Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Journal subject
Publication year range
1.
Opt Express ; 31(23): 37395-37407, 2023 Nov 06.
Article in English | MEDLINE | ID: mdl-38017869

ABSTRACT

Conventional lens imaging systems modulate incident rays with a set of lenses and focus these rays on their imaging planes. A lensless imaging system uses a single mask instead of lenses to project incident rays onto the imaging plane. These rays pass through or are blocked off according to the binary mask pattern. These systems are thin, lightweight, and inexpensive. However, they do not converge the rays, causing the local images corresponding to individual light transmission units to heavily overlap in a global scene, requiring a specific algorithm for decoding. Additionally, diffraction is unavoidable when the holes on the mask are extremely small, which can degrade the imaging quality. To address these difficulties, we propose a decoding algorithm called Fourier-ADMM algorithm to unwrap the overlapped images rapidly. In addition to providing high decoding speed, the proposed technique can suppress the diffraction from the tiny holes, owing to its conjugated structure. Based on this novel decoding algorithm, a lensless imaging system is proposed, which can handle overlapped and diffracted images with a single random mask. The camera can work beyond the theoretical diffraction limit and tremendously enhance the resolution. In summary, the super-resolution lensless camera provides users with additional options to suit different situations. It can facilitate robust, high-resolution, fast decoding without sophisticated calibration.

2.
Appl Opt ; 60(2): 383-391, 2021 Jan 10.
Article in English | MEDLINE | ID: mdl-33448963

ABSTRACT

The convex reflective diffraction grating is an essential optical component in Offner systems, which has been widely used in imaging spectrometers. We propose a new design and optimization method for the convex blazed grating in the Offner imaging spectrometer. The method integrates the macro- and microdesign of the optical system, and it can be used to design and optimize the convex blazed grating with high diffraction efficiency. Traditional geometric optics theory and image quality evaluation methods are used to design the macro-optical structure parameters of the Offner system. And then the incident ray information, such as the incident angle and the polarization states are calculated by using the three-dimensional polarization ray-tracing method. To improve the diffraction efficiency, we combine rigorous coupled wave analysis and a particle swarm optimization algorithm to optimize the microstructure parameters of the convex-blazed grating. Further, a convex-blazed grating in a mid-wave infrared Offner imaging spectrometer is designed as an example to illustrate our design method in detail. The design results indicate that the Offner imaging spectrometer has good imaging quality, and the average diffraction efficiency of the -1st diffraction order of the convex-blazed grating in the spectral coverage 3-5 µm is 82.24%. Compared to the traditional design method, the lowest spectral diffraction efficiency is improved from 59.88% to 69.24%, the highest spectral diffraction efficiency is improved from 90.45% to 91.84%, and the standard deviation is reduced from 7.82 to 6.62.

SELECTION OF CITATIONS
SEARCH DETAIL