Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.497
Filter
Add more filters

Publication year range
1.
Nature ; 598(7881): 500-503, 2021 10.
Article in English | MEDLINE | ID: mdl-34544113

ABSTRACT

Plant immune responses are mainly activated by two types of receptor. Pattern recognition receptors localized on the plasma membrane perceive extracellular microbial features, and nucleotide-binding leucine-rich repeat receptors (NLRs) recognize intracellular effector proteins from pathogens1. NLRs possessing amino-terminal Toll/interleukin-1 receptor (TIR) domains activate defence responses via the NADase activity of the TIR domain2,3. Here we report that activation of TIR signalling has a key role in pattern-triggered immunity (PTI) mediated by pattern recognition receptors. TIR signalling mutants exhibit attenuated PTI responses and decreased resistance against pathogens. Consistently, PTI is compromised in plants with reduced NLR levels. Treatment with the PTI elicitor flg22 or nlp20 rapidly induces many genes encoding TIR-domain-containing proteins, which is likely to be responsible for activating TIR signalling during PTI. Overall, our study reveals that activation of TIR signalling is an important mechanism for boosting plant defence during PTI.


Subject(s)
Arabidopsis/immunology , Plant Immunity , Protein Domains , Receptors, Interleukin-1/chemistry , Receptors, Pattern Recognition/immunology , Signal Transduction , Toll-Like Receptors/chemistry , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Carboxylic Ester Hydrolases/genetics , DNA-Binding Proteins/genetics , Protein Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Pseudomonas syringae/immunology , Pseudomonas syringae/physiology , Receptors, Cell Surface/metabolism , Nicotiana/genetics , Ubiquitin-Protein Ligases
2.
J Biol Chem ; 300(11): 107788, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39303914

ABSTRACT

The incidence of germinal center B-cell-like type diffuse large B-cell lymphoma (GCB DLBCL) is steadily increasing, with a known hereditary component. Although some molecular mechanisms in GCB DLBCL have been elucidated, understanding remains incomplete, limiting the effectiveness of targeted therapies. In GCB DLBCL patients, abnormally high expression of zeste homologs 2 (EZH2) is noted, and the compensatory effect of EZH1 following EZH2 inhibition contributes to poor prognosis. This highlights the potential of dual targeting of EZH1/2 as a promising strategy. In this study, we developed a novel inhibitor, EZH-1-P2, targeting EZH1/2 and evaluated its antitumor effects on DLBCL cells. Mechanistically, inhibition of EZH1/2 affects the epigenetic regulation of gene expression related to p53, impacting cell cycle progression and GCB DLBCL cell growth. Additionally, while EZH1/2 inhibition impacts NOTCH signaling, the precise mechanism by which it affects M2-type tumor-associated macrophage polarization and germinal center expansion requires further investigation. Our research introduces EZH-1-P2 as a novel inhibitor with potential as a candidate for GCB DLBCL therapy, although further studies are needed to fully elucidate its mechanisms.

3.
Nat Methods ; 19(1): 111-118, 2022 01.
Article in English | MEDLINE | ID: mdl-34887551

ABSTRACT

Recent whole-brain mapping projects are collecting large-scale three-dimensional images using modalities such as serial two-photon tomography, fluorescence micro-optical sectioning tomography, light-sheet fluorescence microscopy, volumetric imaging with synchronous on-the-fly scan and readout or magnetic resonance imaging. Registration of these multi-dimensional whole-brain images onto a standard atlas is essential for characterizing neuron types and constructing brain wiring diagrams. However, cross-modal image registration is challenging due to intrinsic variations of brain anatomy and artifacts resulting from different sample preparation methods and imaging modalities. We introduce a cross-modal registration method, mBrainAligner, which uses coherent landmark mapping and deep neural networks to align whole mouse brain images to the standard Allen Common Coordinate Framework atlas. We build a brain atlas for the fluorescence micro-optical sectioning tomography modality to facilitate single-cell mapping, and used our method to generate a whole-brain map of three-dimensional single-neuron morphology and neuron cell types.


Subject(s)
Brain/cytology , Brain/diagnostic imaging , Imaging, Three-Dimensional/methods , Algorithms , Animals , Deep Learning , Magnetic Resonance Imaging , Male , Mice, Inbred C57BL , Workflow
4.
FASEB J ; 38(15): e23855, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39096134

ABSTRACT

Astrocytes and microglia undergo dynamic and complex morphological and functional changes following ischemic stroke, which are instrumental in both inflammatory responses and neural repair. While gene expression alterations poststroke have been extensively studied, investigations into posttranscriptional regulatory mechanisms, specifically alternative splicing (AS), remain limited. Utilizing previously reported Ribo-Tag-seq data, this study analyzed AS alterations in poststroke astrocytes and microglia from young adult male and female mice. Our findings reveal that in astrocytes, compared to the sham group, 109 differential alternative splicing (DAS) events were observed at 4 h poststroke, which increased to 320 at day 3. In microglia, these numbers were 316 and 266, respectively. Interestingly, the disparity between DAS genes and differentially expressed genes is substantial, with fewer than 10 genes shared at both poststroke time points in astrocytes and microglia. Gene ontology enrichment analysis revealed the involvement of these DAS genes in diverse functions, encompassing immune response (Adam8, Ccr1), metabolism (Acsl6, Pcyt2, Myo5a), and developmental cell growth (App), among others. Selective DAS events were further validated by semiquantitative RT-PCR. Overall, this study comprehensively describes the AS alterations in astrocytes and microglia during the hyperacute and acute phases of ischemic stroke and underscores the significance of certain hub DAS events in neuroinflammatory processes.


Subject(s)
Alternative Splicing , Astrocytes , Ischemic Stroke , Microglia , Animals , Astrocytes/metabolism , Astrocytes/pathology , Microglia/metabolism , Microglia/pathology , Mice , Ischemic Stroke/genetics , Ischemic Stroke/metabolism , Ischemic Stroke/pathology , Male , Female , Mice, Inbred C57BL
5.
Exp Cell Res ; 435(2): 113931, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38253280

ABSTRACT

The mortality rate linked with nephrotic syndrome (NS) is quite high. The renal tubular injury influences the response of NS patients to steroid treatment. KN motif and ankyrin repeat domains 2 (KANK2) regulates actin polymerization, which is required for renal tubular cells to maintain their function. In this study, we found that the levels of KANK2 in patients with NS were considerably lower than those in healthy controls, especially in NS patients with acute kidney injury (AKI). To get a deeper understanding of the KANK2 transcriptional control mechanism, the core promoter region of the KANK2 gene was identified. KANK2 was further found to be positively regulated by E2F Transcription Factor 1 (E2F1), Transcription Factor AP-2 Gamma (TFAP2C), and Nuclear Respiratory Factor 1 (NRF1), both at mRNA and protein levels. Knocking down E2F1, TFAP2C, or NRF1 deformed the cytoskeleton of renal tubular cells and reduced F-actin content. EMSA and ChIP assays confirmed that all three transcription factors could bind to the upstream promoter transcription site of KANK2 to transactivate KANK2 in renal tubular epithelial cells. Our study suggests that E2F1, TFAP2C, and NRF1 play essential roles in regulating the KANK2 transcription, therefore shedding fresh light on the development of putative therapeutic options for the treatment of NS patients.


Subject(s)
Nephrotic Syndrome , Nuclear Respiratory Factor 1 , Humans , Nuclear Respiratory Factor 1/metabolism , Nephrotic Syndrome/genetics , Transcription Factors/metabolism , Gene Expression Regulation , Promoter Regions, Genetic/genetics , E2F1 Transcription Factor/genetics , Transcription Factor AP-2/genetics
6.
Nano Lett ; 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38602471

ABSTRACT

Mimicking the function of human skin is highly desired for electronic skins (e-skins) to perceive the tactile stimuli by both their intensity and spatial location. The common strategy using pixelated pressure sensor arrays and display panels greatly increases the device complexity and compromises the portability of e-skins. Herein, we tackled this challenge by developing a user-interactive iontronic skin that simultaneously achieves electrical pressure sensing and on-site, nonpixelated pressure mapping visualization. By merging the electrochromic and iontronic pressure sensing units into an integrated multilayer device, the interlayer charge transfer is regulated by applied pressure, which induces both color shifting and a capacitance change. The iontronic skin could visualize the trajectory of dynamic forces and reveal both the intensity and spatial information on various human activities. The integration of dual-mode pressure responsivity, together with the scalable fabrication and explicit signal output, makes the iontronic skin highly promising in biosignal monitoring and human-machine interaction.

7.
Carcinogenesis ; 45(4): 262-273, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-37997385

ABSTRACT

OBJECTIVES: There are three major subtypes of breast cancer, ER+, HER2+ and triple-negative breast cancer (TNBC), namely ER-, PR-, HER2-. TNBC is the most aggressive breast cancer with poor prognosis and no target drug up to now. Actinomycin D (ActD) is a bioactive metabolite of marine bacteria that has been reported to have antitumor activity. The aim of study is to investigate whether ActD has a synergetic effect on TNBC with Doxorubicin (Dox), the major chemotherapeutic drug for TNBC, and explore the underlying mechanism. METHODS: TNBC cell lines HCC1937, MDA-MB-436 and nude mice were used in the study. Drug synergy determination, LDH assay, MMP assay, Hoechst 33342 staining, Flow cytometry, Flexible docking and CESTA assay were carried out. The expression of proteins associated with apoptosis was checked by Western blot and siRNA experiments were performed to investigate the role of P53 and PUMA induced by drugs. RESULTS: There was much higher apoptosis rate of cells in the ActD + Dox group than that in ActD group or Dox group. Expression of MDM2 and BCL-2 was reduced while expression of P53, PUMA and BAX were increased in the groups treated with ActD + Dox or Dox compared to the control group. Furthermore, P53 siRNA or PUMA siRNA tremendously abrogated the cell apoptosis in the groups treated by ActD, Dox and ActD + Dox. Flexible docking and CESTA showed that ActD can bind MDM2. CONCLUSIONS: ActD had a synergetic effect on TNBC with Dox via P53-dependent apoptosis and it may be a new choice for treatment of TNBC.


Subject(s)
Triple Negative Breast Neoplasms , Mice , Humans , Animals , Triple Negative Breast Neoplasms/genetics , Dactinomycin/pharmacology , Dactinomycin/metabolism , Dactinomycin/therapeutic use , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Mice, Nude , Apoptosis Regulatory Proteins , Cell Line, Tumor , Doxorubicin/pharmacology , Apoptosis , RNA, Small Interfering
8.
J Neurochem ; 2024 Oct 31.
Article in English | MEDLINE | ID: mdl-39479764

ABSTRACT

Evidence from observational and Mendelian randomization (MR) studies suggested that insulin resistance (IR) was associated with Alzheimer's disease (AD). However, the causal effects of different indicators of IR on AD remain inconsistent. Here, we aim to assess the causal association between the insulin sensitivity index (ISI), a measure of post-prandial IR, and the risk of AD. We first conducted primary and secondary univariable MR analyses. We selected 8 independent genome-wide significant (p < 5E-08, primary analyses) and 61 suggestive (p < 1E-05, secondary analyses) ISI genetic variants from large-scale genome-wide association studies (GWAS; N = 53 657), respectively, and extracted their corresponding GWAS summary statistics from AD GWAS, including IGAP2019 (N = 63 926) and FinnGen_G6_AD_WIDE (N = 412 181). We selected five univariable MR methods and used heterogeneity, horizontal pleiotropy test, and leave-one-out sensitivity analysis to confirm the stability of MR estimates. Finally, we conducted a meta-analysis to combine MR estimates from two non-overlapping AD GWAS datasets. We further performed multivariable MR (MVMR) to assess the potential mediating role of type 2 diabetes (T2D) on the association between ISI and AD using two MVMR methods. In univariable MR, utilizing 8 genetic variants in primary analyses, we found a significant causal association of genetically increased ISI with decreased risk of AD (OR = 0.79, 95% CI: 0.68-0.92, p = 0.003). Utilizing 61 genetic variants in secondary analyses, we found consistent findings of a causal effect of genetically increased ISI on the decreased risk of AD (OR = 0.89, 95% CI: 0.82-0.96, p = 0.003). Heterogeneity, horizontal pleiotropy test, and leave-one-out sensitivity analysis ensured the reliability of the MR estimates. In MVMR, we found no causal relationship between ISI and AD after adjusting for T2D (p > 0.05). We provide genetic evidence that increased ISI is significantly and causally associated with reduced risk of AD, which is mediated by T2D. These findings may inform prevention strategies directed toward IR-associated T2D and AD.

9.
Int J Cancer ; 155(4): 697-709, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38577882

ABSTRACT

Patient-derived organoids (PDOs) may facilitate treatment selection. This retrospective cohort study evaluated the feasibility and clinical benefit of using PDOs to guide personalized treatment in metastatic breast cancer (MBC). Patients diagnosed with MBC were recruited between January 2019 and August 2022. PDOs were established and the efficacy of customized drug panels was determined by measuring cell mortality after drug exposure. Patients receiving organoid-guided treatment (OGT) were matched 1:2 by nearest neighbor propensity scores with patients receiving treatment of physician's choice (TPC). The primary outcome was progression-free survival. Secondary outcomes included objective response rate and disease control rate. Targeted gene sequencing and pathway enrichment analysis were performed. Forty-six PDOs (46 of 51, 90.2%) were generated from 45 MBC patients. PDO drug screening showed an accuracy of 78.4% (95% CI 64.9%-91.9%) in predicting clinical responses. Thirty-six OGT patients were matched to 69 TPC patients. OGT was associated with prolonged median progression-free survival (11.0 months vs. 5.0 months; hazard ratio 0.53 [95% CI 0.33-0.85]; p = .01) and improved disease control (88.9% vs. 63.8%; odd ratio 4.26 [1.44-18.62]) compared with TPC. The objective response rate of both groups was similar. Pathway enrichment analysis in hormone receptor-positive, human epidermal growth factor receptor 2-negative patients demonstrated differentially modulated pathways implicated in DNA repair and transcriptional regulation in those with reduced response to capecitabine/gemcitabine, and pathways associated with cell cycle regulation in those with reduced response to palbociclib. Our study shows that PDO-based functional precision medicine is a feasible and effective strategy for MBC treatment optimization and customization.


Subject(s)
Breast Neoplasms , Organoids , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Breast Neoplasms/genetics , Organoids/pathology , Organoids/drug effects , Retrospective Studies , Middle Aged , Aged , Adult , Precision Medicine/methods , Progression-Free Survival , Neoplasm Metastasis , Pyridines/therapeutic use , Pyridines/administration & dosage , Piperazines/therapeutic use , Piperazines/administration & dosage , Treatment Outcome
10.
Br J Cancer ; 130(3): 450-456, 2024 02.
Article in English | MEDLINE | ID: mdl-38110665

ABSTRACT

BACKGROUND: Cadonilimab is a bispecific antibody that simultaneously targets programmed cell death receptor-1 and cytotoxic T lymphocyte-associated antigen-4. This study aimed to assess the safety and efficacy of cadonilimab plus anlotinib for the first-line treatment of advanced non-small cell lung cancer (NSCLC) without sensitizing EGFR/ALK/ROS1 mutations. METHODS: Patients received cadonilimab 15 mg/kg and 10 mg/kg every three weeks (Q3W) plus anlotinib at doses of 10 or 12 mg once daily for two weeks on a one-week-off schedule. The primary endpoints included safety and objective response rate (ORR). RESULTS: Sixty-nine treatment-naïve patients received cadonilimab 15 mg/kg Q3W combination (n = 49) and 10 mg/kg Q3W combination (n = 20). Treatment-related adverse events (TRAEs) were reported in 48 (98.0%) and 19 (95.0%) patients, with grade ≥3 TRAEs occurring in 29 (59.2%) and five (25.0%) patients, respectively. TRAEs leading to cadonilimab discontinuation occurred in eight (16.3%) and one (5.0%) patients in the cadonilimab 15 mg/kg Q3W and 10 mg/kg Q3W dosing groups. The confirmed ORRs were 51.0% (25/49) and 60.0% (12/20) accordingly. CONCLUSIONS: Cadonilimab 10 mg/kg Q3W plus anlotinib showed manageable safety and promising efficacy as a first-line chemo-free treatment for advanced NSCLC. GOV IDENTIFIER: NCT04646330.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Indoles , Lung Neoplasms , Quinolines , Humans , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , CTLA-4 Antigen , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Programmed Cell Death 1 Receptor/therapeutic use , Protein-Tyrosine Kinases , Proto-Oncogene Proteins
11.
Clin Immunol ; 261: 109940, 2024 04.
Article in English | MEDLINE | ID: mdl-38365048

ABSTRACT

As the aging population increases, the focus on elderly patients with acute respiratory distress syndrome (ARDS) is also increasing. In this article, we found progranulin (PGRN) differential expression in ARDS patients and healthy controls, even in young and old ARDS patients. Its expression strongly correlates with several cytokines in both young and elderly ARDS patients. PGRN has comparable therapeutic effects in young and elderly mice with lipopolysaccharide-induced acute lung injury, manifesting as lung injury, apoptosis, inflammation, and regulatory T cells (Tregs) differentiation. Considering that Tregs differentiation relies on metabolic reprogramming, we discovered that Tregs differentiation was mediated by mitochondrial function, especially in the aged population. Furthermore, we demonstrated that PGRN alleviated the mitochondrial damage during Tregs differentiation through the AMPK/PGC-1α pathway in T cells. Collectively, PGRN may regulate mitochondria function to promote Tregs differentiation through the AMPK/PGC-1α pathway to improve ARDS.


Subject(s)
Acute Lung Injury , Respiratory Distress Syndrome , Humans , Aged , Mice , Animals , Progranulins/metabolism , Progranulins/pharmacology , AMP-Activated Protein Kinases/metabolism , AMP-Activated Protein Kinases/pharmacology , T-Lymphocytes, Regulatory/metabolism , Mitochondria/metabolism , Acute Lung Injury/metabolism
12.
Funct Integr Genomics ; 24(2): 62, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38514486

ABSTRACT

Long-wave sensitive (LWS) is a G protein-coupled receptor expressed in the retina, and zebrafish is a better model organism for studying vision, but the role of LWS1 in vision-guided behavior of larvae fish has rarely been reported. In this study, we found that zebrafish lws1 and lws2 are tandemly replicated genes, both with six exons, with lws1 being more evolutionarily conserved. The presence of Y277F in the amino acid sequence of lws2 may have contributed to the shift of λmax to green light. We established a lws1 knockout zebrafish model using CRISPR/Cas9 technology. Lws1-/- larvae showed significantly higher levels of feeding and appetite gene (agrp) expression than WT, and significantly lower levels of anorexia gene (pomc, cart) expression. In addition, green light gene compensation was observed in lws1-/- larvae with significantly increased expression levels of rh2-1. The light-dark movement test showed that lws1-/- larvae were more active under light-dark transitions or vibrational stimuli, and the expression of phototransduction-related genes was significantly up-regulated. This study reveals the important role of lws1 gene in the regulation of vision-guided behavior in larvae.


Subject(s)
Cone Opsins , Zebrafish , Animals , Amino Acid Sequence , Zebrafish/genetics , Zebrafish/metabolism , Cone Opsins/genetics , Feeding Behavior , Vision, Ocular/genetics
13.
Funct Integr Genomics ; 24(6): 197, 2024 Oct 25.
Article in English | MEDLINE | ID: mdl-39453417

ABSTRACT

The mandarin fish (Siniperca chuatsi), as a typical freshwater carnivorous fish, has high economic value. Mandarin fish have a peculiar feeding habit of feeding on other live fry during the first-feeding period, while rejecting zooplankton or particulate feed, which may be attributed to the low expression of zooplankton-associated gene sws1 in mandarin fish. The domesticated strain of mandarin fish could feed on Artemia at 3 days post hatching (dph). However, the mechanism of mandarin fish larvae recognize and forage Artemia as food is still unclear. In this study, we employed transcriptional analysis to identify the representative differential pathways between mandarin fish larvae unfed and fed with Artemia at 3 dph. The comparative transcriptome analysis has unveiled a tapestry of genetic expression, highlighting 403 genes that have been up-regulated and 259 that have been down-regulated, all of which constitute the differentially expressed genes (DEGs). KEGG pathway analysis revealed that the number of differentially expressed genes in the photoconductive signaling pathway was the largest. Next, the Vorinostat (suberoylanilide hydroxamic acid, SAHA) was used to assess whether sws1 induced ingestion of Artemia in mandarin fish larvae. We discovered that SAHA-treated larvae had more food intake of Artemia and up-regulated the transcription level of npy, which might have been associated with the up-regulated of sws1 opsin. Additionally, exposure to 0.5 µM SAHA increased the expression of genes involved in phototransduction pathway. These findings would provide insights on the molecular processes involved in mandarin fish larvae feeding on Artemia at the first-feeding stage.


Subject(s)
Transcriptome , Animals , Larva/genetics , Larva/growth & development , Larva/metabolism , Light Signal Transduction , Feeding Behavior , Gene Expression Profiling , Fish Proteins/genetics , Fish Proteins/metabolism , Artemia/genetics , Perciformes/genetics , Perciformes/metabolism , Fishes/genetics , Fishes/metabolism , Fishes/physiology
14.
Anal Chem ; 96(44): 17640-17648, 2024 Nov 05.
Article in English | MEDLINE | ID: mdl-39440634

ABSTRACT

Extracellular vesicles (EVs) and their cargoes are increasingly being recognized as noninvasive diagnostic markers, necessitating the isolation of EVs from complex biological samples. Herein, a distearoyl phospholipid ethanolamine-functionalized single-crystal ordered macroporous three-dimensional zeolitic imidazolate framework (SOM-ZIF-8-DSPE) was developed, which combines the surface charge interaction of ZIF-8 with the synergistic effect of DSPE insertion into the phospholipid membrane of EVs to improve the isolating selectivity of EV capture. The materials have porous structures larger than 300 nm in diameter, providing enough space and active sites to trap EVs. Benefiting from this feature, the entire isolation process takes only 10 min and is well compatible with the subsequent analysis of RNA in EVs. Consequently, 10 upregulated miRNA of plasma EVs in the primary colorectal cancer (pCRC) patients is found over the healthy donors, and 6 upregulated miRNA of plasma EVs in the metastatic colorectal cancer (mCRC) patients over pCRC patients. These findings suggest that the isolation of EV-based SOM-ZIF-8-DSPE is a promising strategy to identify biomarkers for disease diagnosis, such as miRNAs in plasma EVs for the early detection of CRC.


Subject(s)
Extracellular Vesicles , Imidazoles , MicroRNAs , Zeolites , Extracellular Vesicles/chemistry , Humans , Zeolites/chemistry , Imidazoles/chemistry , MicroRNAs/blood , MicroRNAs/analysis , Porosity , Colorectal Neoplasms/pathology , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/blood , Metal-Organic Frameworks/chemistry
15.
J Transl Med ; 22(1): 976, 2024 Oct 28.
Article in English | MEDLINE | ID: mdl-39468621

ABSTRACT

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is one of the most universal liver diseases with complicated pathogenesis throughout the world. Insulin resistance is a leading risk factor that contributes to the development of NAFLD. Vascular endothelial growth factor B (VEGFB) was described by researchers as contributing to regulating lipid metabolic disorders. Here, we investigated VEGFB as a main target to regulate insulin resistance and metabolic syndrome. METHODS: In this study, bioinformatics, transcriptomics, morphological experiments, and molecular biology were used to explore the role of VEGFB in regulating insulin resistance in NAFLD and its molecular mechanism based on human samples, animal models, and cell models. RNA-seq was performed to analyze the signal pathways associated with VEGFB and NAFLD; Palmitic acid and High-fat diet were used to induce insulin-resistant HepG2 cells model and NAFLD animal model. Intracellular glucolipid contents, glucose uptake, hepatic and serum glucose and lipid levels were examined by Microassay and Elisa. Hematoxylin-eosin staining, Oil Red O staining, and Periodic acid-schiff staining were used to analyze the hepatic steatosis, lipid droplet, and glycogen content in the liver. Western blot and quantitative real-time fluorescent PCR were used to verify the expression levels of the VEGFB and insulin resistance-related signals PI3K/AKT pathway. RESULTS: We observed that VEGFB is genetically associated with NAFLD and the PI3K/AKT signal pathway. After VEGFB knockout, glucolipids levels were increased, and glucose uptake ability was decreased in insulin-resistant HepG2 cells. Meanwhile, body weight, blood glucose, blood lipids, and hepatic glucose of NAFLD mice were increased, and hepatic glycogen, glucose tolerance, and insulin sensitivity were decreased. Moreover, VEGFB overexpression reduced glucolipids and insulin resistance levels in HepG2 cells. Specifically, VEGFB/VEGFR1 activates the PI3K/AKT signals by activating p-IRS1Ser307 expression, inhibiting p-FOXO1pS256 and p-GSK3Ser9 expressions to reduce gluconeogenesis and glycogen synthesis in the liver. Moreover, VEGFB could also enhance the expression level of GLUT2 to accelerate glucose transport and reduce blood glucose levels, maintaining glucose homeostasis. CONCLUSIONS: Our studies suggest that VEGFB could present a novel strategy for treating NAFLD as a positive factor.


Subject(s)
Insulin Resistance , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Signal Transduction , Vascular Endothelial Growth Factor B , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Animals , Proto-Oncogene Proteins c-akt/metabolism , Humans , Phosphatidylinositol 3-Kinases/metabolism , Hep G2 Cells , Vascular Endothelial Growth Factor B/metabolism , Male , Liver/metabolism , Liver/pathology , Diet, High-Fat , Mice , Disease Models, Animal , Lipid Metabolism
16.
PLoS Pathog ; 18(9): e1010873, 2022 09.
Article in English | MEDLINE | ID: mdl-36121866

ABSTRACT

Candida albicans is the most frequent pathogen of fungal sepsis associated with substantial mortality in critically ill patients and those who are immunocompromised. Identification of novel immune-based therapeutic targets from a better understanding of its molecular pathogenesis is required. Here, we reported that the production of progranulin (PGRN) levels was significantly increased in mice after invasive C.albicans infection. Mice that lacked PGRN exhibited attenuated kidney injury and increased survival upon a lethal systemic infection with C. albicans. In mice, PGRN deficiency protected against systemic candidiasis by decreasing aberrant inflammatory reactions that led to renal immune cell apoptosis and kidney injury, and by enhancing antifungal capacity of macrophages and neutrophils that limited fungal burden in the kidneys. PGRN in hematopoietic cell compartment was important for this effect. Moreover, anti-PGRN antibody treatment limited renal inflammation and fungal burden and prolonged survival after invasive C. albicans infection. In vitro, PGRN loss increased phagocytosis, phagosome formation, reactive oxygen species production, neutrophil extracellular traps release, and killing activity in macrophages or neutrophils. Mechanistic studies demonstrated that PGRN loss up-regulated Dectin-2 expression, and enhanced spleen tyrosine kinase phosphorylation and extracellular signal-regulated kinase activation in macrophages and neutrophils. In summary, we identified PGRN as a critical factor that contributes to the immunopathology of invasive C.albicans infection, suggesting that targeting PGRN might serve as a novel treatment for fungal infection.


Subject(s)
Candida albicans , Sepsis , Animals , Antifungal Agents , Extracellular Signal-Regulated MAP Kinases , Mice , Neutrophils , Progranulins , Reactive Oxygen Species/metabolism , Sepsis/pathology , Syk Kinase
17.
Anesthesiology ; 2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39186677

ABSTRACT

BACKGROUND: Acute liver injury (ALI) is a disease characterized by severe liver dysfunction, caused by significant infiltration of immune cells and extensive cell death with a high mortality. Previous studies demonstrated that the α7 nicotinic acetylcholine receptor (α7nAChR) played a crucial role in various liver diseases. The hypothesis of this study was that activating α7nAChR could alleviate ALI and investigate its possible mechanisms. METHODS: ALI was induced by intraperitoneal injection of lipopolysaccharide (LPS)/D-galactosamine (D-Gal) in wild type (WT), α7nAChR knockout (α7nAChR -/-) and Sting mutation (Stinggt/gt) mice in the presence or absence of a pharmacological selective α7nAChR agonist (PNU-282987). The effects of α7nAChR on hepatic injury, inflammatory response, mitochondrial damage, necroptosis and infiltration of immune cells during ALI were assessed. RESULTS: The expression of α7nAChR in liver tissue was increased in LPS/D-Gal induced ALI mice. Compared to the age-matched WT mice, α7nAChR deficiency decreased the survival rate, exacerbated the hepatic injury accompanied with enhanced inflammatory response and oxidative stress, and aggravated hepatic mitochondrial damage and necroptosis. Conversely, pharmacological activation of α7nAChR by PNU-282987 displayed the opposite trends. Furthermore, PNU-282987 significantly reduced the proportion of infiltrating monocyte-derived macrophages (CD45+CD11bhiF4/80int), M1 macrophages (CD45+CD11b+F4/80+CD86 hiCD163low), Ly6Chi monocytes (CD45+CD11b+MHCⅡ lowLy6C hi), but increased the resident Kupffer cells (CD45+CD11bintF4/80 hiTIM4 hi) in the damaged hepatic tissues caused by LPS/D-Gal. Interestingly, α7nAChR deficiency promoted the STING signaling pathway under LPS/D-Gal stimulation, while PNU-282987 treatment significantly prevented its activation. Finally, it was found that Sting mutation abolished the protective effects against hepatic injury by activating α7nAChR. CONCLUSIONS: Our study revealed that activating α7nAChR could protect against LPS/D-Gal induced ALI by inhibiting hepatic inflammation and necroptosis possibly via regulating immune cells infiltration and inhibiting STING signaling pathway.

18.
Liver Int ; 44(9): 2315-2328, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38819640

ABSTRACT

BACKGROUND: To examine the cardiovascular disease (CVD) risks associated with metabolic dysfunction-associated steatotic liver disease (MASLD) and different numbers of cardiometabolic risk factors (CMRFs) in patients with inflammatory bowel disease (IBD) based on a long-term prospective cohort. METHODS: Prevalent IBD patients at baseline who were free of CVD, cancer, alcoholic liver disease, cancer and hepatitis B/C virus seropositive were included (N = 4204). MASLD, MASLD subtypes [pure MASLD, MASLD with increased alcohol intake (MetALD)], lean/non-lean MASLD and CMRFs at baseline were defined according to the latest criteria proposed by AASLD and EASL. The primary outcome was incident CVD, including ischaemic heart disease (IHD), heart failure (HF) and stroke. Multivariable Cox proportional hazard models were used to estimate the relationship. RESULTS: Overall, 1528 (36.4%) were diagnosed with MASLD at baseline. During a median of 13.1-year follow-up, 503 incident CVDs were identified. Compared with IBD-only, IBD-MASLD patients had an increased risk of CVD (HR = 1.77, 95%CI: 1.26-2.49), especially in those with MetALD (HR = 2.34, 1.34-4.11) and lean MASLD (HR = 2.30, 1.13-4.66). As the number of CMRFs increased, the risks of CVD were significantly increased (p trend <0.001), with a 116% and 92% excess risk in MASLD with 3 CMRFs (HR = 2.16, 1.48-3.15) and ≥4 CMRFs (HR = 1.92, 1.27-2.91). Similar excess risk of incident IHD and HF was observed in IBD-MASLD, either pure MASLD or MetALD, as well as lean/non-lean MASLD. CONCLUSIONS: MASLD is associated with increased CVD risk in IBD patients, with greater risk as number of CMRFs increased and evidently higher risk in MetALD and lean MASLD patients.


Subject(s)
Cardiovascular Diseases , Inflammatory Bowel Diseases , Humans , Male , Female , Prospective Studies , Middle Aged , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/etiology , Adult , Inflammatory Bowel Diseases/complications , Proportional Hazards Models , Cardiometabolic Risk Factors , Incidence , Risk Factors , Fatty Liver/complications , Fatty Liver/epidemiology , Multivariate Analysis
19.
Pharmacol Res ; 207: 107340, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39111557

ABSTRACT

Randomized clinical trials (RCTs) of PCSK9 monoclonal antibody(mAb) specifically for Chinese patients have been limited. This multi-center RCT is to clarify the efficacy and safety of a novel mAb, Ebronucimab, in Chinese patients. Patients diagnosed with primary hypercholesterolemia, including Heterozygous Familial Hypercholesterolemia, or mixed dyslipidemia, were categorized by ASCVD risk and randomly assigned at a ratio of 2:1:2:1 to receive Ebronucimab 450 mg or matching placebo every 4 weeks (Q4W), or Ebronucimab 150 mg or matching placebo every 2 weeks (Q2W). The primary outcome was the percentage change of LDL-C from baseline to week 12 for all groups. The least squares mean reduction difference (95 %CI) in LDL-C from baseline to week 12 of Ebronucimab 450 mg Q4W and Ebronucimab 150 mg Q2W groups versus the placebo group was -59.13 (-64.103, -54.153) (Adjusted p<0.0001) and -60.43 (-65.450, -55.416) (Adjusted p<0.0001), respectively. Meanwhile, the Ebronucimab group exhibited notably high rates in reaching LDL-C goals of each cardiovascular risk stratification. In addition, Ebronucimab effectively improved other lipid panel. During the double-blind treatment period, relatively frequently reported adverse events (AEs) were injection site reactions (ISR), urinary tract infection, and hyperuricemia (Incidence rate are 6.9 %, 4.8 % and 3.5 %). Among treatment-associated AEs, only injection site reactions (ISR) occurred more in the dose groups. In conclusion, Ebronucimab, with either 450 mg Q4W or 150 mg Q2W doses, demonstrated significant efficacy in lowering serum LDL-C level with a favorable safety and immunogenicity profile among hypercholesterolemic patients.


Subject(s)
Antibodies, Monoclonal, Humanized , Cholesterol, LDL , Hypercholesterolemia , Adult , Aged , Female , Humans , Male , Middle Aged , Antibodies, Monoclonal, Humanized/adverse effects , Antibodies, Monoclonal, Humanized/therapeutic use , Anticholesteremic Agents/therapeutic use , Anticholesteremic Agents/adverse effects , China , Cholesterol, LDL/blood , Double-Blind Method , East Asian People , Hypercholesterolemia/drug therapy , Proprotein Convertase 9 , Treatment Outcome
20.
MMWR Morb Mortal Wkly Rep ; 73(3): 51-56, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38271277

ABSTRACT

Although diabetes and cardiovascular disease account for substantial disease prevalence among adults in the United States, their prevalence among racial and ethnic subgroups is inadequately characterized. To fill this gap, CDC described the prevalence of diagnosed cardiometabolic diseases among U.S. adults, by disaggregated racial and ethnic subgroups, among 3,970,904 respondents to the Behavioral Risk Factor Surveillance System during 2013-2021. Prevalence of each disease (diabetes, myocardial infarction, angina or coronary heart disease, and stroke), stratified by race and ethnicity, was based on self-reported diagnosis by a health care professional, adjusting for age, sex, and survey year. Overall, mean respondent age was 47.5 years, and 51.4% of respondents were women. Prevalence of cardiometabolic diseases among disaggregated race and ethnicity subgroups varied considerably. For example, diabetes prevalence within the aggregated non-Hispanic Asian category (11.5%) ranged from 6.3% in the Vietnamese subgroup to 15.2% in the Filipino subgroup. Prevalence of angina or coronary heart disease for the aggregated Hispanic or Latino category (3.8%) ranged from 3.1% in the Cuban subgroup to 6.3% in the Puerto Rican subgroup. Disaggregation of cardiometabolic disease prevalence data by race and ethnicity identified health disparities among subgroups that can be used to better help guide prevention programs and develop culturally relevant interventions.


Subject(s)
Cardiovascular Diseases , Coronary Disease , Diabetes Mellitus , Adult , Humans , United States/epidemiology , Female , Middle Aged , Male , Behavioral Risk Factor Surveillance System , Prevalence , Diabetes Mellitus/epidemiology , Cardiovascular Diseases/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL