Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 292
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 169(2): 243-257.e25, 2017 04 06.
Article in English | MEDLINE | ID: mdl-28388409

ABSTRACT

Of all known cultured stem cell types, pluripotent stem cells (PSCs) sit atop the landscape of developmental potency and are characterized by their ability to generate all cell types of an adult organism. However, PSCs show limited contribution to the extraembryonic placental tissues in vivo. Here, we show that a chemical cocktail enables the derivation of stem cells with unique functional and molecular features from mice and humans, designated as extended pluripotent stem (EPS) cells, which are capable of chimerizing both embryonic and extraembryonic tissues. Notably, a single mouse EPS cell shows widespread chimeric contribution to both embryonic and extraembryonic lineages in vivo and permits generating single-EPS-cell-derived mice by tetraploid complementation. Furthermore, human EPS cells exhibit interspecies chimeric competency in mouse conceptuses. Our findings constitute a first step toward capturing pluripotent stem cells with extraembryonic developmental potentials in culture and open new avenues for basic and translational research. VIDEO ABSTRACT.


Subject(s)
Cell Culture Techniques/methods , Pluripotent Stem Cells/cytology , Animals , Blastocyst/cytology , Cell Line , Chimera/metabolism , Dimethindene/pharmacology , Humans , Indicators and Reagents/chemistry , Mice , Minocycline/chemistry , Minocycline/pharmacology , Pluripotent Stem Cells/drug effects , Poly (ADP-Ribose) Polymerase-1/metabolism
2.
J Am Chem Soc ; 146(10): 6992-7006, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38437718

ABSTRACT

N6-Methyladenine (6mA) of DNA has emerged as a novel epigenetic mark in eukaryotes, and several 6mA effector proteins have been identified. However, efforts to selectively inhibit the biological functions of these effector proteins with small molecules are unsuccessful to date. Here we report the first potent and selective small molecule inhibitor (13h) of AlkB homologue 1 (ALKBH1), the only validated 6mA demethylase. 13h showed an IC50 of 0.026 ± 0.013 µM and 1.39 ± 0.13 µM in the fluorescence polarization (FP) and enzyme activity assay, respectively, and a KD of 0.112 ± 0.017 µM in the isothermal titration calorimetry (ITC) assay. The potency of 13h was well explained by the cocrystal structure of the 13h-ALKBH1 complex. Furthermore, 13h displayed excellent selectivity for ALKBH1. In cells, compound 13h and its derivative 16 were able to engage ALKBH1 and modulate the 6mA levels. Collectively, our study identified the first potent, isoform selective, and cell-active ALKBH1 inhibitor, providing a tool compound for exploring the biological functions of ALKBH1 and DNA 6mA.


Subject(s)
DNA , Eukaryota , DNA/metabolism , Eukaryota/metabolism , DNA Methylation
3.
Cell Commun Signal ; 22(1): 245, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38671456

ABSTRACT

BACKGROUND: The alveolar epithelial type II cell (AT2) and its senescence play a pivotal role in alveolar damage and pulmonary fibrosis. Cell circadian rhythm is strongly associated with cell senescence. Differentiated embryonic chondrocyte expressed gene 1 (DEC1) is a very important circadian clock gene. However, the role of DEC1 in AT2 senescence and pulmonary fibrosis was still unclear. RESULTS: In this study, a circadian disruption model of light intervention was used. It was found that circadian disruption exacerbated pulmonary fibrosis in mice. To understand the underlying mechanism, DEC1 levels were investigated. Results showed that DEC1 levels increased in lung tissues of IPF patients and in bleomycin-induced mouse fibrotic lungs. In vitro study revealed that bleomycin and TGF-ß1 increased the expressions of DEC1, collagen-I, and fibronectin in AT2 cells. Inhibition of DEC1 mitigated bleomycin-induced fibrotic changes in vitro and in vivo. After that, cell senescence was observed in bleomycin-treated AT2 cells and mouse models, but these were prevented by DEC1 inhibition. At last, p21 was confirmed having circadian rhythm followed DEC1 in normal conditions. But bleomycin disrupted the circadian rhythm and increased DEC1 which promoted p21 expression, increased p21 mediated AT2 senescence and pulmonary fibrosis. CONCLUSIONS: Taken together, circadian clock protein DEC1 mediated pulmonary fibrosis via p21 and cell senescence in alveolar epithelial type II cells.


Subject(s)
Bleomycin , Cellular Senescence , Circadian Rhythm , Pulmonary Fibrosis , Animals , Humans , Male , Mice , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/pathology , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Circadian Rhythm/genetics , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Cyclin-Dependent Kinase Inhibitor p21/genetics , Homeodomain Proteins/metabolism , Homeodomain Proteins/genetics , Mice, Inbred C57BL , Pulmonary Fibrosis/pathology , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/genetics , Pulmonary Fibrosis/metabolism , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta1/genetics , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism
4.
Bioorg Chem ; 148: 107450, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38761704

ABSTRACT

Here, a series of 3-(6-aminopyridin-3-yl) benzamide derivatives were designed and synthesized. Cell viability assay indicated that most compounds exhibited potent antiproliferative activity against all the tested cancer cells. Among them, compound 7l displayed the best antiproliferative activity particularly in A549 cells, with an IC50 value of 0.04 ± 0.01 µM. RNA-seq analysis was employed to explore the potential pathways related to the antiproliferative activity of compound 7l. The data revealed that 7l exerted antiproliferative activity mainly by regulating cell cycle, DNA replication and p53 signaling pathway. Indeed, compound 7l induced G2/M phase arrest by AURKB transcription inhibition and resulted in cell apoptosis via p53 signaling pathway. Most importantly, compound 7l demonstrated potent antitumor activity in A549 xenograft tumor model. Collectively, 7l might be a promising lead compound for the development of new therapeutic agents for AURKB overexpressed or mutated cancers.


Subject(s)
Antineoplastic Agents , Apoptosis , Benzamides , Cell Cycle Checkpoints , Cell Proliferation , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Benzamides/pharmacology , Benzamides/chemical synthesis , Benzamides/chemistry , Cell Proliferation/drug effects , Structure-Activity Relationship , Molecular Structure , Cell Cycle Checkpoints/drug effects , Animals , Mice , Mice, Nude , Cell Line, Tumor , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Transcription, Genetic/drug effects , Mice, Inbred BALB C
5.
Article in English | MEDLINE | ID: mdl-38850333

ABSTRACT

AIM: To explore the molecular mechanism underlying the protective effect of hypothermic perfusion on the corneal endothelium during phacoemulsification. METHODS: Phacoemulsification was performed on New Zealand white rabbits. Perfusate at different temperatures was used during the operation, and the aqueous humor was collected for proteomic sequencing after the operation. Corneal endothelial cell injury was simulated by a corneal endothelial cell oxygen-glucose deprivation/reoxygenation (OGD/R) model in vitro. Flow cytometry and evaluation of fluorescent LC3B puncta were used to detect apoptosis and autophagy, and western blotting was used to detect protein expression. RESULTS: A total of 381 differentially expressed proteins were identified between the two groups. In vitro, 4 ℃ hypothermia significantly reduced apoptosis and promoted autophagy. Apoptosis increased after autophagy was inhibited by 3-Methyladenine (3-MA). Furthermore, adiponectin (ADIPOQ) knockdown inhibited phospho-AMPK and blocked the protective effect of hypothermia on corneal endothelial cells. CONCLUSIONS: We investigated the differential expression of proteins between the hypothermia group and normothermia group by proteomics. Moreover, hypothermia-induced ADIPOQ can reduce apoptosis by promoting AMPK-mediated autophagy.

6.
J Basic Microbiol ; 64(4): e2300705, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38253966

ABSTRACT

Ergothioneine (EGT) is a rare thiohistidine derivative with exceptional antioxidant properties. The blood level of EGT is considered highly reliable predictors for cardiovascular diseases and mortality, yet animals lack the ability to synthesize this compound. Free plasmids have been previously used to overexpress genes involved in the EGT biosynthetic pathway of Mycolicibacterium neoaurum. Here, we tentatively introduced a putative transporter gene mfsT1 into high-copy plasmids and sharply increased the ratio of extracellular EGT concentration from 18.7% to 44.9%. Subsequently, an additional copy of egtABCDE, hisG, and mfsT1 was inserted into the genome with a site-specific genomic integration tool of M. neoaurum, leading a 2.7 times increase in EGT production. Co-enhancing the S-adenosyl-L-methionine regeneration pathway, or alternatively, the integration of three copies of egtABCDE, hisG and mfsT1 into the genome further increased the total EGT yield by 16.1% (64.6 mg/L) and 21.7% (67.7 mg/L), respectively. After 168-h cultivation, the highest titer reached 85.9 mg/L in the latter strain with three inserted copies. This study provided a solid foundation for genome engineering to increase the production of EGT in M. neoaurum.


Subject(s)
Ergothioneine , Mycobacteriaceae , Animals , Ergothioneine/genetics , Ergothioneine/metabolism , Antioxidants/metabolism
7.
Zhongguo Zhong Yao Za Zhi ; 49(7): 1872-1881, 2024 Apr.
Article in Zh | MEDLINE | ID: mdl-38812199

ABSTRACT

This study aims to identify the active constituents of essential oil from the rhizomes of Curcuma phaeocaulis for the treatment of dysmenorrhea. The compounds were separated and purified by molecular distillation, silica gel and Sephadex LH-20 column chromatography, preparative thin layer chromatography, and semi-preparative high performance liquid chromatography. Their structures were identified by mass spectrometry and nuclear magnetic resonance spectroscopy. The animal model of primary dysmenorrhea and the contraction model of isolated uterine smooth muscle of rats were established to examine the active constituents in the essential oil for treating dysmenorrhea. Six sesquiterpenes were isolated and identified as dehydrocommiterpene A(1), comosone Ⅱ(2), 5α(H)-eudesma-3(4),7(11)-dien-9ß-ol-6-one(3), guaia-6(7)-en-11-ol(4), curcumenol(5), and isocurcumenol(6), among which compound 1 was a novel compound. The animal experiments showed that the essential oil from C. phaeocaulis significantly lowered the level of PGF_(2α) in uterine tissue compared with the model group. The experiment with the contraction model of isolated uterine smooth muscle demonstrated that the components with high boiling points outperformed those with low boiling points in relaxing the uterine smooth muscle, and compounds 1, 2, 5, and 6 isolated from the fraction with a high boiling point had the effect of relaxing the uterine smooth muscle. Among them, compounds 5 and 6 inhibited the extracellular Ca~(2+) influx and intracellular Ca~(2+) release to relax the uterine smooth muscle. In conclusion, the components with high boiling points and sesquiterpenes are the active components in the essential oil of C. phaeocaulis for treating dysmenorrhea.


Subject(s)
Curcuma , Dysmenorrhea , Oils, Volatile , Dysmenorrhea/drug therapy , Female , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Animals , Curcuma/chemistry , Rats , Rats, Sprague-Dawley , Humans , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Uterus/drug effects , Rhizome/chemistry
8.
Anal Chem ; 95(22): 8452-8460, 2023 06 06.
Article in English | MEDLINE | ID: mdl-37209123

ABSTRACT

With the development of nuclear magnetic resonance (NMR) spectrometers and probes, two-dimensional quantitative nuclear magnetic resonance (2D qNMR) technology with a high signal resolution and great application potential has become increasingly accessible for the quantitation of complex mixtures. However, the requirement that the relaxation recovery time be equal to at least five times T1 (longitudinal relaxation time) makes it difficult for 2D qNMR to simultaneously achieve high quantitative accuracy and high data acquisition efficiency. By comprehensively using relaxation optimization and nonuniform sampling, we successfully established an optimized 2D qNMR strategy for HSQC experiments at the half-hour level and then accurately quantified the diester-type C19-diterpenoid alkaloids in Aconitum carmichaelii. The optimized strategy had the advantages of high efficiency, high accuracy, good reproducibility, and low cost and thus could serve as a reference to optimize 2D qNMR experiments for quantitative analysis of natural products, metabolites, and other complex mixtures.


Subject(s)
Aconitum , Alkaloids , Diterpenes , Aconitum/chemistry , Reproducibility of Results , Alkaloids/analysis , Diterpenes/analysis , Magnetic Resonance Spectroscopy , Plant Roots/chemistry , Molecular Structure
9.
Cell Commun Signal ; 21(1): 39, 2023 02 20.
Article in English | MEDLINE | ID: mdl-36803515

ABSTRACT

BACKGROUND: Fine particulate matter (PM2.5) is associated with increased incidence and severity of asthma. PM2.5 exposure disrupts airway epithelial cells, which elicits and sustains PM2.5-induced airway inflammation and remodeling. However, the mechanisms underlying development and exacerbation of PM2.5-induced asthma were still poorly understood. The aryl hydrocarbon receptor nuclear translocator-like protein 1 (BMAL1) is a major circadian clock transcriptional activator that is also extensively expressed in peripheral tissues and plays a crucial role in organ and tissue metabolism. RESULTS: In this study, we found PM2.5 aggravated airway remodeling in mouse chronic asthma, and exacerbated asthma manifestation in mouse acute asthma. Next, low BMAL1 expression was found to be crucial for airway remodeling in PM2.5-challenged asthmatic mice. Subsequently, we confirmed that BMAL1 could bind and promote ubiquitination of p53, which can regulate p53 degradation and block its increase under normal conditions. However, PM2.5-induced BMAL1 inhibition resulted in up-regulation of p53 protein in bronchial epithelial cells, then increased-p53 promoted autophagy. Autophagy in bronchial epithelial cells mediated collagen-I synthesis as well as airway remodeling in asthma. CONCLUSIONS: Taken together, our results suggest that BMAL1/p53-mediated bronchial epithelial cell autophagy contributes to PM2.5-aggravated asthma. This study highlights the functional importance of BMAL1-dependent p53 regulation during asthma, and provides a novel mechanistic insight into the therapeutic mechanisms of BMAL1. Video Abstract.


Subject(s)
ARNTL Transcription Factors , Asthma , Animals , Mice , Airway Remodeling , ARNTL Transcription Factors/metabolism , Asthma/metabolism , Autophagy , Epithelial Cells/metabolism , Particulate Matter/toxicity , Particulate Matter/metabolism , Tumor Suppressor Protein p53/metabolism
10.
Bioorg Chem ; 132: 106352, 2023 03.
Article in English | MEDLINE | ID: mdl-36682147

ABSTRACT

Aurora A (Aurora kinase A), a critical regulator of cell mitosis, is frequently overexpressed in many malignant cancers, and has been considered as a promising drug target for cancer therapy. Likewise, Phosphatidylinositol 3-kinase alpha (PI3Kα) is also regarded as one of the most important targets in cancer therapy by mediating the cell growth and angiogenesis of various human cancers. In addition, Bromodomain-containing protein 4 (BRD4) modulates oncogene expressions of Myc, Aurora kinase and various RTKs. Recently, accumulating evidences indicated that hyperactivated or abnormally expressed Aurora A, PI3Kα or BRD4 are closely associated with drug resistance and poor prognosis of non-small cell lung cancer (NSCLC). Hence, simultaneous inhibition of Aurora A, PI3Kα, and BRD4 is expected to be a new strategy for NSCLC therapy. In this study, we performed further structure optimization of 6-(2-amino-1H-benzo[d]imidazole-6-yl)-quinazolin-4(3H) -one based on previous study to obtain a series of derivatives for discovering potential Aurora A, PI3Kα and BRD4 multi-targeted inhibitors. MTT assay showed that most of the newly synthesized compounds exhibited an evident anticancer activity against the NSCLC cells. Among them, the IC50 values of the most potent compound 9a were 0.83, 0.26 and 1.02 µM against A549, HCC827 and H1975 cells, respectively. In addition, 9a markedly inhibited the Aurora A and PI3Kα kinase activities with IC50 values of 10.19 nM and 13.12 nM. Compound 9a induced G2/M phase arrests and apoptosis of HCC827 cells by simultaneous inhibition of Aurora A/PI3K/ BRD4 signaling pathways. Collectively, our studies suggested that 9a might be a potential multi-targeted inhibitor for NSCLC therapy.


Subject(s)
Antineoplastic Agents , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Structure-Activity Relationship , Phosphatidylinositol 3-Kinases/metabolism , Nuclear Proteins/metabolism , Carcinoma, Non-Small-Cell Lung/drug therapy , Protein Kinase Inhibitors , Aurora Kinase A/metabolism , Aurora Kinase A/pharmacology , Transcription Factors , Antineoplastic Agents/chemistry , Cell Proliferation , Imidazoles/pharmacology , Cell Line, Tumor , Drug Screening Assays, Antitumor , Molecular Structure
11.
Bioorg Chem ; 135: 106484, 2023 06.
Article in English | MEDLINE | ID: mdl-36963371

ABSTRACT

ROR1 and Aurora kinase were overexpressed in various cancers and essential for cell proliferation, survive and metastasis. Pharmaceutical inhibition of ROR1 and Aurora kinase abrogated the activation of downstream signaling and induced cancer cell apoptosis. Hence, ROR1 and Aurora kinase considered as attractive therapeutic targets for the development of anticancer drugs. In the present work, three series of novel 6-(imidazo[1,2-a] pyridin-6-yl)-quinazolin-4(3H)-one derivatives were designed and synthesized via bioisosterism and scaffold-hopping strategies guided by FLF-13, an Aurora kinase inhibitor we discovered earlier. Most of compounds in series 2 and series 3 showed submicromolar to nanomolar inhibitory activity against multiple cancer cell lines. More importantly, compounds 12d and 12f in series 3 showed nanomolar inhibitory activity against all test cancer cells. The most promising compound 12d exhibited potent inhibitory activity against Aurora A and Aurora B with IC50 values of 84.41 nM and 14.09 nM, respectively. Accordingly, compounds 12d induced G2/M phase cell cycle arrest at 24 h and polyploidy at 48 h. It's worth noting that 12d also displayed inhibitory activity against ROR1 and induce cell apoptosis. Furthermore, 12d could significantly inhibit the tumor growth in SH-SY5Y xenograft model with tumor growth inhibitory rate (IR) up to 46.31 % at 10 mg/kg and 52.66 % at 20 mg/kg. Overall, our data suggested that 12d might serve as a promising candidate for the development of therapeutic agents for cancers with aberrant expression of ROR1 and Aurora kinases by simultaneously targeting ROR1 and Aurora kinase.


Subject(s)
Antineoplastic Agents , Neuroblastoma , Humans , Antineoplastic Agents/pharmacology , Cell Proliferation , Protein Kinase Inhibitors , Cell Line, Tumor , Apoptosis , Receptor Tyrosine Kinase-like Orphan Receptors/pharmacology
12.
Appl Microbiol Biotechnol ; 107(16): 5257-5267, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37405431

ABSTRACT

The engineered probiotic Escherichia coli Nissle 1917 (EcN) is expected to be employed in the diagnosis and treatment of various diseases. However, the introduced plasmids typically require antibiotics to maintain genetic stability, and the cryptic plasmids in EcN are usually eliminated to avoid plasmid incompatibility which may change the inherent probiotic characteristics. Here, we provided a simple design to minimize the genetic change of probiotics by eliminating native plasmids and reintroducing the recombinants carrying functional genes. Specific insertion sites in the vectors showed significant differences in the expression of fluorescence proteins. Selected integration sites were applied in the de novo synthesis of salicylic acid, leading to a titer of 142.0 ± 6.0 mg/L in a shake flask with good production stability. Additionally, the design successfully realized the biosynthesis of ergothioneine (45 mg/L) by one-step construction. This work expands the application scope of native cryptic plasmids to the easy construction of functional pathways. KEY POINTS: • Cryptic plasmids of EcN were designed to express exogenous genes • Insertion sites with different expression intensities in cryptic plasmids were provided • Target products were stably produced by engineering cryptic plasmids.


Subject(s)
Anti-Bacterial Agents , Probiotics , Anti-Bacterial Agents/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Plasmids/genetics
13.
BMC Ophthalmol ; 23(1): 353, 2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37563617

ABSTRACT

OBJECTIVE: To determine the efficacy of cataract surgeries in blindness prevention programs in Chongqing. METHODS: During February-December 2019, we prospectively enrolled 487 patients (592 eyes) undergoing cataract surgery during blindness prevention programs in 6 Chongqing district/county hospitals (experimental group) and 481 patients (609 eyes) undergoing cataract surgery in the First Affiliated Hospital of Chongqing Medical University (controls). Uncorrected visual acuity (UCVA), refractive status, best corrected visual acuity (BCVA), slit lamp examination, and visual function/quality of life (VF-QOL) questionnaire scores were evaluated preoperatively, and at 1 and 6 months postoperatively. RESULTS: In the experimental group, UCVA, BCVA, and VF-QOL scores at 1 and 6 months were better than the preoperative values (P < 0.05), but lower than the control-group values (P < 0.05). Rates of good UCVA and BCVA outcomes (≤ 0.5 logMAR) in the experimental group were 76.2% and 87.6%, respectively, at 1 month and 68.9% and 83.1%, respectively, at 6 months. Most eyes in the experimental (82.1%) and control (89.5%) groups had refractive errors within ± 1 D at 1 month. At 6 months, posterior capsule opacification (PCO) was more common in the experimental group (20.9% vs. 15.0%, P < 0.05). At 6 months, the main causes of visual impairment (UCVA > 0.5 logMAR) in the experimental group were uncorrected refractive errors (33.0%), PCO (29.5%), and fundus diseases (33.9%). CONCLUSION: Cataract surgeries in blindness prevention programs in Chongqing significantly improved visual acuity, VF, and QOL, but underperformed compared to surgeries in the tertiary teaching hospital.


Subject(s)
Cataract Extraction , Cataract , Refractive Errors , Humans , Prospective Studies , Quality of Life , Blindness/etiology , Blindness/prevention & control , Cataract/complications
14.
Ecotoxicol Environ Saf ; 263: 115279, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37480692

ABSTRACT

The growing presence of yttrium (Y) in the environment raises concern regarding its safety and toxicity. However, limited toxicological data are available to determine cardiotoxicity of Y and its underlying mechanisms. In the present study, yttrium chloride (YCl3) intervention with different doses was performed in male Kunming mice for the toxicological evaluation of Y in the heart. After 28 days of intragastric administration, 500 mg/kg·bw YCl3 induces iron accumulation in cardiomyocytes, and triggers ferroptosis through the glutathione peroxidase 4 (GPX4)/glutathione (GSH)/system Xc- axis via the inhibition of Nrf2 signaling pathway. This process led to cardiac lipid peroxidation and inflammatory response. Further RNA sequencing transcriptome analysis found that many genes involved in ferroptosis and lipid metabolism-related pathways were enriched. The ferroptosis induced by YCl3 in cardiomyocytes ultimately caused cardiac injury and dysfunction in mice. Our findings assist in the elucidation of the potential subacute cardiotoxicity of Y3+ and its underlying mechanisms.


Subject(s)
Ferroptosis , Myocytes, Cardiac , Male , Mice , Animals , Lipid Peroxidation , Cardiotoxicity , Yttrium , Inflammation , Iron
15.
Int J Mol Sci ; 24(7)2023 Apr 06.
Article in English | MEDLINE | ID: mdl-37047827

ABSTRACT

Aberrant expression of the phosphatidylinositol 3-kinase (PI3K) signalling pathway is often associated with tumourigenesis, progression and poor prognosis. Hence, PI3K inhibitors have attracted significant interest for the treatment of cancer. In this study, a series of new 6-(imidazo[1,2-a]pyridin-6-yl)quinazoline derivatives were designed, synthesized and characterized by 1H NMR, 13C NMR and HRMS spectra analyses. In the in vitro anticancer assay, most of the synthetic compounds showed submicromolar inhibitory activity against various tumour cell lines, among which 13k is the most potent compound with IC50 values ranging from 0.09 µΜ to 0.43 µΜ against all the tested cell lines. Moreover, 13k induced cell cycle arrest at G2/M phase and cell apoptosis of HCC827 cells by inhibition of PI3Kα with an IC50 value of 1.94 nM. These results suggested that compound 13k might serve as a lead compound for the development of PI3Kα inhibitor.


Subject(s)
Antineoplastic Agents , Quinazolines , Quinazolines/chemistry , Molecular Structure , Structure-Activity Relationship , Phosphatidylinositol 3-Kinases/metabolism , Drug Screening Assays, Antitumor , Cell Proliferation , Antineoplastic Agents/chemistry , Cell Line, Tumor , Drug Design
16.
Molecules ; 28(3)2023 Feb 03.
Article in English | MEDLINE | ID: mdl-36771160

ABSTRACT

Four novel indane derivatives, anisotindans A-D (1-4), were isolated from the roots of Anisodus tanguticus. Their structures were established using comprehensive spectroscopic analyses, and their absolute configurations were determined by electronic circular dichroism (ECD) calculations and single-crystal X-ray diffraction analyses. Anisotindans C and D (3 and 4) are two unusual indenofuran analogs. ABTS•+ and DPPH•+ assays of radical scavenging activity reveal that all compounds (1-4) are active. Specifically, the ABTS•+ assay results show that anisotindan A (1) exhibits the best antioxidant activity with an IC50 value of 15.62 ± 1.85 µM (vitamin C, IC50 = 22.54 ± 5.18 µM).


Subject(s)
Antioxidants , Antioxidants/pharmacology , Antioxidants/chemistry , Molecular Structure
17.
Molecules ; 28(6)2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36985676

ABSTRACT

To explore the sesquiterpenoids in Curcuma longa L. and their activity related to anti-atherosclerosis. The chemical compounds of the rhizomes of C. longa were separated and purified by multiple chromatography techniques. Their structures were established by a variety of spectroscopic experiments. The absolute configurations were determined by comparing experimental and calculated NMR chemical shifts and electronic circular dichroism (ECD) spectra. Their anti-inflammatory effects and inhibitory activity against macrophage-derived foam cell formation were evaluated by lipopolysaccharide (LPS) and oxidized low-density lipoprotein (ox-LDL)-injured RAW264.7 macrophages, respectively. This study resulted in the isolation of 10 bisabolane-type sesquiterpenoids (1-10) from C. longa, including two pairs of new epimers (curbisabolanones A-D, 1-4). Compound 4 significantly inhibited LPS-induced nitric oxide (NO), interleukin-1ß (IL-1ß), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and prostaglandin E2 (PGE2) production in RAW264.7 cells. Furthermore, compound 4 showed inhibitory activity against macrophage-derived foam cell formation, which was represented by markedly reducing ox-LDL-induced intracellular lipid accumulation as well as total cholesterol (TC), free cholesterol (FC), and cholesterol ester (CE) contents in RAW264.7 cells. These findings suggest that bisabolane-type sesquiterpenoids, one of the main types of components in C. longa, have the potential to alleviate the atherosclerosis process by preventing inflammation and inhibiting macrophage foaming.


Subject(s)
Atherosclerosis , Sesquiterpenes , Monocyclic Sesquiterpenes/pharmacology , Lipopolysaccharides/pharmacology , Curcuma/chemistry , Atherosclerosis/drug therapy , Atherosclerosis/metabolism , Sesquiterpenes/chemistry , Foam Cells/metabolism , Lipoproteins, LDL/metabolism , Cholesterol/metabolism
18.
Arch Orthop Trauma Surg ; 143(3): 1441-1449, 2023 Mar.
Article in English | MEDLINE | ID: mdl-35098356

ABSTRACT

INTRODUCTION: Systemically, changes in serum platelet to lymphocyte ratio (PLR), platelet count to mean platelet volume ratio (PVR), neutrophil to lymphocyte ratio (NLR) and monocyte to lymphocyte (MLR) represent primary responses to early inflammation and infection. This study aimed to determine whether PLR, PVR, NLR, and MLR can be useful in diagnosing periprosthetic joint infection (PJI) in total hip arthroplasty (THA) patients. METHODS: A total of 464 patients that underwent revision THA with calculable PLR, PVR, NLR, and MLR in 2 groups was evaluated: 1) 191 patients with a pre-operative diagnosis of PJI, and 2) 273 matched patients treated for revision THA for aseptic complications. RESULTS: The sensitivity and specificity of PLR combined with erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), synovial white blood cell count (WBC) and synovial polymorphonuclear leukocytes (PMN) (97.9%; 98.5%) is significantly higher than only ESR combined with CRP, synovial WBC and synovial PMN (94.2%; 94.5%; p < 0.01). The sensitivity and specificity of PVR combined with ESR, CRP and synovial WBC, and synovial PMN (98.4%; 98.2%) is higher than only ESR combined with CRP, synovial WBC and synovial PMN (94.2%; 94.5%; p < 0.01). CONCLUSION: The study results demonstrate that both PLR and PVR calculated from complete blood counts when combined with serum and synovial fluid markers have increased diagnostic sensitivity and specificity in diagnosing periprosthetic joint infection in THA patients. LEVEL OF EVIDENCE: III, case-control retrospective analysis.


Subject(s)
Arthritis, Infectious , Arthroplasty, Replacement, Hip , Prosthesis-Related Infections , Humans , Arthroplasty, Replacement, Hip/adverse effects , Retrospective Studies , Blood Platelets/chemistry , Blood Platelets/metabolism , Prosthesis-Related Infections/surgery , C-Reactive Protein/analysis , Sensitivity and Specificity , Arthritis, Infectious/surgery , Lymphocytes/chemistry , Lymphocytes/metabolism , Synovial Fluid/chemistry , Blood Sedimentation , Biomarkers
19.
Zhongguo Zhong Yao Za Zhi ; 48(22): 6093-6106, 2023 Nov.
Article in Zh | MEDLINE | ID: mdl-38114217

ABSTRACT

This study aimed to investigate the therapeutic effect of Leonuri Herba aqueous decoction on primary dysmenorrhea(PD) and explore the underlying mechanism in conjunction with untargeted metabolomics. Forty adult female rats were randomly divi-ded into a normal group, a model control group, ibuprofen(0.12 g·kg~(-1)) group, and high-and low-dose Leonuri Herba aqueous decoction(5 and 2.5 g·kg~(-1)) groups, with eight rats in each group. The PD rat model was prepared using intramuscular injection of estradiol benzoate combined with intraperitoneal injection of pitocin. Drugs were administered by gavage from the 4th day of modeling for 7 d. After the last administration, pitocin was injected intraperitoneally, and the writhing latency and writhing times within 30 min were recorded. The uterine and ovarian coefficients were determined. Estradiol(E_2), progesterone(Prog), oxytocin(OT), cyclooxyge-nase 2(COX-2), prostaglandin E_2(PGE_2), prostaglandin F_(2α)(PGF_(2α)), and Ca~(2+) levels in uterine tissues were measured by ELISA and biochemical kits. Morphological changes in uterine and ovarian tissues were observed by hematoxylin-eosin(HE) staining. The protein expression of oxytocin receptor(OTR), prostaglandin E_2 receptor 3(EP3), and estrogen receptor alpha(ERα) in uterine tissues was detected by immunohistochemistry. The mRNA expression of OTR, PGE_2 receptors 1-4(EP1, EP2, EP3, and EP4), and PGF_(2α) receptor(FP) in uterine tissues was detected by quantitative real-time PCR. Untargeted metabolomics analysis was performed by ultra-high-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry(LC-QTOF-MS) technology to screen potential biomarkers and enrich metabolic pathways. The results showed that Leonuri Herba was able to significantly reduce the writhing times in PD rats(P<0.05 or P<0.01), significantly reduce the uterine and ovarian coefficients(P<0.01), and improve their histomorphology. After treatment with Leonuri Herba, PGE_2 content was significantly increased(P<0.05), COX-2, PGF_(2α) and Ca~(2+) content, and PGF_(2α)/PGE_2 was significantly decreased(P<0.05 or P<0.01), and OT content was decreased, while E_2 and Prog content tended to further increase in uterine tissues of PD rats. Correspondingly, OTR and EP3 protein expression was significantly downregulated(P<0.05 or P<0.01) and ERα protein expression was upregulated(P<0.05) in uterine tissues. The mRNA expression of FP and EP4 in uterine tissues was significantly downregulated(P<0.01), and the mRNA expression of EP1, EP3, and OTR showed a decreasing trend. The untargeted metabolomics results showed that 10 differential metabolites were restored in the plasma of PD rats after Leonuri Herba treatment. The results indicate that Leonuri Herba is effective in the prevention and treatment of PD, and the underlying mechanism may be attributed to the regulation of PGs synthesis and corresponding receptor binding.


Subject(s)
Estrogen Receptor alpha , Oxytocin , Humans , Rats , Female , Animals , Dysmenorrhea/drug therapy , Dysmenorrhea/metabolism , Cyclooxygenase 2 , Dinoprostone , RNA, Messenger/metabolism , Dinoprost
20.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 40(5): 912-919, 2023 Oct 25.
Article in Zh | MEDLINE | ID: mdl-37879920

ABSTRACT

Precise segmentation of lung field is a crucial step in chest radiographic computer-aided diagnosis system. With the development of deep learning, fully convolutional network based models for lung field segmentation have achieved great effect but are poor at accurate identification of the boundary and preserving lung field consistency. To solve this problem, this paper proposed a lung segmentation algorithm based on non-local attention and multi-task learning. Firstly, an encoder-decoder convolutional network based on residual connection was used to extract multi-scale context and predict the boundary of lung. Secondly, a non-local attention mechanism to capture the long-range dependencies between pixels in the boundary regions and global context was proposed to enrich feature of inconsistent region. Thirdly, a multi-task learning to predict lung field based on the enriched feature was conducted. Finally, experiments to evaluate this algorithm were performed on JSRT and Montgomery dataset. The maximum improvement of Dice coefficient and accuracy were 1.99% and 2.27%, respectively, comparing with other representative algorithms. Results show that by enhancing the attention of boundary, this algorithm can improve the accuracy and reduce false segmentation.


Subject(s)
Algorithms , Diagnosis, Computer-Assisted , X-Rays , Thorax/diagnostic imaging , Lung/diagnostic imaging , Image Processing, Computer-Assisted
SELECTION OF CITATIONS
SEARCH DETAIL