayer particle interactions. However, in specific scenarios, these seemingly feeble forces can exert an impact on interlayer interactions through subtle energy fluctuations, which can give rise to a diverse range of physical and chemical properties, particularly intriguing in the context of thermal transport. In this study, taking a natural superlattice composed of alternately stacked PbS and SnS2 sublayers as a model, we proposed that in a superlattice, there is strong hybridization between acoustic phonons of heavy sublayers and optical phonons of light sublayers. We identified newly generated vibration modes in the superlattice, such as interlayer shear and breathing, which exhibit lower sound velocity and contribute less to heat transport compared to their parent materials, which significantly alters the thermal behaviors of the superlattice compared to its bulk counterparts. Our findings on the behavior of interlayer phonons in superlattices not only can shed light on developing functional materials with enhanced thermal dissipation capabilities but also contribute to the broader field of condensed matter physics, offering insights into various fields, including thermoelectrics and phononic devices, and may pave the way for technological advancements in these areas.

18.
J Am Chem Soc ; 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39022834

ABSTRACT

Excitonic insulators are long-sought-after quantum materials predicted to spontaneously open a gap by the Bose condensation of bound electron-hole pairs, namely, excitons, in their ground state. Since the theoretical conjecture, extensive efforts have been devoted to pursuing excitonic insulator platforms for exploring macroscopic quantum phenomena in real materials. Reliable evidence of excitonic character has been obtained in layered chalcogenides as promising candidates. However, owing to the interference of intrinsic lattice instabilities, it is still debatable whether those features, such as the charge density wave and gap opening, are primarily driven by the excitonic effect or by the lattice transition. Herein, we develop an intercalation chemistry strategy for obtaining a novel charge-transfer excitonic insulator in organic-inorganic superlattice interfaces that serves as an ideal platform to decouple the excitonic effect from the lattice effect. In this system, we observe a narrow excitonic gap, formation of a charge density wave without periodic lattice distortion, and metal-insulator transition, providing visualized evidence of exciton condensation occurring in thermal equilibrium. Our findings identify self-assembly intercalation chemistry as a new strategy for developing novel excitonic insulators.

19.
J Am Chem Soc ; 146(11): 7858-7867, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38457662

ABSTRACT

Developing efficient bifunctional materials is highly desirable for overall proton membrane water splitting. However, the design of iridium materials with high overall acidic water splitting activity and durability, as well as an in-depth understanding of the catalytic mechanism, is challenging. Herein, we successfully developed subnanoporous Ir3Ni ultrathin nanocages with high crystallinity as bifunctional materials for acidic water splitting. The subnanoporous shell enables Ir3Ni NCs optimized exposure of active sites. Importantly, the nickel incorporation contributes to the favorable thermodynamics of the electrocatalysis of the OER after surface reconstruction and optimized hydrogen adsorption free energy in HER electrocatalysis, which induce enhanced intrinsic activity of the acidic oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). Together, the Ir3Ni nanocages achieve 3.72 A/mgIr(η=350 mV) and 4.47 A/mgIr(η=40 mV) OER and HER mass activity, which are 18.8 times and 3.3 times higher than that of commercial IrO2 and Pt, respectively. In addition, their highly crystalline identity ensures a robust nanostructure, enabling good catalytic durability during the oxygen evolution reaction after surface oxidation. This work provides a new revenue toward the structural design and insightful understanding of metal alloy catalytic mechanisms for the bifunctional acidic water splitting electrocatalysis.

20.
J Am Chem Soc ; 146(17): 12233-12242, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38626786

ABSTRACT

Photocatalytic conversion of methane (CH4) to ethane (C2H6) has attracted extensive attention from academia and industry. Typically, the traditional oxidative coupling of CH4 (OCM) reaches a high C2H6 productivity, yet the inevitable overoxidation limits the target product selectivity. Although the traditional nonoxidative coupling of CH4 (NOCM) can improve the product selectivity, it still encounters unsatisfied activity, arising from being thermodynamically unfavorable. To break the activity-selectivity trade-off, we propose a conceptually new mechanism of H2O2-triggered CH4 coupling, where the H2O2-derived ·OH radicals are rapidly consumed for activating CH4 into ·CH3 radicals exothermically, which bypasses the endothermic steps of the direct CH4 activation by photoholes and the interaction between ·CH3 and ·OH radicals, affirmed by in situ characterization techniques, femtosecond transient absorption spectroscopy, and density-functional theory calculation. By this pathway, the designed Au-WO3 nanosheets achieve unprecedented C2H6 productivity of 76.3 mol molAu-1 h-1 with 95.2% selectivity, and TON of 1542.7 (TOF = 77.1 h-1) in a self-designed flow reactor, outperforming previously reported photocatalysts regardless of OCM and NOCM pathways. Also, under outdoor natural sunlight irradiation, the Au-WO3 nanosheets exhibit similar activity and selectivity toward C2H6 production, showing the possibility for practical applications. Interestingly, this strategy can be applied to other various photocatalysts (Au-WO3, Au-TiO2, Au-CeO2, Pd-WO3, and Ag-WO3), showing a certain universality. It is expected that the proposed mechanism adds another layer to our understanding of CH4-to-C2H6 conversion.

SELECTION OF CITATIONS
SEARCH DETAIL