Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Hum Mol Genet ; 33(8): 733-738, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38215789

ABSTRACT

OBJECTIVE: This study aims to identify BMI-associated genes by integrating aggregated summary information from different omics data. METHODS: We conducted a meta-analysis to leverage information from a genome-wide association study (n = 339 224), a transcriptome-wide association study (n = 5619), and an epigenome-wide association study (n = 3743). We prioritized the significant genes with a machine learning-based method, netWAS, which borrows information from adipose tissue-specific interaction networks. We also used the brain-specific network in netWAS to investigate genes potentially involved in brain-adipose interaction. RESULTS: We identified 195 genes that were significantly associated with BMI through meta-analysis. The netWAS analysis narrowed down the list to 21 genes in adipose tissue. Among these 21 genes, six genes, including FUS, STX4, CCNT2, FUBP1, NDUFS3, and RAPSN, were not reported to be BMI-associated in PubMed or GWAS Catalog. We also identified 11 genes that were significantly associated with BMI in both adipose and whole brain tissues. CONCLUSION: This study integrated three types of omics data and identified a group of genes that have not previously been reported to be associated with BMI. This strategy could provide new insights for future studies to identify molecular mechanisms contributing to BMI regulation.


Subject(s)
Genome-Wide Association Study , Multiomics , Humans , Body Mass Index , Genome-Wide Association Study/methods , Transcriptome , Obesity/genetics , Cyclin T/genetics , DNA-Binding Proteins/genetics , RNA-Binding Proteins/genetics
2.
Article in English | MEDLINE | ID: mdl-38471013

ABSTRACT

RATIONALE: BMI is associated with COPD mortality, but the underlying mechanisms are unclear. The effect of genetic variants aggregated into a polygenic score may elucidate causal mechanisms and predict risk. OBJECTIVES: To examine the associations of genetically predicted BMI with all-cause and cause-specific mortality in COPD. METHODS: We developed a polygenic score for BMI (PGSBMI) and tested for associations of the PGSBMI with all-cause, respiratory, and cardiovascular mortality in participants with COPD from the COPDGene, ECLIPSE, and Framingham Heart studies. We calculated the difference between measured BMI and PGS-predicted BMI (BMIdiff) and categorized participants into groups of discordantly low (BMIdiff < 20th percentile), concordant (BMIdiff between 20th - 80th percentile), and discordantly high (BMIdiff > 80th percentile) BMI. We applied Cox models, examined potential non-linear associations of the PGSBMI and BMIdiff with mortality, and summarized results with meta-analysis. MEASUREMENTS AND MAIN RESULTS: We observed significant non-linear associations of measured BMI and BMIdiff, but not PGSBMI, with all-cause mortality. In meta-analyses, a one standard deviation increase in the PGSBMI was associated with an increased hazard for cardiovascular mortality (HR=1.29, 95% CI=1.12-1.49), but not with respiratory or all-cause mortality. Compared to participants with concordant measured and genetically predicted BMI, those with discordantly low BMI had higher mortality risk for all-cause (HR=1.57, CI=1.41-1.74) and respiratory death (HR=2.01, CI=1.61-2.51). CONCLUSIONS: In people with COPD, higher genetically predicted BMI is associated with higher cardiovascular mortality but not respiratory mortality. Individuals with discordantly low BMI have higher all-cause and respiratory mortality compared to those with concordant BMI.

3.
Osteoporos Int ; 35(7): 1205-1212, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38587675

ABSTRACT

A knowledge gap exists in associating later life's osteoporotic fracture and middle adulthood's BMI trajectories. We observed an association showing those transitioning from overweight to normal weight face a higher fracture risk in late adulthood, emphasizing the potential benefits of maintaining a stable BMI to reduce late-life fractures. PURPOSE: Numerous studies on the relationship between obesity and fractures have relied on body mass index (BMI) at a single time point, yielding inconclusive results. This study investigated the association of BMI trajectories over middle adulthood with fracture risk in late adulthood. METHODS: This prospective cohort study analyzed 1772 qualified participants from the Framingham Original Cohort Study, with 292 (16.5%) incident fractures during an average of 17.1-year follow-up. We constructed BMI trajectories of age 35-64 years based on latent class mixed modeling and explored their association with the risk of fracture after 65 years using the Cox regression. RESULTS: The result showed that compared to the BMI trajectory Group 4 (normal to slightly overweight; see "Methods" for detailed description), Group 1 (overweight declined to normal weight) had a higher all-fracture risk after age 65 (hazard ratio [HR], 2.22, 95% CI, 1.13-4.39). The secondary analysis focusing on lower extremity fractures (pelvis, hip, leg, and foot) showed a similar association pattern. CONCLUSIONS: This study suggested that people whose BMI slightly increased from normal weight to low-level overweight during 30 years of middle adulthood confer a significantly lower risk of fracture in later life than those whose BMI declined from overweight to normal weight. This result implies the potentially beneficial effects of avoiding weight loss to normal weight during middle adulthood for overweight persons, with reduced fracture risk in late life.


Subject(s)
Body Mass Index , Osteoporotic Fractures , Overweight , Humans , Middle Aged , Female , Osteoporotic Fractures/epidemiology , Osteoporotic Fractures/etiology , Osteoporotic Fractures/physiopathology , Male , Adult , Prospective Studies , Overweight/complications , Overweight/physiopathology , Overweight/epidemiology , Aged , Obesity/complications , Obesity/physiopathology , Obesity/epidemiology , Risk Factors , Risk Assessment/methods , Incidence
4.
Am J Respir Crit Care Med ; 208(8): 846-857, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37470492

ABSTRACT

Rationale: Inflammation contributes to lung function decline and the development of chronic obstructive pulmonary disease. Omega-3 fatty acids have antiinflammatory properties and may benefit lung health. Objectives: To investigate associations of omega-3 fatty acids with lung function decline and incident airway obstruction in a diverse sample of adults from general-population cohorts. Methods: Complementary study designs: 1) longitudinal study of plasma phospholipid omega-3 fatty acids and repeated FEV1 and FVC measures in the NHLBI Pooled Cohorts Study and 2) two-sample Mendelian randomization (MR) study of genetically predicted omega-3 fatty acids and lung function parameters. Measurements and Main Results: The longitudinal study found that higher omega-3 fatty acid levels were associated with attenuated lung function decline in 15,063 participants, with the largest effect sizes for the most metabolically downstream omega-3 fatty acid, docosahexaenoic acid (DHA). An increase in DHA of 1% of total fatty acids was associated with attenuations of 1.4 ml/yr for FEV1 (95% confidence interval [CI], 1.1-1.8) and 2.0 ml/yr for FVC (95% CI, 1.6-2.4) and a 7% lower incidence of spirometry-defined airway obstruction (95% CI, 0.89-0.97). DHA associations persisted across sexes and smoking histories and in Black, White, and Hispanic participants, with associations of the largest magnitude in former smokers and Hispanic participants. The MR study showed similar trends toward positive associations of genetically predicted downstream omega-3 fatty acids with FEV1 and FVC. Conclusions: The longitudinal and MR studies provide evidence supporting beneficial effects of higher levels of downstream omega-3 fatty acids, especially DHA, on lung health.


Subject(s)
Airway Obstruction , Fatty Acids, Omega-3 , Pulmonary Disease, Chronic Obstructive , Adult , Humans , Longitudinal Studies , Lung , Pulmonary Disease, Chronic Obstructive/genetics , Docosahexaenoic Acids
5.
Am J Respir Crit Care Med ; 208(7): 791-801, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37523715

ABSTRACT

Rationale: In addition to rare genetic variants and the MUC5B locus, common genetic variants contribute to idiopathic pulmonary fibrosis (IPF) risk. The predictive power of common variants outside the MUC5B locus for IPF and interstitial lung abnormalities (ILAs) is unknown. Objectives: We tested the predictive value of IPF polygenic risk scores (PRSs) with and without the MUC5B region on IPF, ILA, and ILA progression. Methods: We developed PRSs that included (PRS-M5B) and excluded (PRS-NO-M5B) the MUC5B region (500-kb window around rs35705950-T) using an IPF genome-wide association study. We assessed PRS associations with area under the receiver operating characteristic curve (AUC) metrics for IPF, ILA, and ILA progression. Measurements and Main Results: We included 14,650 participants (1,970 IPF; 1,068 ILA) from six multi-ancestry population-based and case-control cohorts. In cases excluded from genome-wide association study, the PRS-M5B (odds ratio [OR] per SD of the score, 3.1; P = 7.1 × 10-95) and PRS-NO-M5B (OR per SD, 2.8; P = 2.5 × 10-87) were associated with IPF. Participants in the top PRS-NO-M5B quintile had ∼sevenfold odds for IPF compared with those in the first quintile. A clinical model predicted IPF (AUC, 0.61); rs35705950-T and PRS-NO-M5B demonstrated higher AUCs (0.73 and 0.7, respectively), and adding both genetic predictors to a clinical model yielded the highest performance (AUC, 0.81). The PRS-NO-M5B was associated with ILA (OR, 1.25) and ILA progression (OR, 1.16) in European ancestry participants. Conclusions: A common genetic variant risk score complements the MUC5B variant to identify individuals at high risk of interstitial lung abnormalities and pulmonary fibrosis.


Subject(s)
Genome-Wide Association Study , Idiopathic Pulmonary Fibrosis , Humans , Idiopathic Pulmonary Fibrosis/genetics , Risk Factors , Lung , Mucin-5B/genetics , Genetic Predisposition to Disease
6.
Ann Hum Genet ; 87(4): 174-183, 2023 07.
Article in English | MEDLINE | ID: mdl-37009668

ABSTRACT

INTRODUCTION: Observational studies have shown that body mass index (BMI) and waist-to-hip ratio (WHR) are both inversely associated with lung function, as assessed by forced vital capacity (FVC) and forced expiratory volume in 1 s (FEV1). However, observational data are susceptible to confounding and reverse causation. METHODS: We selected genetic instruments based on their relevant large-scale genome-wide association studies. Summary statistics of lung function and asthma came from the UK Biobank and SpiroMeta Consortium meta-analysis (n = 400,102). After examining pleiotropy and removing outliers, we applied inverse-variance weighting to estimate the causal association of BMI and BMI-adjusted WHR (WHRadjBMI) with FVC, FEV1, FEV1/FVC, and asthma. Sensitivity analyses were performed using weighted median, MR-Egger, and MRlap methods. RESULTS: We found that BMI was inversely associated with FVC (effect estimate, -0.167; 95% confidence interval (CI), -0.203 to -0.130) and FEV1 (effect estimate, -0.111; 95%CI, -0.149 to -0.074). Higher BMI was associated with higher FEV1/FVC (effect estimate, 0.079; 95%CI, 0.049 to 0.110) but was not significantly associated with asthma. WHRadjBMI was inversely associated with FVC (effect estimate, -0.132; 95%CI, -0.180 to -0.084) but has no significant association with FEV1. Higher WHR was associated with higher FEV1/FVC (effect estimate, 0.181; 95%CI, 0.130 to 0.232) and with increased risk of asthma (effect estimate, 0.027; 95%CI, 0.001 to 0.053). CONCLUSION: We found significant evidence that increased BMI is suggested to be causally related to decreased FVC and FEV1, and increased BMI-adjusted WHR could lead to lower FVC value and higher risk of asthma. Higher BMI and BMI-adjusted WHR were suggested to be causally associated with higher FEV1/FVC.


Subject(s)
Asthma , Lung , Humans , Asthma/genetics , Body Mass Index , Forced Expiratory Volume , Genome-Wide Association Study , Mendelian Randomization Analysis , Obesity/genetics
7.
Thorax ; 78(6): 559-565, 2023 06.
Article in English | MEDLINE | ID: mdl-35777957

ABSTRACT

BACKGROUND: Interstitial lung abnormalities (ILAs) are associated with increased mortality. It is unclear whether multimorbidity accounts for the mortality association or how strongly ILA is associated with mortality relative to other common age-associated diseases. We determined the association of ILA with all-cause mortality adjusted for multimorbidity, compared mortality associated with ILA and prevalent cardiovascular disease (CVD), diabetes mellitus, chronic kidney disease, chronic obstructive pulmonary disease and cancer and also determined the association between ILA and these diseases. METHODS: We measured ILA (none, indeterminant, definite) using blinded reads of CT images, prevalent chronic diseases and potential confounders in two observational cohorts, the Framingham Heart Study (FHS) (n=2449) and Age, Gene/Environment Susceptibility - Reykjavik Study (AGES-Reykjavik) (n=5180). We determined associations with mortality using Cox proportional hazards models and between ILA and diseases with multinomial logistic regression. RESULTS: Over a median (IQR) follow-up of 8.8 (1.4) years in FHS and 12.0 (7.7) years in AGES-Reykjavik, in adjusted models, ILAs were significantly associated with increased mortality (HR, 95% CI 1.95, 1.23 to 3.08, p=0.0042, in FHS; HR 1.60, 1.41 to 1.82, p<0.0001, in AGES-Reykjavik) adjusted for multimorbidity. In both cohorts, the association of ILA with mortality was of similar magnitude to the association of most other diseases. In adjusted models, ILAs were associated only with prevalent kidney disease (OR, 95% CI 1.90, 1.01 to 3.57, p=0.0452) in FHS and with prevalent CVD (OR 1.42, 1.12 to 1.81, p=0.0040) in AGES-Reykjavik. CONCLUSIONS: ILAs were associated with mortality adjusted for multimorbidity and were similarly associated with increased mortality compared with several common chronic diseases. ILAs were not consistently associated with the prevalence of these diseases themselves.


Subject(s)
Cardiovascular Diseases , Lung Diseases, Interstitial , Humans , Cohort Studies , Lung Diseases, Interstitial/epidemiology , Multimorbidity , Tomography, X-Ray Computed/methods , Lung
8.
Phys Chem Chem Phys ; 25(4): 2742-2746, 2023 Jan 27.
Article in English | MEDLINE | ID: mdl-36644939

ABSTRACT

Organic light-emitting diodes (OLEDs) suffer from carrier imbalance under high temperatures. We improved their thermal stability by using space interlayers adjacent to the charge transport layers. The current efficiency of the optimized OLEDs increased under high temperature, with an increase of over one order of magnitude of the electron mobility.

9.
Am J Respir Crit Care Med ; 206(3): 321-336, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35536696

ABSTRACT

Rationale: Methylation integrates factors present at birth and modifiable across the lifespan that can influence pulmonary function. Studies are limited in scope and replication. Objectives: To conduct large-scale epigenome-wide meta-analyses of blood DNA methylation and pulmonary function. Methods: Twelve cohorts analyzed associations of methylation at cytosine-phosphate-guanine probes (CpGs), using Illumina 450K or EPIC/850K arrays, with FEV1, FVC, and FEV1/FVC. We performed multiancestry epigenome-wide meta-analyses (total of 17,503 individuals; 14,761 European, 2,549 African, and 193 Hispanic/Latino ancestries) and interpreted results using integrative epigenomics. Measurements and Main Results: We identified 1,267 CpGs (1,042 genes) differentially methylated (false discovery rate, <0.025) in relation to FEV1, FVC, or FEV1/FVC, including 1,240 novel and 73 also related to chronic obstructive pulmonary disease (1,787 cases). We found 294 CpGs unique to European or African ancestry and 395 CpGs unique to never or ever smokers. The majority of significant CpGs correlated with nearby gene expression in blood. Findings were enriched in key regulatory elements for gene function, including accessible chromatin elements, in both blood and lung. Sixty-nine implicated genes are targets of investigational or approved drugs. One example novel gene highlighted by integrative epigenomic and druggable target analysis is TNFRSF4. Mendelian randomization and colocalization analyses suggest that epigenome-wide association study signals capture causal regulatory genomic loci. Conclusions: We identified numerous novel loci differentially methylated in relation to pulmonary function; few were detected in large genome-wide association studies. Integrative analyses highlight functional relevance and potential therapeutic targets. This comprehensive discovery of potentially modifiable, novel lung function loci expands knowledge gained from genetic studies, providing insights into lung pathogenesis.


Subject(s)
DNA Methylation , Epigenome , CpG Islands , DNA Methylation/genetics , Epigenesis, Genetic/genetics , Epigenomics , Genome-Wide Association Study , Humans , Infant, Newborn , Lung
10.
Eur Respir J ; 60(3)2022 09.
Article in English | MEDLINE | ID: mdl-35115341

ABSTRACT

BACKGROUND: Genetic susceptibility may be associated with earlier onset of chronic obstructive pulmonary disease (COPD). We hypothesised that a polygenic risk score (PRS) for COPD would be associated with earlier age of diagnosis of COPD. METHODS: In 6647 non-Hispanic White (NHW) and 2464 African American (AA) participants from COPDGene, and 6812 participants from the Framingham Heart Study (FHS), we tested the relationship of the PRS and age of COPD diagnosis. Age at diagnosis was determined by: 1) self-reported age at COPD diagnosis or 2) age at visits when moderate-to-severe airflow limitation (Global Initiative for Chronic Obstructive Lung Disease (GOLD) grade 2-4) was observed on spirometry. We used Cox regression to examine the overall and time-dependent effects of the PRS on incident COPD. In the COPDGene study, we also examined the PRS's predictive value for COPD at age <50 years (COPD50) using logistic regression and area under the curve (AUC) analyses, with and without the addition of other risk factors present at early life (e.g. childhood asthma). RESULTS: In Cox models, the PRS demonstrated age-dependent associations with incident COPD, with larger effects at younger ages in both cohorts. The PRS was associated with COPD50 (OR 1.55 (95% CI 1.41-1.71) for NHW, OR 1.23 (95% CI 1.05-1.43) for AA and OR 2.47 (95% CI 2.12-2.88) for FHS participants). In COPDGene, adding the PRS to known early-life risk factors improved prediction of COPD50 in NHW (AUC 0.69 versus 0.74; p<0.0001) and AA (AUC 0.61 versus 0.64; p=0.04) participants. CONCLUSIONS: A COPD PRS is associated with earlier age of diagnosis of COPD and retains predictive value when added to known early-life risk factors.


Subject(s)
Pulmonary Disease, Chronic Obstructive , Child , Genetic Predisposition to Disease , Humans , Lung , Middle Aged , Pulmonary Disease, Chronic Obstructive/diagnosis , Pulmonary Disease, Chronic Obstructive/genetics , Risk Factors , Spirometry
11.
Hepatology ; 73(2): 548-559, 2021 02.
Article in English | MEDLINE | ID: mdl-33125745

ABSTRACT

BACKGROUND AND AIMS: NAFLD is increasing in prevalence and will soon be the most common chronic liver disease. Liver stiffness, as assessed by vibration-controlled transient elastography (VCTE), correlates with hepatic fibrosis, an important predictor of liver-related and all-cause mortality. Although liver fat is associated with cardiovascular risk factors, the association between hepatic fibrosis and cardiovascular risk factors is less clear. APPROACH AND RESULTS: We performed VCTE, assessing controlled attenuation parameter (CAP; measure of steatosis) and liver stiffness measurement (LSM) in 3,276 Framingham Heart Study adult participants (53.9% women, mean age 54.3 ± 9.1 years) presenting for a routine study visit. We performed multivariable-adjusted logistic regression models to determine the association between LSM and obesity-related, vascular-related, glucose-related, and cholesterol-related cardiovascular risk factors. The prevalence of hepatic steatosis (CAP ≥ 290 dB/m) was 28.8%, and 8.8% had hepatic fibrosis (LSM ≥ 8.2 kPa). Hepatic fibrosis was associated with multiple cardiovascular risk factors, including increased odds of obesity (OR, 1.82; 95% CI, 1.35-2.47), metabolic syndrome (OR, 1.49; 95% CI 1.10-2.01), diabetes (OR, 2.67; 95% CI, 1.21-3.75), hypertension (OR, 1.52; 95% CI, 1.15-1.99), and low high-density lipoprotein cholesterol (OR, 1.47; 95% CI, 1.09-1.98), after adjustment for age, sex, smoking status, alcohol drinks/week, physical activity index, aminotransferases, and CAP. CONCLUSIONS: In our community-based cohort, VCTE-defined hepatic fibrosis was associated with multiple cardiovascular risk factors, including obesity, metabolic syndrome, diabetes, hypertension, and high-density lipoprotein cholesterol, even after accounting for covariates and CAP. Additional longitudinal studies are needed to determine if hepatic fibrosis contributes to incident cardiovascular disease risk factors or events.


Subject(s)
Cardiometabolic Risk Factors , Cardiovascular Diseases/epidemiology , Liver Cirrhosis/epidemiology , Metabolic Syndrome/epidemiology , Non-alcoholic Fatty Liver Disease/epidemiology , Cardiovascular Diseases/etiology , Elasticity Imaging Techniques , Female , Humans , Liver/diagnostic imaging , Liver/pathology , Liver Cirrhosis/complications , Liver Cirrhosis/diagnosis , Liver Cirrhosis/pathology , Longitudinal Studies , Male , Metabolic Syndrome/etiology , Middle Aged , Non-alcoholic Fatty Liver Disease/complications , Non-alcoholic Fatty Liver Disease/diagnosis , Non-alcoholic Fatty Liver Disease/pathology , Prevalence
12.
Am J Respir Crit Care Med ; 203(9): 1149-1157, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33080140

ABSTRACT

Rationale: The association between aging and idiopathic pulmonary fibrosis has been established. The associations between aging-related biomarkers and interstitial lung abnormalities (ILA) have not been comprehensively evaluated.Objectives: To evaluate the associations among aging biomarkers, ILA, and all-cause mortality.Methods: In the FHS (Framingham Heart Study), we evaluated associations among plasma biomarkers (IL-6, CRP [C-reactive protein], TNFR [tumor necrosis factor α receptor II], GDF15 [growth differentiation factor 15], cystatin-C, HGBA1C [Hb A1C], insulin, IGF1 [insulin-like growth factor 1], and IGFBP1 [IGF binding protein 1] and IGFBP3]), ILA, and mortality. Causal inference analysis was used to determine whether biomarkers mediated age. GDF15 results were replicated in the COPDGene (Genetic Epidemiology of Chronic Obstructive Pulmonary Disease) Study.Measurements and Main Results: In the FHS, there were higher odds of ILA per increase in natural log-transformed GDF15 (odds ratio [95% confidence interval], 3.4 [1.8-6.4]; P = 0.0002), TNFR (3.1 [1.6-5.8]; P = 0.004), IL-6 (1.8 [1.4-2.4]; P < 0.0001), and CRP (1.7 [1.3-2.0]; P < 0.0001). In the FHS, after adjustment for multiple comparisons, no biomarker was associated with increased mortality, but the associations of GDF15 (hazard ratio, 2.0 [1.1-3.5]; P = 0.02), TNFR (1.8 [1.0-3.3]; P = 0.05), and IGFBP1 (1.3 [1.1-1.7]; P = 0.01) approached significance. In the COPDGene Study, higher natural log-transformed GDF15 was associated with ILA (odds ratio, 8.1 [3.1-21.4]; P < 0.0001) and mortality (hazard ratio, 1.6 [1.1-2.2]; P = 0.01). Causal inference analysis showed that the association of age with ILA was mediated by IL-6 (P < 0.0001) and TNFR (P = 0.002) and was likely mediated by GDF15 (P = 0.008) in the FHS and was mediated by GDF15 (P = 0.001) in the COPDGene Study.Conclusions: Some aging-related biomarkers are associated with ILA. GDF15, in particular, may explain some of the associations among age, ILA, and mortality.


Subject(s)
Aging/blood , Lung Diseases, Interstitial/blood , Lung Diseases, Interstitial/mortality , Adult , Age Factors , Aged , Biomarkers/blood , Female , Growth Differentiation Factor 15/blood , Humans , Longitudinal Studies , Lung Diseases, Interstitial/diagnosis , Male , Middle Aged , Odds Ratio , Survival Rate
13.
Am J Physiol Lung Cell Mol Physiol ; 321(1): L130-L143, 2021 07 01.
Article in English | MEDLINE | ID: mdl-33909500

ABSTRACT

Genome-wide association studies (GWASs) have identified regions associated with chronic obstructive pulmonary disease (COPD). GWASs of other diseases have shown an approximately 10-fold overrepresentation of nonsynonymous variants, despite limited exonic coverage on genotyping arrays. We hypothesized that a large-scale analysis of coding variants could discover novel genetic associations with COPD, including rare variants with large effect sizes. We performed a meta-analysis of exome arrays from 218,399 controls and 33,851 moderate-to-severe COPD cases. All exome-wide significant associations were present in regions previously identified by GWAS. We did not identify any novel rare coding variants with large effect sizes. Within GWAS regions on chromosomes 5q, 6p, and 15q, four coding variants were conditionally significant (P < 0.00015) when adjusting for lead GWAS single-nucleotide polymorphisms A common gasdermin B (GSDMB) splice variant (rs11078928) previously associated with a decreased risk for asthma was nominally associated with a decreased risk for COPD [minor allele frequency (MAF) = 0.46, P = 1.8e-4]. Two stop variants in coiled-coil α-helical rod protein 1 (CCHCR1), a gene involved in regulating cell proliferation, were associated with COPD (both P < 0.0001). The SERPINA1 Z allele was associated with a random-effects odds ratio of 1.43 for COPD (95% confidence interval = 1.17-1.74), though with marked heterogeneity across studies. Overall, COPD-associated exonic variants were identified in genes involved in DNA methylation, cell-matrix interactions, cell proliferation, and cell death. In conclusion, we performed the largest exome array meta-analysis of COPD to date and identified potential functional coding variants. Future studies are needed to identify rarer variants and further define the role of coding variants in COPD pathogenesis.


Subject(s)
Exome/genetics , Genetic Markers , Genetic Predisposition to Disease , Genome-Wide Association Study , Polymorphism, Single Nucleotide , Pulmonary Disease, Chronic Obstructive/genetics , Pulmonary Disease, Chronic Obstructive/pathology , Gene Expression Regulation , Humans , Meta-Analysis as Topic
14.
Am J Epidemiol ; 190(1): 95-108, 2021 01 04.
Article in English | MEDLINE | ID: mdl-32803215

ABSTRACT

Docosahexaenoic acid (DHA), an ω-3 polyunsaturated fatty acid, attenuates interstitial lung disease (ILD) in experimental models, but human studies are lacking. We examined associations of circulating levels of DHA and other polyunsaturated fatty acids with hospitalization and death due to ILD over 12 years in the Multi-Ethnic Study of Atherosclerosis (MESA; n = 6,573). We examined cross-sectional associations with CT lung abnormalities in MESA (2000-2012; n = 6,541), the Framingham Heart Study (2005-2011; n = 3,917), and the Age, Gene/Environment Susceptibility-Reykjavik Study (AGES-Reykjavik) (2002-2006; n = 1,106). Polyunsaturated fatty acid levels were determined from fasting blood samples and extracted from plasma phospholipids (MESA and AGES-Reykjavik) or red blood cell membranes (Framingham Heart Study). Higher DHA levels were associated with a lower risk of hospitalization due to ILD (per standard-deviation increment, adjusted rate ratio = 0.69, 95% confidence interval (CI): 0.48, 0.99) and a lower rate of death due to ILD (per standard-deviation increment, adjusted hazard ratio = 0.68, 95% CI: 0.47, 0.98). Higher DHA was associated with fewer interstitial lung abnormalities on computed tomography (per natural log increment, pooled adjusted odds ratio = 0.65, 95% CI: 0.46, 0.91). Higher DHA levels were associated with a lower risk of hospitalization and death due to ILD and fewer lung abnormalities on computed tomography in a meta-analysis of data from population-based cohort studies.


Subject(s)
Fatty Acids, Omega-3/blood , Lung Diseases, Interstitial/blood , Lung Diseases, Interstitial/diagnostic imaging , Tomography, X-Ray Computed , Aged , Aged, 80 and over , Cross-Sectional Studies , Epidemiologic Studies , Fatty Acids, Unsaturated/blood , Female , Hospitalization/statistics & numerical data , Humans , Lung Diseases, Interstitial/mortality , Male , Middle Aged , Risk Factors
15.
Am J Respir Crit Care Med ; 201(5): 564-574, 2020 03 01.
Article in English | MEDLINE | ID: mdl-31710517

ABSTRACT

Rationale: Idiopathic pulmonary fibrosis (IPF) is a complex lung disease characterized by scarring of the lung that is believed to result from an atypical response to injury of the epithelium. Genome-wide association studies have reported signals of association implicating multiple pathways including host defense, telomere maintenance, signaling, and cell-cell adhesion.Objectives: To improve our understanding of factors that increase IPF susceptibility by identifying previously unreported genetic associations.Methods: We conducted genome-wide analyses across three independent studies and meta-analyzed these results to generate the largest genome-wide association study of IPF to date (2,668 IPF cases and 8,591 controls). We performed replication in two independent studies (1,456 IPF cases and 11,874 controls) and functional analyses (including statistical fine-mapping, investigations into gene expression, and testing for enrichment of IPF susceptibility signals in regulatory regions) to determine putatively causal genes. Polygenic risk scores were used to assess the collective effect of variants not reported as associated with IPF.Measurements and Main Results: We identified and replicated three new genome-wide significant (P < 5 × 10-8) signals of association with IPF susceptibility (associated with altered gene expression of KIF15, MAD1L1, and DEPTOR) and confirmed associations at 11 previously reported loci. Polygenic risk score analyses showed that the combined effect of many thousands of as yet unreported IPF susceptibility variants contribute to IPF susceptibility.Conclusions: The observation that decreased DEPTOR expression associates with increased susceptibility to IPF supports recent studies demonstrating the importance of mTOR signaling in lung fibrosis. New signals of association implicating KIF15 and MAD1L1 suggest a possible role of mitotic spindle-assembly genes in IPF susceptibility.


Subject(s)
Idiopathic Pulmonary Fibrosis/genetics , Aged , Case-Control Studies , Cell Cycle Proteins/genetics , Female , Gene Expression , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Intracellular Signaling Peptides and Proteins/genetics , Kinesins/genetics , Male , Middle Aged , Risk Assessment , Signal Transduction , Spindle Apparatus , TOR Serine-Threonine Kinases/metabolism
16.
Am J Respir Crit Care Med ; 200(11): 1402-1413, 2019 12 01.
Article in English | MEDLINE | ID: mdl-31339356

ABSTRACT

Rationale: Interstitial lung abnormalities (ILAs) are associated with the highest genetic risk locus for idiopathic pulmonary fibrosis (IPF); however, the extent to which there are unique associations among individuals with ILAs or additional overlap with IPF is not known.Objectives: To perform a genome-wide association study (GWAS) of ILAs.Methods: ILAs and a subpleural-predominant subtype were assessed on chest computed tomography (CT) scans in the AGES (Age Gene/Environment Susceptibility), COPDGene (Genetic Epidemiology of Chronic Obstructive Pulmonary Disease [COPD]), Framingham Heart, ECLIPSE (Evaluation of COPD Longitudinally to Identify Predictive Surrogate End-points), MESA (Multi-Ethnic Study of Atherosclerosis), and SPIROMICS (Subpopulations and Intermediate Outcome Measures in COPD Study) studies. We performed a GWAS of ILAs in each cohort and combined the results using a meta-analysis. We assessed for overlapping associations in independent GWASs of IPF.Measurements and Main Results: Genome-wide genotyping data were available for 1,699 individuals with ILAs and 10,274 control subjects. The MUC5B (mucin 5B) promoter variant rs35705950 was significantly associated with both ILAs (P = 2.6 × 10-27) and subpleural ILAs (P = 1.6 × 10-29). We discovered novel genome-wide associations near IPO11 (rs6886640, P = 3.8 × 10-8) and FCF1P3 (rs73199442, P = 4.8 × 10-8) with ILAs, and near HTRE1 (rs7744971, P = 4.2 × 10-8) with subpleural-predominant ILAs. These novel associations were not associated with IPF. Among 12 previously reported IPF GWAS loci, five (DPP9, DSP, FAM13A, IVD, and MUC5B) were significantly associated (P < 0.05/12) with ILAs.Conclusions: In a GWAS of ILAs in six studies, we confirmed the association with a MUC5B promoter variant and found strong evidence for an effect of previously described IPF loci; however, novel ILA associations were not associated with IPF. These findings highlight common genetically driven biologic pathways between ILAs and IPF, and also suggest distinct ones.


Subject(s)
Genetic Predisposition to Disease/genetics , Idiopathic Pulmonary Fibrosis/genetics , Lung Diseases, Interstitial/genetics , Aged , Case-Control Studies , Female , Genetic Loci , Genome-Wide Association Study , Humans , Male , Middle Aged , Mucin-5B/genetics , Polymorphism, Single Nucleotide/genetics , Promoter Regions, Genetic/genetics , TATA Box Binding Protein-Like Proteins , beta Karyopherins/genetics
17.
Am J Respir Crit Care Med ; 199(5): 631-642, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30199657

ABSTRACT

RATIONALE: Omega-3 polyunsaturated fatty acids (n-3 PUFAs) have anti-inflammatory properties that could benefit adults with comprised pulmonary health. OBJECTIVE: To investigate n-3 PUFA associations with spirometric measures of pulmonary function tests (PFTs) and determine underlying genetic susceptibility. METHODS: Associations of n-3 PUFA biomarkers (α-linolenic acid, eicosapentaenoic acid, docosapentaenoic acid [DPA], and docosahexaenoic acid [DHA]) were evaluated with PFTs (FEV1, FVC, and FEV1/FVC) in meta-analyses across seven cohorts from the Cohorts for Heart and Aging Research in Genomic Epidemiology Consortium (N = 16,134 of European or African ancestry). PFT-associated n-3 PUFAs were carried forward to genome-wide interaction analyses in the four largest cohorts (N = 11,962) and replicated in one cohort (N = 1,687). Cohort-specific results were combined using joint 2 degree-of-freedom (2df) meta-analyses of SNP associations and their interactions with n-3 PUFAs. RESULTS: DPA and DHA were positively associated with FEV1 and FVC (P < 0.025), with evidence for effect modification by smoking and by sex. Genome-wide analyses identified a novel association of rs11693320-an intronic DPP10 SNP-with FVC when incorporating an interaction with DHA, and the finding was replicated (P2df = 9.4 × 10-9 across discovery and replication cohorts). The rs11693320-A allele (frequency, ∼80%) was associated with lower FVC (PSNP = 2.1 × 10-9; ßSNP = -161.0 ml), and the association was attenuated by higher DHA levels (PSNP×DHA interaction = 2.1 × 10-7; ßSNP×DHA interaction = 36.2 ml). CONCLUSIONS: We corroborated beneficial effects of n-3 PUFAs on pulmonary function. By modeling genome-wide n-3 PUFA interactions, we identified a novel DPP10 SNP association with FVC that was not detectable in much larger studies ignoring this interaction.


Subject(s)
Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/physiology , Fatty Acids, Omega-3/blood , Respiratory Physiological Phenomena/genetics , Aged , Biomarkers/blood , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/genetics , Docosahexaenoic Acids/blood , Eicosapentaenoic Acid/blood , Fatty Acids, Unsaturated/blood , Female , Forced Expiratory Volume/genetics , Genome-Wide Association Study , Humans , Male , Middle Aged , Polymorphism, Single Nucleotide/genetics , Sex Factors , Smoking/adverse effects , Vital Capacity/genetics , alpha-Linolenic Acid/blood
18.
BMC Genet ; 19(Suppl 1): 84, 2018 09 17.
Article in English | MEDLINE | ID: mdl-30255775

ABSTRACT

BACKGROUND: Single-probe analyses in epigenome-wide association studies (EWAS) have identified associations between DNA methylation and many phenotypes, but do not take into account information from neighboring probes. Methods to detect differentially methylated regions (DMRs) (clusters of neighboring probes associated with a phenotype) may provide more power to detect associations between DNA methylation and diseases or phenotypes of interest. RESULTS: We proposed a novel approach, GlobalP, and perform comparisons with 3 methods-DMRcate, Bumphunter, and comb-p-to identify DMRs associated with log triglycerides (TGs) in real GAW20 data before and after fenofibrate treatment. We applied these methods to the summary statistics from an EWAS performed on the methylation data. Comb-p, DMRcate, and GlobalP detected very similar DMRs near the gene CPT1A on chromosome 11 in both the pre- and posttreatment data. In addition, GlobalP detected 2 DMRs before fenofibrate treatment in the genes ETV6 and ABCG1. Bumphunter identified several DMRs on chromosomes 1 and 20, which did not overlap with DMRs detected by other methods. CONCLUSIONS: Our novel method detected the same DMR identified by two existing methods and detected two additional DMRs not identified by any of the existing methods we compared.


Subject(s)
DNA Methylation , Epigenomics/methods , Carnitine O-Palmitoyltransferase/genetics , CpG Islands , Fenofibrate/therapeutic use , Genome-Wide Association Study , Humans , Hypertriglyceridemia/drug therapy , Hypertriglyceridemia/genetics , Hypoglycemic Agents/therapeutic use , Proto-Oncogene Proteins c-ets/genetics , Repressor Proteins/genetics , Triglycerides/blood , ETS Translocation Variant 6 Protein
19.
J Relig Health ; 57(5): 1918-1930, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29627925

ABSTRACT

Spirituality has been shown to be important to many individuals dealing with a cancer diagnosis. While African-American breast cancer survivors have been reported to have higher levels of spirituality compared to White women, little is known about how levels of spirituality may vary among African-American breast cancer survivors. The aims of this study were to examine factors associated with spirituality among African-American survivors and test whether spirituality levels were associated with women's attitudes about treatment or health care. The primary outcome, spirituality, was nine-item scale (Cronbach's α = .99). Participants completed standardized telephone interviews that captured sociocultural, healthcare process, and treatment attitudes. Medical records were abstracted post-adjuvant therapy for treatment and clinical information. In bivariate analysis, age was not correlated with spirituality (p = .40). Married/living as married women had higher levels of spirituality (m = 32.1) than single women (m = 30.1). Contextual factors that were associated with higher levels spirituality were: collectivism (r = .44; p < 0.0001, Afrocentric worldview (r = .185; p = .01), and self-efficacy scale (r = .17; p = .02). In multivariable analysis, sociodemographic factors were not significant. Collectivism remained a robust predictor (p < 0.0001). Attitudes about the efficacy of cancer treatment were not associated with spirituality. The high levels of spirituality in African-American survivors suggest consideration of integrating spiritual care within the delivery of cancer treatment. Future studies should consider how spirituality may contribute to positive coping and/or behaviors in African-American women with high levels of spirituality.


Subject(s)
Adaptation, Psychological , Black or African American/psychology , Breast Neoplasms/ethnology , Breast Neoplasms/psychology , Cancer Survivors/psychology , Spirituality , Breast Neoplasms/nursing , Female , Humans , Male , United States
20.
Bioorg Med Chem Lett ; 26(6): 1508-1511, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26883149

ABSTRACT

Eight human telomerase inhibitors (5a-5h) having the core of N-acyl-4,5-dihydropyrazole with anticancer effects were identified in this study. Biological results revealed that a few compounds had potent anticancer activities against three common tumor cell lines (SGC-7901, HepG2 and MGC-803). Among them, compound 5c, with a molecular weight of only 272.2 Da, had antiproliferative activities against SGC-7901 and MGC-803 with EC50 values of 2.06 ± 0.17 and 2.89 ± 0.62 µM, respectively, better than 5-Fluorouracil. Compound 5c inhibited the enzyme of telomerase with an IC50 value of 1.86 ± 0.51 µM, surpassing the control compound, ethidium bromide. Modeling study showed that this compound can reside in the binding pocket of the telomerase/TNA:DNA hairpin complex. When the moiety of N-acyl was changed to N-sulfonyl, the gotten compounds (8a-8i) had deteriorative activities against both these three cancer cell lines and the enzyme of telomerase.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Pyrazoles/pharmacology , Telomerase/antagonists & inhibitors , Antineoplastic Agents/chemical synthesis , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Enzyme Inhibitors/chemical synthesis , Hep G2 Cells , Humans , Models, Molecular , Molecular Structure , Pyrazoles/chemical synthesis , Pyrazoles/chemistry , Structure-Activity Relationship , Telomerase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL