Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 108
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Fish Shellfish Immunol ; 144: 109272, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38061442

ABSTRACT

Yellow catfish (Pelteobagrus fulvidraco) is an important economic species of freshwater fish, widely distributed in China. Recently, viral diseases of yellow catfish have been identified in Chian (Hubei province), arising more attention to the viral immunity in P. fulvidraco. Tumor necrosis factor (TNF) receptor-associated factor NF-κB activator (TANK)-binding kinase 1 (TBK1) plays an essential role in IFN production and innate antiviral immunity. In the present study, we characterized the P. fulvidraco TBK1 (PfTBK1) and reported its function in interferon response. The full-length open reading frame (ORF) is 2184 bp encoding a protein with 727 amino acids, which is composed of four conserved domains, including KD, ULD, CCD1, and CCD2, similar to TBK1 in other species. Pftbk1 was widely expressed in all detected tissues by qPCR and was not inducible by the spring viremia of carp virus (SVCV), a single-strand RNA virus. In addition, the cellular distribution indicated that PfTBK1 was only located in the cytoplasm. Moreover, PfTBK1 induced strong IFN promoter activities through the Jak-stat pathway, and PfTBK1 interacted with and significantly phosphorylated IFN regulatory factor 3/7 (IRF3/7) in P. fulvidraco, promoting the nuclear translocation of pfIRF3 and PfIRF7, and PfTBK1 upregulated IFN response by PfTBK1-PfIRF3/7 axis. Above all, PfTBK1 triggered IFN response and strongly inhibited the replication of SVCV in EPC cells through induction of IFN downstream IFN-stimulated genes (ISGs). Summarily, this work reveals that PfTBK1 plays a positive regulatory role in IFN induction through the TBK1-IRF3/7 axis, laying a foundation for further exploring the molecular mechanism of the antiviral process in P. fulvidraco.


Subject(s)
Catfishes , Interferons , Animals , Interferons/metabolism , Signal Transduction , Interferon Regulatory Factor-3/genetics , Catfishes/genetics , Catfishes/metabolism , Janus Kinases , STAT Transcription Factors , Immunity, Innate/genetics
2.
Fish Shellfish Immunol ; 148: 109477, 2024 May.
Article in English | MEDLINE | ID: mdl-38447782

ABSTRACT

Proteins from the C1q domain-containing (C1qDC) family recognize self-, non-self-, and altered-self ligands and serves as an initiator molecule for the classical complement pathway as well as recognizing immune complexes. In this study, C1qDC gene family members were identified and analyzed in grass carp (Ctenopharyngodon idellus). Members of the C1q subfamily were cloned, and their response to infection with the grass carp virus was investigated. In the grass carp genome, 54 C1qDC genes and 67 isoforms have been identified. Most were located on chromosome 3, with 52 shared zebrafish homologies. Seven substantially differentially expressed C1qDC family genes were identified in the transcriptomes of cytokine-induced killer (CIK) cells infected with grass carp reovirus (GCRV), all of which exhibited sustained upregulation. The opening reading frames of grass carp C1qA, C1qB, and C1qC, belonging to the C1q subfamily, were determined to be 738, 732, and 735 base pairs, encoding 245, 243, and 244 amino acids with molecular weights of 25.81 kDa, 25.63 kDa and 26.16 kDa, respectively. Three genes were detected in the nine collected tissues, and their expression patterns were similar, with the highest expression levels observed in the spleen. In vivo after GCRV infection showed expression trends of C1qA, C1qB, and C1qC in the liver, spleen, and kidney. An N-type pattern in the liver and kidney was characterized by an initial increase followed by a decrease, with the highest expression occurring during the recovering period, and a V-type pattern in the spleen with the lowest expression levels during the death period. In vitro, after GCRV infection showed expression trends of C1qA, C1qB, and C1qC, and this gradually increased within the first 24 h, with a notable increase observed at the 24 h time point. After CIK cells incubation with purified recombinant proteins, rC1qA, rC1qB, and rC1qC for 3 h, followed by GCRV inoculation, the GCRV replication indicated that rC1qC exerted a substantial inhibitory effect on viral replication in CIK cells after 24 h of GCRV inoculation. These findings offer valuable insights into the structure, evolution, and function of the C1qDC family genes and provide a foundational understanding of the immune function of C1q in grass carp.


Subject(s)
Carps , Fish Diseases , Reoviridae Infections , Reoviridae , Animals , Carps/genetics , Carps/metabolism , Zebrafish , Complement C1q/genetics , Reoviridae/physiology , Complement System Proteins , Fish Proteins/chemistry
3.
J Integr Plant Biol ; 65(3): 825-837, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36250681

ABSTRACT

Pattern-triggered immunity (PTI) is an essential strategy used by plants to deploy broad-spectrum resistance against pathogen attacks. Heterotrimeric G proteins have been reported to contribute to PTI. Of the three non-canonical EXTRA-LARGE G PROTEINs (XLGs) in Arabidopsis thaliana, XLG2 and XLG3 were shown to positively regulate immunity, but XLG1 was not considered to function in defense, based on the analysis of a weak xlg1 allele. In this study, we characterized the xlg1 xlg2 xlg3 triple knockout mutants generated from an xlg1 knockout allele. The strong xlg1 xlg2 xlg3 triple mutants compromised pathogen-associated molecular pattern (PAMP)-triggered activation of mitogen-activated protein kinases (MAPKs) and resistance to pathogen infection. The three XLGs interacted with MAPK cascade proteins involved in defense signaling, including the MAPK kinase kinases MAPKKK3 and MAPKKK5, the MAPK kinases MKK4 and MKK5, and the MAPKs MPK3 and MPK6. Expressing a constitutively active form of MKK4 restored MAPK activation and partially recovered the compromised disease resistance seen in the strong xlg1 xlg2 xlg3 triple mutant. Furthermore, mutations of all three XLGs largely restored the phenotype of the autoimmunity mutant bak1-interacting receptor-like kinase 1. Our study reveals that all three XLGs function redundantly in PAMP-triggered MAPK activation and plant immunity.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Heterotrimeric GTP-Binding Proteins , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Heterotrimeric GTP-Binding Proteins/genetics , Heterotrimeric GTP-Binding Proteins/metabolism , Signal Transduction , Mitogen-Activated Protein Kinases/genetics , Mitogen-Activated Protein Kinase Kinases/metabolism , Plant Immunity , Gene Expression Regulation, Plant
4.
Exp Eye Res ; 217: 108936, 2022 04.
Article in English | MEDLINE | ID: mdl-35093391

ABSTRACT

The cornea is one of the major refractive eye components and could be easily injured. An ineffective healing of corneal stromal wound may cause fibrosis and even loss of vision. Therefore, it is pivotal to prevent corneal fibrosis after injury. In this study, a poly (ε-caprolactone) (PCL) microfibrous scaffold infused with rat tail collagen type I was fabricated to obtain a 3D composite material. Physical and biological properties of PCL/collagen scaffold were evaluated, the effect of PCL/collagen scaffold on the proliferation and differentiation of limbal stromal stem cells (LSSCs) were detected in vitro, the differentiation of keratocytes as well as the expression and arrangement of extracellular matrix (ECM) influenced by PCL/collagen scaffold were investigated in vivo. RNA-sequencing on normal and injured corneas was carried out to find out the differential enriched pathways and gene expression. We discovered that the PCL/collagen scaffold simulated the stromal structure with properties that were most similar to the native cornea, the PCL/collagen scaffold exhibited good mechanical and biological properties. We also observed that the PCL/collagen scaffold reduced keratocyte differentiation. Injured corneas treated with PCL/collagen scaffold exhibited more regular collagen distribution and less fibroblasts and myofibroblasts distribution. By RNA-sequencing, we observed that in injured group, ECM-related pathway was enriched and several ECM-related genes were up-regulated. This study provides evidence that application of PCL/collagen scaffold could be a new therapeutic strategy for corneal injury.


Subject(s)
Corneal Injuries , Corneal Stroma , Animals , Collagen/metabolism , Collagen Type I/metabolism , Cornea/metabolism , Corneal Injuries/metabolism , Corneal Stroma/metabolism , Fibrosis , RNA/metabolism , Rats , Tail/metabolism
5.
Fish Shellfish Immunol ; 129: 52-63, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35995370

ABSTRACT

Integrins are α-ß heterodimeric cell receptors that can bind the protein components of pathogens, and play crucial roles in mammalian immune responses, but the immune functions mediated by integrins remains largely unknown in teleost fish. In this study, an integrin αvß3 (GCαvß3) originally assembled by αv (GCαv) and ß3 (GCß3) subunits, was identified from a teleost fish grass carp Ctenopharyngodon idella. The pairwise alignment analyses showed that the amino acid sequences of GCαv and GCß3 shared high similarity (75.2-95.1%) and identity (58.6-90.7%) with their homologs from other vertebrates. Both GCαv and GCß3 harbored the conserved protein domains and motifs, and were clustered in fish branch of the phylogenetic tree containing the counterparts from various vertebrates. Co-immunoprecipitation displayed that GCß3 could interact with the grass carp reovirus (GCRV) outer capsid protein VP5. Two incubation experiments revealed that the interaction of GCRV or VP5 proteins with GCß3 could induce the expressions of type I interferons (IFNs) including IFN2 and IFN3 in grass carp ovary cell line. The functional analysis demonstrated that GCαvß3 served as a receptor of viral protein components to be involved in antiviral immunity as human integrin αvß3 did. In addition, both GCαv and GCß3 were significantly upregulated in various tissues of grass carp after GCRV infection. This study might provide fundamental basis for understanding the molecular characteristics and immune functions of GCαvß3, and offer a new insight into the antiviral immune mechanism specific to the integrins in grass carp.


Subject(s)
Carps , Fish Diseases , Interferon Type I , Reoviridae Infections , Reoviridae , Animals , Antiviral Agents , Capsid Proteins , Carps/genetics , Carps/metabolism , Fish Proteins/chemistry , Humans , Integrin alphaVbeta3/genetics , Mammals/metabolism , Phylogeny , Reoviridae/physiology
6.
Int J Mol Sci ; 23(18)2022 Sep 13.
Article in English | MEDLINE | ID: mdl-36142550

ABSTRACT

To reveal the mechanisms underlying root adaptation to drought stress, we isolated and characterized an Arabidopsis mutant, dig5 (drought inhibition of lateral root growth 5), which exhibited increased sensitivity to the phytohormone abscisic acid (ABA) for the inhibition of lateral root growth. The dig5 mutant also had fewer lateral roots under normal conditions and the aerial parts were yellowish with a lower level of chlorophylls. The mutant seedlings also displayed phenotypes indicative of impaired auxin transport, such as abnormal root curling, leaf venation defects, absence of apical hook formation, and reduced hypocotyl elongation in darkness. Auxin transport assays with [3H]-labeled indole acetic acid (IAA) confirmed that dig5 roots were impaired in polar auxin transport. Map-based cloning and complementation assays indicated that the DIG5 locus encodes a chloroplast-localized tRNA adenosine deaminase arginine (TADA) that is involved in chloroplast protein translation. The levels of flavonoids, which are naturally occurring auxin transport inhibitors in plants, were significantly higher in dig5 roots than in the wild type roots. Further investigation showed that flavonoid biosynthetic genes were upregulated in dig5. Introduction of the flavonoid biosynthetic mutation transparent testa 4 (tt4) into dig5 restored the lateral root growth of dig5. Our study uncovers an important role of DIG5/TADA in retrogradely controlling flavonoid biosynthesis and lateral root development. We suggest that the DIG5-related signaling pathways, triggered likely by drought-induced chlorophyll breakdown and leaf senescence, may potentially help the plants to adapt to drought stress through optimizing the root system architecture.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Abscisic Acid/metabolism , Adenosine Deaminase/metabolism , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Arginine/metabolism , Chlorophyll/metabolism , Flavonoids/metabolism , Gene Expression Regulation, Plant , Indoleacetic Acids/metabolism , Mutation , Plant Growth Regulators/metabolism , Plant Roots/metabolism , RNA, Transfer/metabolism
7.
Exp Eye Res ; 195: 108037, 2020 06.
Article in English | MEDLINE | ID: mdl-32343943

ABSTRACT

Artificial cornea is an effective treatment option for cases of severe corneal loss. In this study, we prepared a core-skirt designed artificial cornea with orthogonal microfiber grid scaffold. We fabricated PCL orthogonal microfiber grid scaffolds by a direct writing technique, and then combined them with compressed collagen (CC) to obtain a sandwich-like CC/P (where P is used to represent the PCL microfiber grid scaffold). PHEMA hydrogel and the CC/P served as the core and the skirt, respectively, with the P also serving as an intermediate between the two. The physical properties of the artificial cornea, including the morphology, the mechanical properties and the light transmittance, were evaluated. SEM images showed an effective connection and a lack of phase separation at the interface between the core and the skirt, and the skirt formed a highly porous scaffold that promoted tissue biointegration. In addition, we used the skirt structure to construct a corneal tissue model containing two cells types: corneal stromal stem cells (CSSCs) and mouse hippocampal neurons. The results showed that the cells could grow and differentiate well, and the orthogonal microfiber grid scaffold fibers were good guides for the structural growth of CSSCs and neuronal axons.


Subject(s)
Biocompatible Materials , Cornea/cytology , Materials Testing/methods , Prostheses and Implants , Tissue Scaffolds , Animals , Animals, Newborn , Cells, Cultured , Cornea/surgery , Female , Mice , Models, Animal , Porosity , Prosthesis Design , Rats , Rats, Sprague-Dawley
8.
Connect Tissue Res ; 61(5): 426-434, 2020 09.
Article in English | MEDLINE | ID: mdl-31203667

ABSTRACT

PURPOSE: Recently, nucleus pulposus-derived mesenchymal stem cells (NPMSCs) have been identified and have shown good prospects for the repair of degenerative intervertebral discs. However, there is no consensus about the methods for the isolation and purification of NPMSCs. Therefore, a reliable and efficient isolation and purification method is potentially needed. We aimed to compare different methods and to identify an optimal method for isolating and purifying NPMSCs. METHODS: NPMSCs were isolated and purified using two common methods (a low-density culture (LD) method and a mesenchymal stem cell complete medium culture (MSC-CM) method) and two novel methods (a cloning cylinder (CC) method and a combination of the CC and MSC-CM methods (MSC-CM+CC)). The morphology, MSC-specific surface markers (CD44, CD73, CD90, CD105, CD34 and HLA-DR), multiple-lineage differentiation potential, colony formation ability, and stemness gene (Oct4, Nanog, and Sox2) expression were evaluated and compared. RESULTS: NPMSCs isolated from nucleus pulposus (NP) tissues via the four methods met the criteria stated by the International Society of Cell Therapy (ISCT) for MSCs, including adherent growth ability, MSC-specific surface antigen expression, and multi-lineage differentiation potential. In particular, the MSC-CM+CC method yielded a relatively higher quality of NPMSCs in terms of cell surface markers, multiple-lineage differentiation potential, colony formation ability, and stemness gene expression. CONCLUSIONS: Our results indicated that NPMSCs can be obtained via all four methods and that the MSC-CM+CC method is more reliable and efficient than the other three methods. The findings from this study provide an alternative option for isolating and purifying NPMSCs.


Subject(s)
Cell Separation , Mesenchymal Stem Cells/cytology , Nucleus Pulposus/cytology , Animals , Rats , Rats, Sprague-Dawley
9.
Nucleic Acids Res ; 46(4): 1777-1792, 2018 02 28.
Article in English | MEDLINE | ID: mdl-29228330

ABSTRACT

Soil salinity is a significant threat to sustainable agricultural production worldwide. Plants must adjust their developmental and physiological processes to cope with salt stress. Although the capacity for adaptation ultimately depends on the genome, the exceptional versatility in gene regulation provided by the spliceosome-mediated alternative splicing (AS) is essential in these adaptive processes. However, the functions of the spliceosome in plant stress responses are poorly understood. Here, we report the in-depth characterization of a U1 spliceosomal protein, AtU1A, in controlling AS of pre-mRNAs under salt stress and salt stress tolerance in Arabidopsis thaliana. The atu1a mutant was hypersensitive to salt stress and accumulated more reactive oxygen species (ROS) than the wild-type under salt stress. RNA-seq analysis revealed that AtU1A regulates AS of many genes, presumably through modulating recognition of 5' splice sites. We showed that AtU1A is associated with the pre-mRNA of the ROS detoxification-related gene ACO1 and is necessary for the regulation of ACO1 AS. ACO1 is important for salt tolerance because ectopic expression of ACO1 in the atu1a mutant can partially rescue its salt hypersensitive phenotype. Our findings highlight the critical role of AtU1A as a regulator of pre-mRNA processing and salt tolerance in plants.


Subject(s)
Alternative Splicing , Arabidopsis Proteins/physiology , Arabidopsis/genetics , RNA Splicing Factors/physiology , Salt Tolerance/genetics , Active Transport, Cell Nucleus , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Mutation , RNA Splicing Factors/genetics , RNA Splicing Factors/metabolism , RNA, Messenger/metabolism , Reactive Oxygen Species/metabolism , Ribonucleoprotein, U1 Small Nuclear/metabolism , Salt-Tolerant Plants/genetics , Salt-Tolerant Plants/metabolism , Spliceosomes/metabolism
10.
Plant Cell ; 28(3): 770-85, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26887918

ABSTRACT

Nonsense-mediated decay (NMD) is a posttranscriptional surveillance mechanism in eukaryotes that recognizes and degrades transcripts with premature translation-termination codons. The RNA polymerase II C-terminal domain phosphatase-like protein FIERY2 (FRY2; also known as C-TERMINAL DOMAIN PHOSPHATASE-LIKE1 [CPL1]) plays multiple roles in RNA processing in Arabidopsis thaliana Here, we found that FRY2/CPL1 interacts with two NMD factors, eIF4AIII and UPF3, and is involved in the dephosphorylation of eIF4AIII. This dephosphorylation retains eIF4AIII in the nucleus and limits its accumulation in the cytoplasm. By analyzing RNA-seq data combined with quantitative RT-PCR validation, we found that a subset of alternatively spliced transcripts and 5'-extended mRNAs with NMD-eliciting features accumulated in the fry2-1 mutant, cycloheximide-treated wild type, and upf3 mutant plants, indicating that FRY2 is essential for the degradation of these NMD transcripts.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/enzymology , Eukaryotic Initiation Factor-4A/metabolism , Nonsense Mediated mRNA Decay , Phosphoprotein Phosphatases/metabolism , RNA, Messenger/genetics , RNA-Binding Proteins/metabolism , Transcription Factors/metabolism , Alternative Splicing , Arabidopsis/cytology , Arabidopsis/drug effects , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Cell Nucleus/metabolism , Cycloheximide/pharmacology , Cytoplasm/metabolism , Eukaryotic Initiation Factor-4A/genetics , Genes, Reporter , Mutation , Phosphoprotein Phosphatases/genetics , Phosphorylation , Protoplasts , RNA, Plant/genetics , RNA-Binding Proteins/genetics , Seedlings/cytology , Seedlings/drug effects , Seedlings/enzymology , Seedlings/genetics , Sequence Analysis, RNA , Transcription Factors/genetics
11.
Exp Cell Res ; 370(1): 87-97, 2018 09 01.
Article in English | MEDLINE | ID: mdl-29908161

ABSTRACT

Autophagy dysfunction has been observed in intervertebral disc degeneration (IVDD) cells, a main contributing factor to cell death, but the precise role of autophagy during IVDD is still controversial. This study aimed to investigate the role of autophagy involved in the pathogenesis of human IVDD and determine the signal transduction pathways responsible for compression-induced autophagy in human nucleus pulposus (NP) cells. Autophagy, suppressing the induction of apoptosis, was activated in NP cells exposed to compression. Molecular analysis showed that compression promoted the activity of NRF1, a transcription regulator increasing Atg7 expression by binding to its promoter, through activating the Ras/MEK/ERK signaling in NP cells. Loss- and gain-of-function studies demonstrate that NRF1 induced autophagy and dampened the apoptotic response by promoting Atg7 expression in NP cells subjected to compression. This study confirmed that compression-induced autophagy could be induced by Ras via MEK/ERK/NRF1/Atg7 signaling pathways, while inhibiting Ras/MEK/ERK/NRF1/Atg7 signaling pathways attenuated this autophagic process, implicating a promising therapeutic strategy for IVDD.


Subject(s)
Apoptosis/physiology , Autophagy-Related Protein 7/metabolism , Autophagy/physiology , Intervertebral Disc Degeneration/metabolism , MAP Kinase Signaling System/physiology , Nuclear Respiratory Factor 1/metabolism , Nucleus Pulposus/metabolism , Adolescent , Adult , Aged , Female , Humans , Intervertebral Disc/metabolism , Male , Middle Aged , Signal Transduction/physiology , Young Adult
12.
BMC Plant Biol ; 18(1): 192, 2018 Sep 12.
Article in English | MEDLINE | ID: mdl-30208840

ABSTRACT

BACKGROUND: Homeostasis of the proteome is critical to the development of chloroplasts and also affects the expression of certain nuclear genes. CLPC1 facilitates the translocation of chloroplast pre-proteins and mediates protein degradation. RESULTS: We found that proteins involved in photosynthesis are dramatically decreased in their abundance in the clpc1 mutant, whereas many proteins involved in chloroplast transcription and translation were increased in the mutant. Expression of the full-length CLPC1 protein, but not of the N-terminus-deleted CLPC1 (ΔN), in the clpc1 mutant background restored the normal levels of most of these proteins. Interestingly, the ΔN complementation line could also restore some proteins affected by the mutation to normal levels. We also found that that the clpc1 mutation profoundly affects transcript levels of chloroplast genes. Sense transcripts of many chloroplast genes are up-regulated in the clpc1 mutant. The level of SVR7, a PPR protein, was affected by the clpc1 mutation. We showed that SVR7 might be a target of CLPC1 as CLPC1-SVR7 interaction was detected through co-immunoprecipitation. CONCLUSION: Our study indicates that in addition to its role in maintaining proteome homeostasis, CLPC1 and likely the CLP proteasome complex also play a role in transcriptome homeostasis through its functions in maintaining proteome homeostasis.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Chloroplast Proteins/metabolism , Chloroplasts/metabolism , Heat-Shock Proteins/metabolism , RNA, Plant/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Chloroplast Proteins/genetics , Chloroplasts/genetics , Genes, Plant , Heat-Shock Proteins/genetics , Homeostasis , Mutation , Proteome , Transcriptome
13.
Plant Physiol ; 175(3): 1321-1336, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28887353

ABSTRACT

Long noncoding RNAs (lncRNAs) affect gene expression through a wide range of mechanisms and are considered as important regulators in many essential biological processes. A large number of lncRNA transcripts have been predicted or identified in plants in recent years. However, the biological functions for most of them are still unknown. In this study, we identified an Arabidopsis (Arabidopsis thaliana) lncRNA, DROUGHT INDUCED lncRNA (DRIR), as a novel positive regulator of the plant response to drought and salt stress. DRIR was expressed at a low level under nonstress conditions but can be significantly activated by drought and salt stress as well as by abscisic acid (ABA) treatment. We identified a T-DNA insertion mutant, drirD , which had higher expression of the DRIR gene than the wild-type plants. The drirD mutant exhibits increased tolerance to drought and salt stress. Overexpressing DRIR in Arabidopsis also increased tolerance to drought and salt stress of the transgenic plants. The drirD mutant and the overexpressing seedlings are more sensitive to ABA than the wild type in stomata closure and seedling growth. Genome-wide transcriptome analysis demonstrated that the expression of a large number of genes was altered in drirD and the overexpressing plants. These include genes involved in ABA signaling, water transport, and other stress-relief processes. Our study reveals a mechanism whereby DRIR regulates the plant response to abiotic stress by modulating the expression of a series of genes involved in the stress response.


Subject(s)
Arabidopsis/genetics , Arabidopsis/physiology , Cell Nucleus/metabolism , Droughts , RNA, Long Noncoding/metabolism , Salt Tolerance/genetics , Stress, Physiological/genetics , Abscisic Acid/pharmacology , Arabidopsis/drug effects , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Cell Nucleus/drug effects , Down-Regulation/drug effects , Down-Regulation/genetics , Gene Expression Regulation, Plant/drug effects , Genes, Plant , Mutation/genetics , Plant Leaves/drug effects , Plant Leaves/genetics , Plant Leaves/physiology , Plants, Genetically Modified , Proline/metabolism , RNA, Long Noncoding/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reactive Oxygen Species/metabolism , Salt Tolerance/drug effects , Seedlings/drug effects , Seedlings/genetics , Sodium Chloride/pharmacology , Stress, Physiological/drug effects , Subcellular Fractions/drug effects , Subcellular Fractions/metabolism , Up-Regulation/drug effects , Up-Regulation/genetics
14.
Phys Rev Lett ; 118(2): 025701, 2017 Jan 13.
Article in English | MEDLINE | ID: mdl-28128597

ABSTRACT

Starting with thermodynamic predictions and following with molecular dynamics simulations, special triaxial compression-tension states were found for which the stresses for the instability of the crystal lattice of silicon (Si) are the same for direct and reverse phase transformations (PTs) between semiconducting Si I and metallic Si II phases. This leads to unique homogeneous and hysteresis-free first-order PTs, for which each intermediate crystal lattice along the transformation path is in indifferent thermodynamic equilibrium and can be arrested and studied by fixing the strain in one direction. By approaching these stress states, a traditional two-phase system continuously transforms to homogenous intermediate phases. Zero hysteresis and homogeneous transformations are the optimal property for various PT applications, which drastically reduce damage and energy dissipation.

15.
Nucleic Acids Res ; 43(17): 8283-98, 2015 Sep 30.
Article in English | MEDLINE | ID: mdl-26227967

ABSTRACT

MicroRNAs are a class of small regulatory RNAs that are generated from primary miRNA (pri-miRNA) transcripts with a stem-loop structure. Accuracy of the processing of pri-miRNA into mature miRNA in plants can be enhanced by SERRATE (SE) and HYPONASTIC LEAVES 1 (HYL1). HYL1 activity is regulated by the FIERY2 (FRY2)/RNA polymerase II C-terminal domain phosphatase-like 1 (CPL1). Here, we discover that HIGH OSMOTIC STRESS GENE EXPRESSION 5 (HOS5) and two serine/arginine-rich splicing factors RS40 and RS41, previously shown to be involved in pre-mRNA splicing, affect the biogenesis of a subset of miRNA. These proteins are required for correct miRNA strand selection and the maintenance of miRNA levels. FRY2 dephosphorylates HOS5 whose phosphorylation status affects its subnuclear localization. HOS5 and the RS proteins bind both intronless and intron-containing pri-miRNAs. Importantly, all of these splicing-related factors directly interact with both HYL1 and SE in nuclear splicing speckles. Our results indicate that these splicing factors are directly involved in the biogenesis of a group of miRNA.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Gene Expression Regulation, Plant , MicroRNAs/metabolism , RNA Splicing , RNA-Binding Proteins/metabolism , Serine-Arginine Splicing Factors/metabolism , Arabidopsis/enzymology , Arabidopsis/metabolism , Calcium-Binding Proteins/metabolism , Indoleacetic Acids/pharmacology , Intercellular Signaling Peptides and Proteins/metabolism , Membrane Proteins/metabolism , Mutation , Phosphoprotein Phosphatases/metabolism , Plant Roots/genetics , Plant Roots/metabolism , RNA Precursors/metabolism , Serrate-Jagged Proteins , Transcription Factors/metabolism
16.
Plant Physiol ; 167(1): 137-52, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25416474

ABSTRACT

Osmotic stress activates the biosynthesis of the phytohormone abscisic acid (ABA) through a pathway that is rate limited by the carotenoid cleavage enzyme 9-cis-epoxycarotenoid dioxygenase (NCED). To understand the signal transduction mechanism underlying the activation of ABA biosynthesis, we performed a forward genetic screen to isolate mutants defective in osmotic stress regulation of the NCED3 gene. Here, we identified the Arabidopsis (Arabidopsis thaliana) Vacuolar Sorting Receptor1 (VSR1) as a unique regulator of ABA biosynthesis. The vsr1 mutant not only shows increased sensitivity to osmotic stress, but also is defective in the feedback regulation of ABA biosynthesis by ABA. Further analysis revealed that vacuolar trafficking mediated by VSR1 is required for osmotic stress-responsive ABA biosynthesis and osmotic stress tolerance. Moreover, under osmotic stress conditions, the membrane potential, calcium flux, and vacuolar pH changes in the vsr1 mutant differ from those in the wild type. Given that manipulation of the intracellular pH is sufficient to modulate the expression of ABA biosynthesis genes, including NCED3, and ABA accumulation, we propose that intracellular pH changes caused by osmotic stress may play a signaling role in regulating ABA biosynthesis and that this regulation is dependent on functional VSR1.


Subject(s)
Abscisic Acid/biosynthesis , Arabidopsis Proteins/physiology , Arabidopsis/physiology , Osmotic Pressure/physiology , Abscisic Acid/physiology , Arabidopsis/metabolism , Dioxygenases/physiology , Gene Expression Profiling , Plant Proteins/physiology , Signal Transduction/physiology
17.
PLoS Genet ; 9(10): e1003875, 2013.
Article in English | MEDLINE | ID: mdl-24146632

ABSTRACT

Eukaryotic genomes encode hundreds of RNA-binding proteins, yet the functions of most of these proteins are unknown. In a genetic study of stress signal transduction in Arabidopsis, we identified a K homology (KH)-domain RNA-binding protein, HOS5 (High Osmotic Stress Gene Expression 5), as required for stress gene regulation and stress tolerance. HOS5 was found to interact with FIERY2/RNA polymerase II (RNAP II) carboxyl terminal domain (CTD) phosphatase-like 1 (FRY2/CPL1) both in vitro and in vivo. This interaction is mediated by the first double-stranded RNA-binding domain of FRY2/CPL1 and the KH domains of HOS5. Interestingly, both HOS5 and FRY2/CPL1 also interact with two novel serine-arginine (SR)-rich splicing factors, RS40 and RS41, in nuclear speckles. Importantly, FRY2/CPL1 is required for the recruitment of HOS5. In fry2 mutants, HOS5 failed to be localized in nuclear speckles but was found mainly in the nucleoplasm. hos5 mutants were impaired in mRNA export and accumulated a significant amount of mRNA in the nuclei, particularly under salt stress conditions. Arabidopsis mutants of all these genes exhibit similar stress-sensitive phenotypes. RNA-seq analyses of these mutants detected significant intron retention in many stress-related genes under salt stress but not under normal conditions. Our study not only identified several novel regulators of pre-mRNA processing as important for plant stress response but also suggested that, in addition to RNAP II CTD that is a well-recognized platform for the recruitment of mRNA processing factors, FRY2/CPL1 may also recruit specific factors to regulate the co-transcriptional processing of certain transcripts to deal with environmental challenges.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , Phosphoprotein Phosphatases/genetics , RNA Precursors/genetics , RNA-Binding Proteins/genetics , Transcription Factors/genetics , Transcription, Genetic , Arabidopsis Proteins/metabolism , Cell Nucleus/genetics , Gene Expression Regulation, Plant , Mutation , Phosphoprotein Phosphatases/metabolism , Protein Binding , Protein Structure, Tertiary , RNA Splicing/genetics , RNA, Double-Stranded/genetics , RNA-Binding Proteins/metabolism , Salinity , Signal Transduction/genetics , Transcription Factors/metabolism
18.
Plant Physiol ; 165(3): 1255-1268, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24812105

ABSTRACT

The ECERIFERUM9 (CER9) gene encodes a putative E3 ubiquitin ligase that functions in cuticle biosynthesis and the maintenance of plant water status. Here, we found that CER9 is also involved in abscisic acid (ABA) signaling in seeds and young seedlings of Arabidopsis (Arabidopsis thaliana). The germinated embryos of the mutants exhibited enhanced sensitivity to ABA during the transition from reversible dormancy to determinate seedling growth. Expression of the CER9 gene is closely related to ABA levels and displays a similar pattern to that of ABSCISIC ACID-INSENSITIVE5 (ABI5), which encodes a positive regulator of ABA responses in seeds. cer9 mutant seeds exhibited delayed germination that is independent of seed coat permeability. Quantitative proteomic analyses showed that cer9 seeds had a protein profile similar to that of the wild type treated with ABA. Transcriptomics analyses revealed that genes involved in ABA biosynthesis or signaling pathways were differentially regulated in cer9 seeds. Consistent with this, high levels of ABA were detected in dry seeds of cer9. Blocking ABA biosynthesis by fluridone treatment or by combining an ABA-deficient mutation with cer9 attenuated the phenotypes of cer9. Whereas introduction of the abi1-1, abi3-1, or abi4-103 mutation could completely eliminate the ABA hypersensitivity of cer9, introduction of abi5 resulted only in partial suppression. These results indicate that CER9 is a novel negative regulator of ABA biosynthesis and the ABA signaling pathway during seed germination.

19.
Plant Cell Environ ; 38(3): 559-71, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25053018

ABSTRACT

Various Myb proteins have been shown to play crucial roles in plants, including primary and secondary metabolism, determination of cell fate and identity, regulation of development and involvement in responses to biotic and abiotic stresses. The 126 R2R3 Myb proteins (with two Myb repeats) have been found in Arabidopsis; however, the functions of most of these proteins remain to be fully elucidated. In the present study, we characterized the function of AtMyb7 using molecular biological and genetic analyses. We used qRT-PCR to determine the levels of stress-response gene transcripts in wild-type and atmyb7 plants. We showed that Arabidopsis AtMyb7 plays a critical role in seed germination. Under abscisic acid (ABA) and high-salt stress conditions, atmyb7 plants showed a lower germination rate than did wild-type plants. Furthermore, AtMyb7 promoter:GUS seeds exhibited different expression patterns in response to variations in the seed imbibition period. AtMyb7 negatively controls the expression of the gene encoding bZIP transcription factor, ABI5, which is a key transcription factor in ABA signalling and serves as a crucial regulator of germination inhibition in Arabidopsis.


Subject(s)
Abscisic Acid/pharmacology , Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Gene Expression Regulation, Plant/drug effects , Plant Growth Regulators/pharmacology , Sodium Chloride/pharmacology , Transcription Factors/metabolism , Abscisic Acid/metabolism , Arabidopsis/physiology , Arabidopsis Proteins/genetics , Basic-Leucine Zipper Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , Genes, Reporter , Germination/drug effects , Mutation , Plant Growth Regulators/metabolism , Plants, Genetically Modified , Promoter Regions, Genetic/genetics , Seeds/genetics , Seeds/physiology , Signal Transduction , Stress, Physiological , Transcription Factors/genetics
20.
J Exp Bot ; 66(21): 6863-75, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26272902

ABSTRACT

The circularly permuted GTPase large subunit GTPase 1 (LSG1) is involved in the maturation step of the 60S ribosome and is essential for cell viability in yeast. Here, an Arabidopsis mutant dig6 (drought inhibited growth of lateral roots) was isolated. The mutant exhibited multiple auxin-related phenotypes, which included reduced lateral root number, altered leaf veins, and shorter roots. Genetic mapping combined with next-generation DNA sequencing identified that the mutation occurred in AtLSG1-2. This gene was highly expressed in regions of auxin accumulation. Ribosome profiling revealed that a loss of function of AtLSG1-2 led to decreased levels of monosomes, further demonstrating its role in ribosome biogenesis. Quantitative proteomics showed that the expression of certain proteins involved in ribosome biogenesis was differentially regulated, indicating that ribosome biogenesis processes were impaired in the mutant. Further investigations showed that an AtLSG1-2 deficiency caused the alteration of auxin distribution, response, and transport in plants. It is concluded that AtLSG1-2 is integral to ribosome biogenesis, consequently affecting auxin homeostasis and plant development.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , Gene Expression Regulation, Plant , Indoleacetic Acids/metabolism , Plant Growth Regulators/metabolism , Ribosomal Proteins/genetics , Ribosomes/metabolism , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Mutation , Ribosomal Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL