Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
Am J Emerg Med ; 78: 48-56, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38199096

ABSTRACT

INTRODUCTION: Traumatic cardiac arrest (TCA) is a severe condition with a high mortality rate, and patients who survive from TCA face a poor prognosis due to post-resuscitation injury, including cardiac and cerebral injury, which remains a serious challenge. Sodium octanoate has shown protective effects against various diseases. The present study aims to investigate sodium octanoate's protective effects against cardiac and cerebral injury after TCA in a porcine model. METHODS: The study included a total of 22 male domestic pigs divided into three groups: Sham group (n = 7), TCA group (n = 7), and sodium octanoate (SO) group (n = 8). Hemorrhage was initiated via the right femoral artery by a blood pump at a rate of 2 ml·kg-1·min-1 to establish TCA model. The Sham group underwent only endotracheal intubation and arteriovenous catheterization, without experiencing the blood loss/cardiac arrest/resuscitation model. At 5 min after resuscitation, the SO group received a continuous sodium octanoate infusion while the TCA group received the same volume of saline. General indicators were monitored, and blood samples were collected at baseline and at different time points after resuscitation. At 24 h after resuscitation, pigs were sacrificed, and heart and brain were obtained for cell apoptosis detection, iron deposition staining, oxidative stress detection, and the expression of ferroptosis-related proteins (ACSL4 and GPX4). RESULTS: Sodium octanoate significantly improved mean arterial pressure, cardiac output and ejection fraction induced by TCA. Serum biomarkers of cardiac and cerebral injury were found to increase at all time points after resuscitation, while sodium octanoate significantly reduced their levels. The apoptosis rates of cardiomyocytes and cerebral cortex cells in the SO group were significantly lower than in the TCA group, along with a reduced area of iron deposition staining. The sodium octanoate also reduced oxidative stress and down-regulated ferroptosis which was indicated by protein level alteration of ACSL4 and GPX4. CONCLUSION: Our study's findings suggest that early infusion of sodium octanoate significantly alleviates post-resuscitation cardiac and cerebral injury in a porcine model of TCA, possibly through inhibition of cell apoptosis and GPX4-mediated ferroptosis. Therefore, sodium octanoate could be a potential therapeutic strategy for patients with TCA.


Subject(s)
Brain Injuries , Cardiopulmonary Resuscitation , Heart Arrest , Humans , Male , Swine , Animals , Heart Arrest/complications , Heart Arrest/drug therapy , Caprylates/pharmacology , Hemorrhage , Iron , Disease Models, Animal
2.
Neurocrit Care ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38937417

ABSTRACT

BACKGROUND: Hypoxic-ischemic brain injury is a common cause of mortality after cardiac arrest (CA) and cardiopulmonary resuscitation; however, the specific underlying mechanisms are unclear. This study aimed to explore postresuscitation changes based on multi-omics profiling. METHODS: A CA swine model was established, and the neurological function was assessed at 24 h after resuscitation, followed by euthanizing animals. Their fecal, blood, and hippocampus samples were collected to analyze gut microbiota, metabolomics, and transcriptomics. RESULTS: The 16S ribosomal DNA sequencing showed that the microbiota composition and diversity changed after resuscitation, in which the abundance of Akkermansia and Muribaculaceae_unclassified increased while the abundance of Bifidobacterium and Romboutsia decreased. A relationship was observed between CA-related microbes and metabolites via integrated analysis of gut microbiota and metabolomics, in which Escherichia-Shigella was positively correlated with glycine. Combined metabolomics and transcriptomics analysis showed that glycine was positively correlated with genes involved in apoptosis, interleukin-17, mitogen-activated protein kinases, nuclear factor kappa B, and Toll-like receptor signal pathways. CONCLUSIONS: Our results provided novel insight into the mechanism of hypoxic-ischemic brain injury after resuscitation, which is envisaged to help identify potential diagnostic and therapeutic markers.

3.
Opt Express ; 30(15): 26266-26274, 2022 Jul 18.
Article in English | MEDLINE | ID: mdl-36236821

ABSTRACT

Optical power splitters are fundamental blocks for photonic integrated circuits. Conventional 3-dB power splitters are either constrained to single-mode regime or to the limited optical bandwidth. In this paper, an alternative design approach is proposed via combined method of topology optimizations on both analog and digital meta-structure. Based on this approach, a dual-mode power splitter is designed on silicon-on-insulator with an ultra-broad bandwidth from 1588 nm - 2033nm and an ultra-compact footprint of only 5.4 µm × 2.88 µm. The minimum feature size is 120 nm which can be compatible with silicon photonic foundry process. The simulated excess loss and crosstalk over this wavelength range for the two lowest TE modes are lower than 0.83 dB and -22 dB, respectively. To the best of our knowledge, this is a record large optical bandwidth for an integrated dual-mode 3-dB power splitter on silicon.

4.
Neurochem Res ; 47(4): 1097-1109, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35094247

ABSTRACT

Aldehyde dehydrogenase 2 (ALDH2) has been proven to protect the heart and brain against regional ischemia/reperfusion injury, in which the protective role is related to the inhibition of pyroptosis. In the present study, we investigated whether an ALDH2 activator N-(1,3-benzodioxol-5-ylmethyl)-2,6-dichloro-benzamide (Alda-1) would improve postresuscitation cardiac and neurological outcomes in a clinically relevant swine model of cardiac arrest (CA) and resuscitation. The animal model was established by 8 min of untreated ventricular fibrillation and then 8 min of cardiopulmonary resuscitation (CPR). After restoring spontaneous circulation, the animals were randomly divided to receive either Alda-1 (0.88 mg/kg, n = 6) or saline (n = 5). Postresuscitation hemodynamic parameters, cardiac function, and cardiac and cerebral injuries were periodically measured for a total of 24 h. At 24 h postresuscitation, neurological function was evaluated, and then the animals were sacrificed, and cardiac and cerebral tissue samples were obtained for the measurements of oxidative stress, inflammation and pyroptosis. Consequently, postresuscitation cardiac and neurological dysfunction were significantly improved accompanied with significantly milder cardiac and cerebral injuries in the Alda-1 group compared with the CPR group. In addition, the increase in NLR family pyrin domain-containing 3 inflammasome expression and proinflammatory cytokine production, which indicated the occurrence of inflammatory response, were significantly less in the Alda1 group than in the CPR group. The expression level of gasdermin D used as a protein marker of pyroptosis was also significantly reduced in all resuscitated animals receiving Alda1 treatment. Moreover, the severity of oxidative stress indicated by the changes of 4-hydroxy-2-nonenal and malondialdehyde was significantly decreased in the heart and brain in all animals treated with Alda-1 compared to the CPR group. Thus, Alda-1 mitigated postresuscitation cardiac and neurological dysfunction and injuries possibly by inhibiting oxidative stress-mediated NLRP3 inflammasome activation and pyroptosis in a swine model of CA and resuscitation.


Subject(s)
Cardiopulmonary Resuscitation , Heart Arrest , Reperfusion Injury , Animals , Heart Arrest/therapy , Inflammasomes/metabolism , Pyroptosis , Reperfusion Injury/metabolism , Swine
5.
Am J Emerg Med ; 47: 231-238, 2021 09.
Article in English | MEDLINE | ID: mdl-33932856

ABSTRACT

BACKGROUND: Continuous renal replacement therapy (CRRT) was currently demonstrated to be an effective way to induce fast hypothermia and had proective effects on cardiac dysfunction and brain damage after cardiac pulmonary resuscitation (CPR). In the present study, we aimed to investigate the influence of extracorporeal circuit cooling using CRRT on renal and intestinal damage after CPR based on a porcine model. METHODS: 32 pigs were subjected to ventricular fibrillation for 8 min, followed by CPR for 5 min before defibrillation. All were randomized to receive extracorporeal circuit cooling using CRRT (CRRT, n = 9), surface cooling (SC, n = 9), normothermia (NT, n = 9) or sham control (n = 5) at 5 min post resuscitation. Pigs in the CRRT group were cooled by 8-h CRRT cooling with the infusion line initially submerged in 4 °C of ice water and 16-h SC, while in the SC group by a 24-h SC. Temperatures were maintained at a normal range in the other two groups. Biomarkers in serum were measured at baseline and 1, 3, 6, 12, 24 and 30 h post resuscitation to assess organ functions. Additionally, tissues of kidney and intestine were harvested, from which the degree of tissue inflammation, oxidative stress, and apoptosis levels were analyzed. RESULTS: The blood temperature decreased faster by extracorporeal circuit cooling using CRRT than SC (9.8 ± 1.6 vs. 1.5 ± 0.4 °C/h, P < 0.01). Post-resuscitation renal and intestinal injury were significantly improved in the 2 hypothermic groups compared to the NT group. And the improvement was significantly greater in animals received extracorporeal circuit cooling than those received surface cooling, from both the results of biomarkers in serum and pathological evidence. CONCLUSION: Fast hypothermia induced by extracorporeal circuit cooling was superior to. surface cooling in mitigating renal and intestinal injury post resuscitation.


Subject(s)
Heart Arrest/therapy , Hypothermia, Induced/methods , Renal Dialysis/methods , Animals , Cardiopulmonary Resuscitation/methods , Disease Models, Animal , Humans , Male , Swine
6.
Am J Emerg Med ; 49: 360-366, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34246167

ABSTRACT

BACKGROUND: We investigated the effectiveness of automated pupillometry on monitoring cardiopulmonary resuscitation (CPR) and predicting return of spontaneous circulation (ROSC) in a swine model of cardiac arrest (CA). METHODS: Sixteen male domestic pigs were included. Traditional indices including coronary perfusion pressure (CPP), end-tidal carbon dioxide (ETCO2), regional cerebral tissue oxygen saturation (rSO2) and carotid blood flow (CBF) were continuously monitored throughout the experiment. In addition, the pupillary parameters including the initial pupil size before constriction (Init, maximum diameter), the end pupil size at peak constriction (End, minimum diameter), and percentage of change (%PLR) were measured by an automated quantitative pupillometer at baseline, at 1, 4, 7 min during CA, and at 1, 4, 7 min during CPR. RESULTS: ROSC was achieved in 11/16 animals. The levels of CPP, ETCO2, rSO2 and CBF were significantly greater during CPR in resuscitated animals than those non-resuscitated ones. Init and End were decreased and %PLR was increased during CPR in resuscitated animals when compared with those non-resuscitated ones. There were moderate to good significant correlations between traditional indices and Init, End, and %PLR (|r| = 0.46-0.78, all P < 0.001). Furthermore, comparable performance was also achieved by automated pupillometry (AUCs of Init, End and %PLR were 0.821, 0.873 and 0.821, respectively, all P < 0.05) compared with the traditional indices (AUCs = 0.809-0.946). CONCLUSION: The automated pupillometry may serve as an effective surrogate method to monitor cardiopulmonary resuscitation efficacy and predict ROSC in a swine model of cardiac arrest.


Subject(s)
Cardiopulmonary Resuscitation/standards , Monitoring, Physiologic/standards , Pupil/radiation effects , Return of Spontaneous Circulation , Animals , Cardiopulmonary Resuscitation/methods , Cardiopulmonary Resuscitation/statistics & numerical data , Disease Models, Animal , Monitoring, Physiologic/instrumentation , Monitoring, Physiologic/methods , Prognosis , Swine/physiology
7.
J Surg Res ; 244: 468-476, 2019 12.
Article in English | MEDLINE | ID: mdl-31330290

ABSTRACT

BACKGROUND: Targeted temperature management (TTM) is commonly used in hypothermia after cardiopulmonary resuscitation (CPR), and its mechanism to improve cerebral function is complex. This study aimed to investigate the effects of TTM on necroptosis and the NOD-like receptor pyrin domain containing 3 (NLRP3) inflammasome in the brain tissue of pigs after CPR. MATERIALS AND METHODS: Ventricular fibrillation was induced, and CPR was performed 10 min later in nine pigs in the normothermia group and nine pigs in the TTM group. The body temperature in the TTM group was dropped to 33°C after CPR and maintained for 24 h, whereas in the normothermia group, it was maintained at 38°C. Before CPR and at 30 h after CPR, serum neuron-specific enolase and S-100ß were measured. At 30 h after CPR, pigs were euthanized, and brain tissues were collected for measurement of receptor-interacting protein kinase (RIPIK) 1, RIPK3, mixed lineage kinase domain-like (MLKL), NLRP3, cysteinyl aspartate-specific proteinase (caspase)-1, interleukin (IL)-1ß, and IL-18. RESULTS: Serum neuron-specific enolase and S-100ß were increased significantly (P < 0.05) in the two CPR-treated groups compared with the sham group and more obviously in the normothermia group. In addition, the expression of RIPK3, phosphorylated MLKL, and NLRP3 in brain tissues was increased. The expression of RIPK3, phosphorylated MLKL, NLRP3, and caspase-1 as well as the levels of IL-1ß and IL-18 were lower (P < 0.05) in the TTM group compared with the normothermia group. CONCLUSIONS: Necroptosis and the NLRP3 pathway were activated after CPR. TTM may attenuate postresuscitation brain injury through the regulation of necroptosis and the NLRP3 pathway.


Subject(s)
Brain/pathology , Cardiopulmonary Resuscitation , Heart Arrest/therapy , Hypothermia, Induced , NLR Family, Pyrin Domain-Containing 3 Protein/physiology , Necroptosis , Animals , Disease Models, Animal , Interleukin-18/analysis , Phosphopyruvate Hydratase/blood , S100 Calcium Binding Protein beta Subunit/blood , Signal Transduction/physiology , Swine
8.
BMC Pulm Med ; 19(1): 198, 2019 Nov 05.
Article in English | MEDLINE | ID: mdl-31690318

ABSTRACT

BACKGROUND: Lung injury is common in post-cardiac arrest syndrome, and is associated with increased morbidity and mortality. The aim of this study was to evaluate the effect of mild hypothermia on lung injury after cardiac arrest in swine based on lung ultrasound. METHODS: Twenty-three male domestic swine weighing 36 ± 2 kg were randomly assigned to three groups: therapeutic hypothermia (TH, n = 9), normothermia (NT, n = 9), and sham control (control, n = 5) groups. Sham animals only underwent surgical preparation. The animal model was established with 8 min of ventricular fibrillation followed by 5 min of cardiopulmonary resuscitation. Therapeutic hypothermia was induced and maintained until 24 h post-resuscitation in the TH group by surface blanket cooling, followed by rewarming at a rate of 1 °C/h for 5 h. The extravascular lung water index (ELWI), pulmonary vascular permeability index (PVPI), PO2/FiO2, and lung ultrasound score (LUS) were measured at baseline and at 1, 3, 6, 12, 24, and 30 h after resuscitation. After euthanizing the swine, their lung tissues were quickly obtained to evaluate inflammation. RESULTS: After resuscitation, ELWI and PVPI in the NT group were higher, and PO2/FiO2 was lower, than in the sham group. However, those measures were significantly better in the TH group than the NT group. The LUS was higher in the NT group than in the sham group at 1, 3, 6, 12, 24, and 30 h after resuscitation. The LUS was significantly better in the TH group compared to the NT group. The lung tissue biopsy revealed that lung injury was more severe in the NT group than in the TH group. Increases in LUS were highly correlated with increases in ELWI (r = 0.613; p < 0.001) and PVPI (r = 0.683; p < 0.001), and decreases in PO2/FiO2 (r = - 0.468; p < 0.001). CONCLUSIONS: Mild hypothermia protected against post-resuscitation lung injury in a swine model of cardiac arrest. Lung ultrasound was useful to dynamically evaluate the role of TH in lung protection.


Subject(s)
Cardiopulmonary Resuscitation/methods , Heart Arrest/therapy , Hypothermia, Induced/methods , Lung Injury/therapy , Animals , Disease Models, Animal , Heart Arrest/complications , Lung Injury/diagnostic imaging , Male , Random Allocation , Swine , Ultrasonography , Ventricular Fibrillation/physiopathology
9.
Chin J Traumatol ; 21(5): 250-255, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30270142

ABSTRACT

Fifty percent of the deaths caused by severe trauma occur within 1 h after injury. With the concepts of "golden 1 h" and "platinum 10 min", the professionals in the field of emergency trauma treatment have agreed on the necessity of establishing a rapid and efficient trauma rescue system. However, due to the size of the hospital, the population in the neighborhood, the local economic conditions and geographical features, how to establish an optimal trauma rescue system remains an issue. In this paper, we introduced our experiences in a county-level hospital located in middle-and high-income areas.


Subject(s)
Emergency Medical Services/organization & administration , Outcome Assessment, Health Care , Trauma Centers/organization & administration , Wounds and Injuries/mortality , Wounds and Injuries/therapy , Adult , China , Female , Hospitals, County/organization & administration , Humans , Male , Needs Assessment , Rescue Work/organization & administration , Risk Assessment , Survival Analysis
10.
Crit Care Med ; 43(1): e12-8, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25365722

ABSTRACT

OBJECTIVES: Cardiac arrest and resuscitation are models of whole body ischemia reperfusion injury. Postresuscitation myocardial and cerebral dysfunction are major causes of high mortality and morbidity. Remote ischemic postconditioning has been proven to provide potent protection of the heart and brain against ischemia reperfusion injury. In this study, we investigated the effects of remote ischemic postconditioning on postresuscitation myocardial and cerebral function in a rat model of cardiac arrest and resuscitation. DESIGN: Prospective, randomized, controlled experimental study. SETTING: University-affiliated animal research institution. SUBJECTS: Twenty-eight healthy male Sprague-Dawley rats. INTERVENTIONS: The animals were randomized into four groups: 1) remote ischemic preconditioning initiated 40 minutes before induction of ventricular fibrillation, 2) remote ischemic postconditioning initiated coincident with the start of cardiopulmonary resuscitation, 3) remote ischemic postconditioning initiated 5 minutes after successful resuscitation, and 4) control. Remote ischemic pre- and postconditioning was induced by four cycles of 5 minutes of limb ischemia, followed by 5 minutes of reperfusion. Ventricular fibrillation was induced and untreated for 6 minutes while defibrillation was attempted after 8 minutes of cardiopulmonary resuscitation. The animals were then monitored for 4 hours and observed for an additional 68 hours after resuscitation. MEASUREMENTS AND MAIN RESULTS: Hemodynamic measurements and myocardial function, including cardiac output, left ventricular ejection fraction, and myocardial performance index, were measured at baseline and hourly for 4 hours after resuscitation. Postresuscitation cerebral function was evaluated by neurologic deficit score at 24-hour intervals for a total of 72 hours. Consequently, significantly better myocardial and cerebral function with a longer duration of survival were observed in the three groups treated with remote ischemic pre- and postconditioning. CONCLUSIONS: In a rat model of cardiac arrest and resuscitation, remote ischemic pre-and postconditioning attenuated postresuscitation myocardial and cerebral dysfunction and improved the duration of survival.


Subject(s)
Brain/physiopathology , Cardiopulmonary Resuscitation/methods , Heart Arrest/therapy , Heart/physiopathology , Ischemic Preconditioning, Myocardial/methods , Animals , Disease Models, Animal , Male , Myocardial Reperfusion Injury/prevention & control , Rats , Rats, Sprague-Dawley , Treatment Outcome
11.
Crit Care Med ; 42(1): e42-8, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24346544

ABSTRACT

OBJECTIVES: To investigate the mechanisms of improved myocardial and neurological function and survival following i.v. administration of cannabinoid receptor agonist, WIN55, 212-2 in a rat model of cardiac arrest. DESIGN: Prospective randomized controlled experimental study. SETTING: University-affiliated research institute. SUBJECTS: Thirty male Sprague-Dawley rats. INTERVENTIONS: Ventricular fibrillation was electrically induced in 30 male Sprague-Dawley rats weighing between 450 and 550 g. Cardiopulmonary resuscitation was initiated after 6 minutes of untreated ventricular fibrillation. The precordial compression was performed with a pneumatically driven mechanical chest compressor. No pharmacological agent was used during cardiopulmonary resuscitation. After 8 minutes of cardiopulmonary resuscitation, up to three 2-J defibrillations were attempted. The animals were then randomized into three groups: 1) WIN55, 212-2 hypothermia, 2) WIN55, 212-2 with normal body temperature, and 3) placebo control. Either WIN55, 212-2 (1.0 mg/kg/hr) or saline placebo was continuously infused for 2 hours. Except for the WIN55, 212-2 hypothermia group, the body temperature in the other two groups was maintained at 37.0 ± 0.2°C using an external heating lamp. Postresuscitation myocardial function was measured by echocardiogram. Neurological deficit scores and survival time were observed for up to 72 hours. MEASUREMENTS AND MAIN RESULTS: Blood temperatures decreased from 37°C to 33°C in 4 hours in animals in WIN55, 212-2 hypothermia group. Myocardial function, as measured by cardiac output, ejection fraction, and myocardial performance index, was significantly impaired in all animals after successful resuscitation when compared with the baseline values. There was a significant improvement in myocardial function in the animals treated with WIN55, 212-2 hypothermia beginning at 1 hour after start of infusion. However, no improvement was observed in the groups of WIN55, 212-2 with normal body temperature and placebo control. WIN55, 212-2 hypothermia group was associated with significantly improved neurologic deficit scores and survival time when compared with placebo control group and WIN55, 212-2 with normal body temperature group. CONCLUSIONS: In a rat model of cardiac arrest, better postresuscitation myocardial function, neurological deficit scores, and longer duration of survival were observed by the pharmacologically induced hypothermia with WIN55, 212-2. The improved outcomes of cardiopulmonary resuscitation following administration of WIN55, 212-2 appeared to be the results from its temperature reduction effects.


Subject(s)
Benzoxazines/therapeutic use , Brain/physiopathology , Cannabinoid Receptor Agonists/therapeutic use , Cardiopulmonary Resuscitation/methods , Heart Arrest/drug therapy , Heart/physiopathology , Hypothermia, Induced/methods , Morpholines/therapeutic use , Naphthalenes/therapeutic use , Animals , Brain/drug effects , Disease Models, Animal , Heart/drug effects , Heart Arrest/physiopathology , Heart Arrest/therapy , Male , Rats , Rats, Sprague-Dawley
12.
Am J Emerg Med ; 32(1): 50-4, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24210889

ABSTRACT

OBJECTIVE: The latest guidelines both increased the requirements of chest compression rate and depth during cardiopulmonary resuscitation (CPR), which may make it more difficult for the rescuer to provide high-quality chest compression. In this study, we investigated the quality of chest compressions during compression-only CPR under the latest 2010 American Heart Association (AHA) guidelines (AHA 2010) and its effect on rescuer fatigue. METHODS: Eighty-six undergraduate volunteers were randomly assigned to perform CPR according to the 2005 AHA guidelines (AHA 2005) or AHA 2010. After the training course and theoretical examination of basic life support, eight min of compression-only CPR performance was assessed. The quality of chest compressions including rate and depth of compression was analyzed. The rescuer fatigue was evaluated by the changes of heart rate and blood lactate, and rating of perceived exertion. RESULTS: Thirty-nine participants in the AHA 2005 group and 42 participants in the AHA 2010 group completed the study. Significantly greater mean chest compression depth and compression rate were both achieved in the AHA 2010 group than in the AHA 2005 group. And significantly greater rescuer fatigue was observed in the AHA 2010 group. In addition, the female in the AHA 2010 group could perform the compression rate required by the guidelines, however, significantly shallower compression depth and greater rescuer fatigue were observed when compared to the male. CONCLUSIONS: The quality of chest compressions was significantly improved following the 2010 AHA guidelines, however, it's more difficult for the rescuer to meet the guidelines due to the increased fatigue of rescuer.


Subject(s)
Cardiopulmonary Resuscitation , Heart Massage , Practice Guidelines as Topic , Cardiopulmonary Resuscitation/methods , Cardiopulmonary Resuscitation/standards , Cardiopulmonary Resuscitation/statistics & numerical data , Female , Heart Massage/standards , Heart Massage/statistics & numerical data , Heart Rate , Humans , Lactic Acid/blood , Male , Muscle Fatigue/physiology , Practice Guidelines as Topic/standards , Young Adult
13.
Shock ; 61(3): 433-441, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38300834

ABSTRACT

ABSTRACT: Background: Treatment of acute compartment syndrome (ACS)-induced skeletal muscle injury remains a challenge. Previous studies have shown that octanoic acid is a promising treatment for ACS owing to its potential ability to regulate metabolic/epigenetic pathways in ischemic injury. The present study was designed to investigate the efficacy and underlying mechanism of octanoic acid in ACS-induced skeletal muscle injury. Methods: In this study, we established a saline infusion ACS rat model. Subsequently, we assessed the protective effects of sodium octanoate (NaO, sodium salt of octanoic acid) on ACS-induced skeletal muscle injury. Afterward, the level of acetyl-coenzyme A and histone acetylation in the skeletal muscle tissue were quantified. Moreover, we investigated the activation of the AMP-activated protein kinas pathway and the occurrence of mitophagy in the skeletal muscle tissue. Lastly, we scrutinized the expression of proteins associated with mitochondrial dynamics in the skeletal muscle tissue. Results: The administration of NaO attenuated muscle inflammation, alleviating oxidative stress and muscle edema. Moreover, NaO treatment enhanced muscle blood perfusion, leading to the inhibition of apoptosis-related skeletal muscle cell death after ACS. In addition, NaO demonstrated the ability to halt skeletal muscle fibrosis and enhance the functional recovery of muscle post-ACS. Further analysis indicates that NaO treatment increases the acetyl-CoA level in muscle and the process of histone acetylation by acetyl-CoA. Lastly, we found NaO treatment exerts a stimulatory impact on the activation of the AMPK pathway, thus promoting mitophagy and improving mitochondrial dynamics. Conclusion: Our findings indicate that octanoic acid may ameliorate skeletal muscle injury induced by ACS. Its protective effects may be attributed to the promotion of acetyl-CoA synthesis and histone acetylation within the muscular tissue, as well as its activation of the AMPK-related mitophagy pathway.


Subject(s)
AMP-Activated Protein Kinases , Caprylates , Compartment Syndromes , Rats , Animals , Acetyl Coenzyme A/metabolism , Acetyl Coenzyme A/pharmacology , AMP-Activated Protein Kinases/metabolism , Histones/metabolism , Mitophagy , Muscle, Skeletal/metabolism , Compartment Syndromes/metabolism
14.
Toxicon ; 241: 107683, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38460604

ABSTRACT

OBJECTIVE: To establish a preclinical large-animal model of Deinagkistrodon acutus snakebite envenomation and evaluate its feasibility. METHODS: The venom of D. acutus (0 mg/kg, 1 mg/kg, 2 mg/kg, 5 mg/kg, or 10 mg/kg) was injected into the left biceps femoris of 11 male pigs. Then, the circumferences of the limbs were regularly measured, and changes in muscle injury biomarkers, blood parameters, coagulation function, vital organ function and injury biomarkers were regularly detected. At 24 h after venom injection, the animals were euthanized, and the pathological damage to the vital organs mentioned above was evaluated. RESULTS: The two pigs receiving 10 mg/kg and 5 mg/kg snake venom died at 8 h and 12 h after injection, respectively. The remaining pigs were equally divided into 0 mg/kg, 1 mg/kg, and 2 mg/kg snake venom groups, and all of them survived to 24 h after injection. Compared with the pigs receiving 0 mg/kg snake venom, the pigs receiving 1 mg/kg or 2 mg/kg snake venom exhibited significant abnormities, including limb swelling; increased muscle injury biomarker creatine kinase (CK) and coagulation function indicators prothrombin time and D-dimer; and decreased blood routine indicator platelet and coagulation function indicator fibrinogen. Moreover, significant abnormalities in myocardial and cerebral function and injury biomarkers in the heart, brain, liver, kidney and intestine were also observed. In particular, the abnormalities mentioned above were significantly obvious in those pigs receiving 2 mg/kg snake venom. Pathological evaluation revealed that the morphology of muscle, heart, brain, liver, kidney, and intestine in those pigs receiving 0 mg/kg snake venom was normal; however, pathological damage was observed in those pigs receiving 1 mg/kg and 2 mg/kg snake venom. Similarly, the pathological damage was more severe in those pigs receiving 2 mg/kg snake venom. CONCLUSION: The intramuscular injection of 2 mg/kg D. acutus venom seems to be an optimal dose for examining the preclinical efficacy of existing and novel therapeutics for treating D. acutus envenomation in pigs.


Subject(s)
Crotalinae , Snake Bites , Venomous Snakes , Male , Animals , Swine , Snake Bites/drug therapy , Snake Bites/veterinary , Snake Bites/pathology , Snake Venoms/toxicity , Biomarkers
15.
Shock ; 60(3): 427-433, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37548635

ABSTRACT

ABSTRACT: Introduction: Sulforaphane (SFN), known as the activator of the nuclear factor E2-related factor 2 (Nrf2)/heme oxygenase 1 (HO-1) pathway, has been proven to protect the lung against various pathological stimuli. The present study aimed to investigate the effect of SFN on lung injury induced by systemic ischemia reperfusion after cardiac arrest and resuscitation. Methods: After animal preparation, 24 pigs were randomly divided into sham group (n = 6), cardiopulmonary resuscitation group (CPR, n = 9), or CPR + SFN group (n = 9). The experimental model was then established by 10 min of cardiac arrest followed by 6 min of CPR. Once spontaneous circulation was achieved, a dose of 2 mg/kg of SFN diluted in 20 mL of saline was intravenously infused with a duration of 5 min. During 4 h of observation after resuscitation, extravascular lung water index (ELWI), pulmonary vascular permeability index (PVPI), and oxygenation index were regularly evaluated. At 24 h after resuscitation, lung tissues were harvested to evaluate the score of lung histopathological injury, the activity of superoxide dismutase, the contents of malondialdehyde, IL-1ß, and IL-18, and the expression levels of NOD-like receptor pyrin domain 3, cleaved caspase 1, gasdermin D (GSDMD), GSDMD N-terminal, Nrf2, and HO-1. Results: During CPR, spontaneous circulation was achieved in six and seven pigs in the CPR and CPR + SFN groups, respectively. After resuscitation, the indicators of lung injury (ELWI, PVPI, and oxygenation index) were all better in the CPR + SFN group than in the CPR group, in which the differences in ELWI and PVPI at 2, and 4 h after resuscitation were significant between the two groups. In addition, SFN significantly reduced lung injury score, improved oxidative imbalance (superoxide dismutase, malondialdehyde), decreased pyroptosis-related proinflammatory cytokines (IL-1ß, IL-18), downregulated pyroptosis-related proteins (NOD-like receptor pyrin domain 3, cleaved caspase 1, GSDMD, GSDMD N-terminal), and activated the Nrf2/HO-1 pathway when compared with the CPR group. Conclusion: SFN produced effective postresuscitation lung protection through alleviating lung pyroptosis possibly via activating the Nrf2/HO-1 pathway in pigs.


Subject(s)
Heart Arrest , Lung Injury , Animals , Swine , Heme Oxygenase-1/metabolism , Pyroptosis , Interleukin-18 , NF-E2-Related Factor 2/metabolism , Caspase 1 , Lung/metabolism , Superoxide Dismutase/metabolism , NLR Proteins , Malondialdehyde/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
16.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 35(4): 398-403, 2023 Apr.
Article in Zh | MEDLINE | ID: mdl-37308196

ABSTRACT

OBJECTIVE: To investigate the protective effect and potential mechanism of tubastatin A (TubA), a specific inhibitor of histone deacetylase 6 (HDAC6), on renal and intestinal injuries after cardiopulmonary resuscitation (CPR) in swine. METHODS: Twenty-five healthy male white swine were divided into Sham group (n = 6), CPR model group (n = 10) and TubA intervention group (n = 9) using a random number table. The porcine model of CPR was reproduced by 9-minute cardiac arrest induced by electrical stimulation via right ventricle followed by 6-minute CPR. The animals in the Sham group only underwent the regular operation including endotracheal intubation, catheterization, and anesthetic monitoring. At 5 minutes after successful resuscitation, a dose of 4.5 mg/kg of TubA was infused via the femoral vein within 1 hour in the TubA intervention group. The same volume of normal saline was infused in the Sham and CPR model groups. Venous samples were collected before modeling and 1, 2, 4, 24 hours after resuscitation, and the levels of serum creatinine (SCr), blood urea nitrogen (BUN), intestinal fatty acid binding protein (I-FABP) and diamine oxidase (DAO) in serum were determined by enzyme-linked immunoadsordent assay (ELISA). At 24 hours after resuscitation, the upper pole of left kidney and terminal ileum were harvested to detect cell apoptosis by TdT-mediated dUTP-biotin nick end labeling (TUNEL), and the expression levels of receptor-interacting protein 3 (RIP3) and mixed lineage kinase domain-like protein (MLKL) were detected by Western blotting. RESULTS: After resuscitation, renal dysfunction and intestinal mucous injury were observed in the CPR model and TubA intervention groups when compared with the Sham group, which was indicated by significantly increased levels of SCr, BUN, I-FABP and DAO in serum. However, the serum levels of SCr and DAO starting 1 hour after resuscitation, the serum levels of BUN starting 2 hours after resuscitation, and the serum levels of I-FABP starting 4 hours after resuscitation were significantly decreased in the TubA intervention group when compared with the CPR model group [1-hour SCr (µmol/L): 87±6 vs. 122±7, 1-hour DAO (kU/L): 8.1±1.2 vs. 10.3±0.8, 2-hour BUN (mmol/L): 12.3±1.2 vs. 14.7±1.3, 4-hour I-FABP (ng/L): 661±39 vs. 751±38, all P < 0.05]. The detection of tissue samples indicated that cell apoptosis and necroptosis in the kidney and intestine at 24 hours after resuscitation were significantly greater in the CPR model and TubA intervention groups when compared with the Sham group, which were indicated by significantly increased apoptotic index and markedly elevated expression levels of RIP3 and MLKL. Nevertheless, compared with the CPR model group, renal and intestinal apoptotic indexes at 24 hours after resuscitation in the TubA intervention group were significantly decreased [renal apoptosis index: (21.4±4.6)% vs. (55.2±9.5)%, intestinal apoptosis index: (21.3±4.5)% vs. (50.9±7.0)%, both P < 0.05], and the expression levels of RIP3 and MLKL were significantly reduced [renal tissue: RIP3 protein (RIP3/GAPDH) was 1.11±0.07 vs. 1.39±0.17, MLKL protein (MLKL/GAPDH) was 1.20±0.14 vs. 1.51±0.26; intestinal tissue: RIP3 protein (RIP3/GAPDH) was 1.24±0.18 vs. 1.69±0.28, MLKL protein (MLKL/GAPDH) was 1.38±0.15 vs. 1.80±0.26, all P < 0.05]. CONCLUSIONS: TubA has the protective effect on alleviating post-resuscitation renal dysfunction and intestinal mucous injury, and its mechanism may be related to inhibition of cell apoptosis and necroptosis.


Subject(s)
Abdominal Injuries , Cardiopulmonary Resuscitation , Kidney Diseases , Male , Animals , Swine , Apoptosis
17.
Stem Cell Res Ther ; 14(1): 331, 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-37964317

ABSTRACT

BACKGROUND: Acute compartment syndrome (ACS) is one of the most common complications of musculoskeletal injury, leading to the necrosis and demise of skeletal muscle cells. Our previous study showed that embryonic stem cells-derived mesenchymal stem cells (ESC-MSCs) are novel therapeutics in ACS treatment. As extracellular vesicles (EVs) are rapidly gaining attention as cell-free therapeutics that have advantages over parental stem cells, the therapeutic potential and mechanisms of EVs from ESC-MSCs on ACS need to be explored. METHOD: In the present study, we examined the protective effects in the experimental ACS rat model and investigated the role of macrophages in mediating these effects. Next, we used transcriptome sequencing to explore the mechanisms by which ESC-MSC-EVs regulate macrophage polarization. Furthermore, miRNA sequencing was performed on ESC-MSC-EVs to identify miRNA candidates associated with macrophage polarization. RESULTS: We found that intravenous administration of ESC-MSC-EVs, given at the time of fasciotomy, significantly promotes the anti-inflammation process, angiogenesis, and functional recovery of muscle in ACS. The beneficial effects were associated with ESC-MSC-EVs affecting macrophage polarization by delivering various miRNAs which regulate NF-κB, JAK/STAT, and PI3K/AKT pathways. Our data further illustrate that ESC-MSC-EVs mainly modulate macrophage polarization via the miR-21/PTEN, miR-320a/PTEN, miR-423/NLRP3, miR-100/mTOR, and miR-26a/TLR3 axes. CONCLUSION: Together, our results demonstrated the beneficial effects of ESC-MSC-EVs in ACS, wherein the miRNAs present in ESC-MSC-EVs regulate the polarization of macrophages.


Subject(s)
Compartment Syndromes , Extracellular Vesicles , Mesenchymal Stem Cells , MicroRNAs , Humans , Rats , Animals , Angiogenesis , Phosphatidylinositol 3-Kinases/metabolism , Disease Models, Animal , MicroRNAs/genetics , MicroRNAs/metabolism , Macrophages/metabolism , Muscle, Skeletal/metabolism , Compartment Syndromes/metabolism , Mesenchymal Stem Cells/metabolism , Extracellular Vesicles/metabolism
18.
Microbiol Spectr ; 11(3): e0062023, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37039640

ABSTRACT

Aminoglycoside-modifying enzymes are among the most important mechanisms of resistance to aminoglycoside antibiotics, typically conferring high-level resistance by enzymatic drug inactivation. Previously, we isolated a multidrug-resistant Brucella intermedia strain ZJ499 from a cancer patient, and whole-genome sequencing revealed several putative novel aminoglycoside-modifying enzyme genes in this strain. Here, we report the characterization of one of them that encodes an intrinsic, chromosomal aminoglycoside nucleotidyltransferase designated ANT(9)-Ic, which shares only 33.05% to 47.44% amino acid identity with the most closely related ANT(9)-I enzymes. When expressed in Escherichia coli, ANT(9)-Ic conferred resistance only to spectinomycin and not to any other aminoglycosides tested, indicating a substrate profile typical of ANT(9)-I enzymes. Consistent with this, deletion of ant(9)-Ic in ZJ499 resulted in a specific and significant decrease in MIC of spectinomycin. Furthermore, the purified ANT(9)-Ic protein showed stringent substrate specificity for spectinomycin with a Km value of 44.83 µM and a kcat/Km of 2.8 × 104 M-1 s-1, echoing the above observations of susceptibility testing. In addition, comparative genomic analysis revealed that the genetic context of ant(9)-Ic was conserved in Brucella, with no mobile genetic elements found within its 20-kb surrounding region. Overall, our results demonstrate that ANT(9)-Ic is a novel member of the ANT(9)-I lineage, contributing to the intrinsic spectinomycin resistance of ZJ499. IMPORTANCE The emergence, evolution, and worldwide spread of antibiotic resistance present a significant global public health crisis. For aminoglycoside antibiotics, enzymatic drug modification is the most common mechanism of resistance. We identify a novel chromosomal aminoglycoside nucleotidyltransferase from B. intermedia, called ANT(9)-Ic, which shares the highest identity (47.44%) with the previously known ANT(9)-Ia and plays an important role in spectinomycin resistance of the host strain. Analysis of the genetic environment and origin of ant(9)-Ic shows that the gene and its surrounding region are widely conserved in Brucella, and no mobile elements are detected, indicating that ANT(9)-Ic may be broadly important in the natural resistance to spectinomycin of Brucella species.


Subject(s)
Aminoglycosides , Nucleotidyltransferases , Aminoglycosides/pharmacology , Aminoglycosides/chemistry , Aminoglycosides/metabolism , Nucleotidyltransferases/genetics , Nucleotidyltransferases/metabolism , Spectinomycin , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Drug Resistance, Microbial , Escherichia coli/metabolism , Drug Resistance, Bacterial/genetics
19.
Front Microbiol ; 14: 985102, 2023.
Article in English | MEDLINE | ID: mdl-36950157

ABSTRACT

Background: The emergence of highly drug-resistant K. pneumoniae, has become a major public health challenge. In this work, we aim to investigate the diversity of species and sequence types (STs) of clinical Klebsiella isolates and to characterize the prevalence and structure of class 1 integrons. Methods: Based on the whole genome sequencing, species identification was performed by 16S rRNA gene homology and average nucleotide identity (ANI) analysis. STs were determined in accordance with the international MLST schemes for K. pneumoniae and K. variicola. Integron characterization and comparative genomic analysis were performed using various bioinformatic tools. Results: Species identification showed that the 167 isolates belonged to four species: K. pneumoniae, K. variicola subsp. variicola, K. quasipneumoniae and K. aerogenes. Thirty-six known and 5 novel STs were identified in K. pneumoniae, and 10 novel STs were identified in K. variicola subsp. variicola. Class 1 integrons were found in 57.49% (96/167) of the isolates, and a total of 169 resistance gene cassettes encoding 19 types of resistance genes, including carbapenem resistance gene (bla IPM-4) and class D ß-lactamases gene (bla OXA-1 and bla OXA-10), were identified. Among the 17 complete genomes, 29 class 1 integrons from 12 groups were found, only 1 group was encoded on chromosomes. Interestingly, one plasmid (pKP167-261) carrying two copies of approximately 19-kb IS26-Int1 complex resistance region that contains an integron and a multidrug resistance gene fragment. Conclusion: The results of this work demonstrated that the species and STs of the clinical Klebsiella isolates were more complex by the whole genome sequence analysis than by the traditional laboratory methods. Finding of the new structure of MGEs related to the resistance genes indicates the great importance of deeply exploring the molecular mechanisms of bacterial multidrug resistance.

20.
Biomater Sci ; 11(10): 3737-3749, 2023 May 16.
Article in English | MEDLINE | ID: mdl-37057632

ABSTRACT

Point-of-Care-Testing (POCT) is a convenient and timely clinical analysis method, leading the development trend of advanced biosensors. The development of POCT equipment that can achieve minimally invasive percutaneous monitoring can avoid the pain felt by the subjects and achieve in vivo and efficient measurement. Here, we reported the development of a microneedle (MN) extraction system based on patterned electrodes, which could provide convenient and minimally invasive detection of bio-analytes (including glucose, pH, and H2O2). The 3D-printed hollow MN array was used as a painless transdermal tool, while the interstitial fluid was extracted under negative-pressure conditions. The patterned electrodes could improve the electrochemical performance of the sensor, with the synergistic effect of the micropillar structure to increase the enzyme coating surface area and the nanomaterial electron layer. The patterned electrodes were placed on the back of the MN arrays for electrochemical detection. In vitro and in vivo studies showed that the MN-extraction system could detect the corresponding bio-analytes in a minimally invasive manner and it did not cause significant tissue damage. The system developed in this work will provide promising technology to expand the application of POCT for minimal tests on interstitial fluids.


Subject(s)
Glucose , Hydrogen Peroxide , Humans , Needles , Electrodes , Printing, Three-Dimensional
SELECTION OF CITATIONS
SEARCH DETAIL