Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.614
Filter
Add more filters

Publication year range
1.
Annu Rev Immunol ; 41: 73-98, 2023 04 26.
Article in English | MEDLINE | ID: mdl-37126422

ABSTRACT

Characterization of RNA modifications has identified their distribution features and molecular functions. Dynamic changes in RNA modification on various forms of RNA are essential for the development and function of the immune system. In this review, we discuss the value of innovative RNA modification profiling technologies to uncover the function of these diverse, dynamic RNA modifications in various immune cells within healthy and diseased contexts. Further, we explore our current understanding of the mechanisms whereby aberrant RNA modifications modulate the immune milieu of the tumor microenvironment and point out outstanding research questions.


Subject(s)
Adenosine , RNA , Humans , Animals , Immune System
2.
Cell ; 178(6): 1478-1492.e20, 2019 09 05.
Article in English | MEDLINE | ID: mdl-31474362

ABSTRACT

Liver fibrosis is a very common condition seen in millions of patients with various liver diseases, and yet no effective treatments are available owing to poorly characterized molecular pathogenesis. Here, we show that leukocyte cell-derived chemotaxin 2 (LECT2) is a functional ligand of Tie1, a poorly characterized endothelial cell (EC)-specific orphan receptor. Upon binding to Tie1, LECT2 interrupts Tie1/Tie2 heterodimerization, facilitates Tie2/Tie2 homodimerization, activates PPAR signaling, and inhibits the migration and tube formations of EC. In vivo studies showed that LECT2 overexpression inhibits portal angiogenesis, promotes sinusoid capillarization, and worsens fibrosis, whereas these changes were reversed in Lect2-KO mice. Adeno-associated viral vector serotype 9 (AAV9)-LECT2 small hairpin RNA (shRNA) treatment significantly attenuates fibrosis. Upregulation of LECT2 is associated with advanced human liver fibrosis staging. We concluded that targeting LECT2/Tie1 signaling may represent a potential therapeutic target for liver fibrosis, and serum LECT2 level may be a potential biomarker for the screening and diagnosis of liver fibrosis.


Subject(s)
Endothelial Cells/metabolism , Hepatocytes/metabolism , Intercellular Signaling Peptides and Proteins/physiology , Liver Cirrhosis/metabolism , Liver/metabolism , Receptors, TIE/metabolism , Animals , Biomarkers/metabolism , Capillaries/metabolism , Endothelial Cells/cytology , Endothelial Cells/pathology , HEK293 Cells , Hepatocytes/cytology , Hepatocytes/pathology , Humans , Intercellular Signaling Peptides and Proteins/blood , Liver/blood supply , Liver/pathology , Liver Cirrhosis/diagnosis , Mice, Inbred C57BL
3.
Genes Dev ; 38(13-14): 614-630, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39038850

ABSTRACT

The alternative lengthening of telomeres (ALT) pathway maintains telomere length in a significant fraction of cancers that are associated with poor clinical outcomes. A better understanding of ALT mechanisms is therefore necessary for developing new treatment strategies for ALT cancers. SUMO modification of telomere proteins contributes to the formation of ALT telomere-associated PML bodies (APBs), in which telomeres are clustered and DNA repair proteins are enriched to promote homology-directed telomere DNA synthesis in ALT. However, it is still unknown whether-and if so, how-SUMO supports ALT beyond APB formation. Here, we show that SUMO condensates that contain DNA repair proteins enable telomere maintenance in the absence of APBs. In PML knockout ALT cell lines that lack APBs, we found that SUMOylation is required for manifesting ALT features independent of PML and APBs. Chemically induced telomere targeting of SUMO produces condensate formation and ALT features in PML-null cells. This effect requires both SUMOylation and interactions between SUMO and SUMO interaction motifs (SIMs). Mechanistically, SUMO-induced effects are associated with the accumulation of DNA repair proteins, including Rad52, Rad51AP1, RPA, and BLM, at telomeres. Furthermore, Rad52 can undergo phase separation, enrich SUMO at telomeres, and promote telomere DNA synthesis in collaboration with the BLM helicase in a SUMO-dependent manner. Collectively, our findings suggest that SUMO condensate formation promotes collaboration among DNA repair factors to support ALT telomere maintenance without PML. Given the promising effects of SUMOylation inhibitors in cancer treatment, our findings suggest their potential use in perturbing telomere maintenance in ALT cancer cells.


Subject(s)
DNA Repair , Promyelocytic Leukemia Protein , Sumoylation , Telomere Homeostasis , Telomere , Humans , Promyelocytic Leukemia Protein/metabolism , Promyelocytic Leukemia Protein/genetics , Telomere/metabolism , Cell Line, Tumor , SUMO-1 Protein/metabolism , SUMO-1 Protein/genetics , Rad52 DNA Repair and Recombination Protein/metabolism , Rad52 DNA Repair and Recombination Protein/genetics , Cell Line , Small Ubiquitin-Related Modifier Proteins/metabolism , Small Ubiquitin-Related Modifier Proteins/genetics
4.
Mol Cell ; 82(21): 4001-4017.e7, 2022 11 03.
Article in English | MEDLINE | ID: mdl-36265488

ABSTRACT

Alternative lengthening of telomeres (ALT) is a homology-directed repair (HDR) mechanism of telomere elongation that controls proliferation in subsets of aggressive cancer. Recent studies have revealed that telomere repeat-containing RNA (TERRA) promotes ALT-associated HDR (ALT-HDR). Here, we report that RAD51AP1, a crucial ALT factor, interacts with TERRA and utilizes it to generate D- and R-loop HR intermediates. We also show that RAD51AP1 binds to and might stabilize TERRA-containing R-loops as RAD51AP1 depletion reduces R-loop formation at telomere DNA breaks. Proteomic analyses uncover a role for RAD51AP1-mediated TERRA R-loop homeostasis in a mechanism of chromatin-directed suppression of TERRA and prevention of transcription-replication collisions (TRCs) during ALT-HDR. Intriguingly, we find that both TERRA binding and this non-canonical function of RAD51AP1 require its intrinsic SUMO-SIM regulatory axis. These findings provide insights into the multi-contextual functions of RAD51AP1 within the ALT mechanism and regulation of TERRA.


Subject(s)
RNA, Long Noncoding , Telomere Homeostasis , Chromatin/genetics , Proteomics , Telomere/genetics , Telomere/metabolism , RNA, Long Noncoding/genetics , Homeostasis
5.
Immunity ; 49(3): 490-503.e4, 2018 09 18.
Article in English | MEDLINE | ID: mdl-30170810

ABSTRACT

The NF-κB pathway plays a crucial role in supporting tumor initiation, progression, and radioresistance of tumor cells. However, the role of the NF-κB pathway in radiation-induced anti-tumor host immunity remains unclear. Here we demonstrated that inhibiting the canonical NF-κB pathway dampened the therapeutic effect of ionizing radiation (IR), whereas non-canonical NF-κB deficiency promoted IR-induced anti-tumor immunity. Mechanistic studies revealed that non-canonical NF-κB signaling in dendritic cells (DCs) was activated by the STING sensor-dependent DNA-sensing pathway. By suppressing recruitment of the transcription factor RelA onto the Ifnb promoter, activation of the non-canonical NF-κB pathway resulted in decreased type I IFN expression. Administration of a specific inhibitor of the non-canonical NF-κB pathway enhanced the anti-tumor effect of IR in murine models. These findings reveal the potentially interactive roles for canonical and non-canonical NF-κB pathways in IR-induced STING-IFN production and provide an alternative strategy to improve cancer radiotherapy.


Subject(s)
Colonic Neoplasms/radiotherapy , Dendritic Cells/immunology , Melanoma/radiotherapy , NF-kappa B/metabolism , Neoplasms, Experimental/radiotherapy , Radiotherapy/methods , Receptors, Pattern Recognition/metabolism , Animals , Colonic Neoplasms/immunology , DNA/immunology , Disease Models, Animal , Humans , Immunity, Cellular , Melanoma/immunology , Melanoma, Experimental , Membrane Proteins/metabolism , Mice , Neoplasms, Experimental/immunology , Neoplasms, Experimental/metabolism , Radiation Tolerance , Radiation, Ionizing , Signal Transduction , Transcription Factor RelA/metabolism , Xenograft Model Antitumor Assays
6.
Mol Cell ; 76(4): 546-561.e8, 2019 11 21.
Article in English | MEDLINE | ID: mdl-31561952

ABSTRACT

Through transcriptional control of the evolutionarily conserved heat shock, or proteotoxic stress, response, heat shock factor 1 (HSF1) preserves proteomic stability. Here, we show that HSF1, a physiological substrate for AMP-activated protein kinase (AMPK), constitutively suppresses this central metabolic sensor. By physically evoking conformational switching of AMPK, HSF1 impairs AMP binding to the γ subunits and enhances the PP2A-mediated de-phosphorylation, but it impedes the LKB1-mediated phosphorylation of Thr172, and retards ATP binding to the catalytic α subunits. These immediate and manifold regulations empower HSF1 to both repress AMPK under basal conditions and restrain its activation by diverse stimuli, thereby promoting lipogenesis, cholesterol synthesis, and protein cholesteroylation. In vivo, HSF1 antagonizes AMPK to control body fat mass and drive the lipogenic phenotype and growth of melanomas independently of its intrinsic transcriptional action. Thus, the physical AMPK-HSF1 interaction epitomizes a reciprocal kinase-substrate regulation whereby lipid metabolism and proteomic stability intertwine.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Energy Metabolism , Heat Shock Transcription Factors/metabolism , AMP-Activated Protein Kinases/chemistry , AMP-Activated Protein Kinases/genetics , Adenosine Monophosphate/metabolism , Adenosine Triphosphate/metabolism , Adiposity , Animals , Binding Sites , Cell Proliferation , Cholesterol/biosynthesis , HEK293 Cells , HeLa Cells , Heat Shock Transcription Factors/deficiency , Heat Shock Transcription Factors/genetics , Humans , Lipogenesis , Melanoma/genetics , Melanoma/metabolism , Melanoma/pathology , Mice, 129 Strain , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Inbred NOD , Mice, Knockout , Mice, SCID , Phosphorylation , Protein Conformation , Protein Stability , Signal Transduction , Skin Neoplasms/genetics , Skin Neoplasms/metabolism , Skin Neoplasms/pathology , Structure-Activity Relationship
7.
Physiol Rev ; 99(1): 893-948, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30565509

ABSTRACT

The innate immune system is an evolutionarily conserved system that senses and defends against infection and irritation. Innate immune signaling is a complex cascade that quickly recognizes infectious threats through multiple germline-encoded cell surface or cytoplasmic receptors and transmits signals for the deployment of proper countermeasures through adaptors, kinases, and transcription factors, resulting in the production of cytokines. As the first response of the innate immune system to pathogenic signals, inflammatory responses must be rapid and specific to establish a physical barrier against the spread of infection and must subsequently be terminated once the pathogens have been cleared. Long-lasting and low-grade chronic inflammation is a distinguishing feature of type 2 diabetes and cardiovascular diseases, which are currently major public health problems. Cardiometabolic stress-induced inflammatory responses activate innate immune signaling, which directly contributes to the development of cardiometabolic diseases. Additionally, although the innate immune elements are highly conserved in higher-order jawed vertebrates, lower-grade jawless vertebrates lack several transcription factors and inflammatory cytokine genes downstream of the Toll-like receptors (TLRs) and retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs) pathways, suggesting that innate immune signaling components may additionally function in an immune-independent way. Notably, recent studies from our group and others have revealed that innate immune signaling can function as a vital regulator of cardiometabolic homeostasis independent of its immune function. Therefore, further investigation of innate immune signaling in cardiometabolic systems may facilitate the discovery of new strategies to manage the initiation and progression of cardiometabolic disorders, leading to better treatments for these diseases. In this review, we summarize the current progress in innate immune signaling studies and the regulatory function of innate immunity in cardiometabolic diseases. Notably, we highlight the immune-independent effects of innate immune signaling components on the development of cardiometabolic disorders.


Subject(s)
Cardiovascular Diseases/immunology , Immunity, Innate/immunology , Inflammation/immunology , Signal Transduction/immunology , Animals , Biological Evolution , Humans , Receptors, Cytoplasmic and Nuclear/immunology
8.
Immunity ; 47(2): 363-373.e5, 2017 08 15.
Article in English | MEDLINE | ID: mdl-28801234

ABSTRACT

Inhibition of cytosolic DNA sensing represents a strategy that tumor cells use for immune evasion, but the underlying mechanisms are unclear. Here we have shown that CD47-signal regulatory protein α (SIRPα) axis dictates the fate of ingested DNA in DCs for immune evasion. Although macrophages were more potent in uptaking tumor DNA, increase of DNA sensing by blocking the interaction of SIRPα with CD47 preferentially occurred in dendritic cells (DCs) but not in macrophages. Mechanistically, CD47 blockade enabled the activation of NADPH oxidase NOX2 in DCs, which in turn inhibited phagosomal acidification and reduced the degradation of tumor mitochondrial DNA (mtDNA) in DCs. mtDNA was recognized by cyclic-GMP-AMP synthase (cGAS) in the DC cytosol, contributing to type I interferon (IFN) production and antitumor adaptive immunity. Thus, our findings have demonstrated how tumor cells inhibit innate sensing in DCs and suggested that the CD47-SIRPα axis is critical for DC-driven antitumor immunity.


Subject(s)
Antigens, Differentiation/metabolism , Colonic Neoplasms/immunology , DNA, Mitochondrial/immunology , Dendritic Cells/immunology , Membrane Proteins/metabolism , Receptors, Immunologic/metabolism , Animals , Antibodies, Blocking/therapeutic use , CD47 Antigen/immunology , CD47 Antigen/metabolism , Cells, Cultured , Colonic Neoplasms/genetics , Colonic Neoplasms/therapy , Cross-Priming , Disease Models, Animal , Humans , Interferon Type I/metabolism , Macrophages/immunology , Membrane Glycoproteins/metabolism , Membrane Proteins/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , NADPH Oxidase 2 , NADPH Oxidases/metabolism , Nucleotidyltransferases/metabolism , Signal Transduction , Tumor Escape
9.
Plant J ; 118(3): 879-891, 2024 May.
Article in English | MEDLINE | ID: mdl-38271219

ABSTRACT

As sessile organisms, plants experience variable environments and encounter diverse stresses during their growth and development. Adventitious rooting, orchestrated by multiple coordinated signaling pathways, represents an adaptive strategy evolved by plants to adapt to cope with changing environmental conditions. This study uncovered the role of the miR159a-PeMYB33 module in the formation of adventitious roots (ARs) synergistically with abscisic acid (ABA) signaling in poplar. Overexpression of miR159a increased the number of ARs and plant height while reducing sensitivity to ABA in transgenic plants. In contrast, inhibition of miR159a (using Short Tandem Target Mimic) or overexpression of PeMYB33 decreased the number of ARs in transgenic plants. Additionally, miR159a targets and cleaves transcripts of PeMYB33 using degradome analysis, which was further confirmed by a transient expression experiment of poplar protoplast. We show the miR159a-PeMYB33 module controls ARs development in poplar through ABA signaling. In particular, we demonstrated that miR159a promotes the expression of genes in the ABA signaling pathway. The findings from this study shed light on the intricate regulatory mechanisms governing the development of ARs in poplar plants. The miR159a-PeMYB33 module, in conjunction with ABA signaling, plays a crucial role in modulating AR formation and subsequent plant growth.


Subject(s)
Abscisic Acid , Gene Expression Regulation, Plant , MicroRNAs , Plant Proteins , Plant Roots , Plants, Genetically Modified , Populus , Signal Transduction , Abscisic Acid/metabolism , Populus/genetics , Populus/growth & development , Populus/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Plant Roots/growth & development , Plant Roots/genetics , Plant Roots/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Growth Regulators/metabolism , RNA, Plant/genetics , RNA, Plant/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics
10.
Chromosoma ; 133(2): 149-168, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38456964

ABSTRACT

In eukaryotes, meiosis is the genetic basis for sexual reproduction, which is important for chromosome stability and species evolution. The defects in meiosis usually lead to chromosome aneuploidy, reduced gamete number, and genetic diseases, but the pathogenic mechanisms are not well clarified. Kinesin-7 CENP-E is a key regulator in chromosome alignment and spindle assembly checkpoint in cell division. However, the functions and mechanisms of CENP-E in male meiosis remain largely unknown. In this study, we have revealed that the CENP-E gene was highly expressed in the rat testis. CENP-E inhibition influences chromosome alignment and spindle organization in metaphase I spermatocytes. We have found that a portion of misaligned homologous chromosomes is located at the spindle poles after CENP-E inhibition, which further activates the spindle assembly checkpoint during the metaphase-to-anaphase transition in rat spermatocytes. Furthermore, CENP-E depletion leads to abnormal spermatogenesis, reduced sperm count, and abnormal sperm head structure. Our findings have elucidated that CENP-E is essential for homologous chromosome alignment and spindle assembly checkpoint in spermatocytes, which further contribute to chromosome stability and sperm cell quality during spermatogenesis.


Subject(s)
Chromosomal Proteins, Non-Histone , M Phase Cell Cycle Checkpoints , Meiosis , Spermatocytes , Animals , Male , Rats , Chromosomal Proteins, Non-Histone/metabolism , Chromosomal Proteins, Non-Histone/genetics , Kinesins/metabolism , Kinesins/genetics , M Phase Cell Cycle Checkpoints/genetics , Spermatocytes/metabolism , Spermatocytes/cytology , Spermatogenesis , Spindle Apparatus/metabolism , Testis/metabolism , Testis/cytology
11.
EMBO J ; 40(8): e106283, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33665835

ABSTRACT

Mitochondrial DNA (mtDNA) encodes several key components of respiratory chain complexes that produce cellular energy through oxidative phosphorylation. mtDNA is vulnerable to damage under various physiological stresses, especially oxidative stress. mtDNA damage leads to mitochondrial dysfunction, and dysfunctional mitochondria can be removed by mitophagy, an essential process in cellular homeostasis. However, how damaged mtDNA is selectively cleared from the cell, and how damaged mtDNA triggers mitophagy, remain mostly unknown. Here, we identified a novel mitophagy receptor, ATAD3B, which is specifically expressed in primates. ATAD3B contains a LIR motif that binds to LC3 and promotes oxidative stress-induced mitophagy in a PINK1-independent manner, thus promoting the clearance of damaged mtDNA induced by oxidative stress. Under normal conditions, ATAD3B hetero-oligomerizes with ATAD3A, thus promoting the targeting of the C-terminal region of ATAD3B to the mitochondrial intermembrane space. Oxidative stress-induced mtDNA damage or mtDNA depletion reduces ATAD3B-ATAD3A hetero-oligomerization and leads to exposure of the ATAD3B C-terminus at the mitochondrial outer membrane and subsequent recruitment of LC3 for initiating mitophagy. Furthermore, ATAD3B is little expressed in m.3243A > G mutated cells and MELAS patient fibroblasts showing endogenous oxidative stress, and ATAD3B re-expression promotes the clearance of m.3243A > G mutated mtDNA. Our findings uncover a new pathway to selectively remove damaged mtDNA and reveal that increasing ATAD3B activity is a potential therapeutic approach for mitochondrial diseases.


Subject(s)
ATPases Associated with Diverse Cellular Activities/metabolism , Membrane Proteins/metabolism , Mitochondrial Proteins/metabolism , Mitophagy , Oxidative Stress , ATPases Associated with Diverse Cellular Activities/chemistry , ATPases Associated with Diverse Cellular Activities/genetics , Animals , Cells, Cultured , DNA Damage , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , HEK293 Cells , HeLa Cells , Humans , Membrane Proteins/chemistry , Membrane Proteins/genetics , Mice , Microtubule-Associated Proteins/metabolism , Mitochondrial Proteins/chemistry , Mitochondrial Proteins/genetics , Protein Binding
12.
Plant Physiol ; 2024 Oct 22.
Article in English | MEDLINE | ID: mdl-39437309

ABSTRACT

Upon infection with non-pathogenic microorganisms or treatment with natural or synthetic compounds, plants exhibit a more rapid and potent response to both biotic and abiotic stresses. However, the molecular mechanisms behind this phenomenon, known as defense priming, are poorly understood. ß-aminobutyric acid (BABA) is an endogenous stress metabolite that enhances plant tolerance to various abiotic stresses and primes plant defense responses, providing the ability to resist a variety of pathogens (broad-spectrum resistance). In this study, we identified an aspartyl-tRNA synthetase (AspRS), StIBI1 (named after Arabidopsis  IMPAIRED IN BABA-INDUCED IMMUNITY 1; IBI1), as a BABA receptor in Solanum tuberosum. We elucidated the regulatory mechanisms by which StIBI1 interacts with two NAC (NAM, ATAF1, 2, and CUC2) transcription factors (TFs), StVOZ1 and StVOZ2 (VASCULAR PLANT ONE ZINC FINGER, VOZ), to activate BABA-induced resistance (BABA-IR). StVOZ1 represses, whereas StVOZ2 promotes, immunity to the late blight pathogen Phytophthora infestans. Interestingly, BABA and StIBI1 influence StVOZ1- and StVOZ2-mediated immunity. StIBI1 interacts with StVOZ1 and StVOZ2 in the cytoplasm, reducing the nuclear accumulation of StVOZ1 and promoting the nuclear accumulation of StVOZ2. Our findings indicate that StVOZ1 and StVOZ2 finely regulate potato resistance to late blight through distinct signaling pathways. In summary, our study provides insights into the interaction between the potato BABA receptor StIBI1 and the TFs StVOZ1 and StVOZ2, which affects StVOZ1 and StVOZ2stability and nuclear accumulation to regulate late blight resistance during BABA-IR. This research advances our understanding of the primary mechanisms of BABA-IR in potato and contributes to a theoretical basis for the prevention and control of potato late blight using BABA-IR.

13.
Exp Cell Res ; 442(2): 114270, 2024 Oct 09.
Article in English | MEDLINE | ID: mdl-39389337

ABSTRACT

Weightlessness osteoporosis, which progresses continuously and has limited protective effects, has become one of the major problems that need to be solved in manned spaceflight. Our study aims to investigate the regulatory role of PHF8 in disuse osteoporosis by observing the expression of PHF8 in bone marrow mesenchymal stem cells (BMSCs) under simulated weightlessness conditions. Therefore, we used the model of ground-based microgravity simulated by disuse osteoporosis patients and tail suspension in mice to simulate microgravity in vivo, and measured the expression of PHF8 in bone tissue. Subsequently, we used the 2D gyroscope to simulate the weightless effect on bone marrow mesenchymal stem cells. In the weightless condition, we detected the proliferation, apoptosis, osteogenesis, and osteogenic differentiation functions of BMSCs. We also detected the expression of osteogenic-related transcription factors after knocking down and overexpressing PHF8. Our results show that the weightless effect can inhibit the proliferation, osteogenesis, and osteogenic differentiation functions of BMSCs, while enhancing their apoptosis; and overexpression of PHF8 can partially alleviate the osteoporosis caused by simulated weightlessness, providing new ideas and clues for potential drug targets to prevent weightlessness and disuse osteoporosis.

14.
Exp Cell Res ; 436(1): 113975, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38367657

ABSTRACT

Kinesin motors play a fundamental role in development by controlling intracellular transport, spindle assembly, and microtubule organization. In humans, patients carrying mutations in KIF11 suffer from an autosomal dominant inheritable disease called microcephaly with or without chorioretinopathy, lymphoedema, or mental retardation (MCLMR). While mitotic functions of KIF11 proteins have been well documented in centrosome separation and spindle assembly, cellular mechanisms underlying KIF11 dysfunction and MCLMR remain unclear. In this study, we generate KIF11-inhibition chick and zebrafish models and find that KIF11 inhibition results in microcephaly, chorioretinopathy, and severe developmental defects in vivo. Notably, loss-of-function of KIF11 causes the formation of monopolar spindle and chromosome misalignment, which finally contribute to cell cycle arrest, chromosome instability, and cell death. Our results demonstrate that KIF11 is crucial for spindle assembly, chromosome alignment, and cell cycle progression of progenitor stem cells, indicating a potential link between polyploidy and MCLMR. Our data have revealed that KIF11 inhibition cause microcephaly, chorioretinopathy, and development disorders through the formation of monopolar spindle, polyploid, and cell cycle arrest.


Subject(s)
Facies , Lymphedema , Microcephaly , Retinal Diseases , Retinal Dysplasia , Animals , Cell Cycle Checkpoints/genetics , Chromosomal Instability , Developmental Disabilities , Kinesins/genetics , Kinesins/metabolism , Microcephaly/genetics , Phenotype , Zebrafish/genetics , Zebrafish/metabolism
15.
Nature ; 566(7743): 270-274, 2019 02.
Article in English | MEDLINE | ID: mdl-30728504

ABSTRACT

There is growing evidence that tumour neoantigens have important roles in generating spontaneous antitumour immune responses and predicting clinical responses to immunotherapies1,2. Despite the presence of numerous neoantigens in patients, complete tumour elimination is rare, owing to failures in mounting a sufficient and lasting antitumour immune response3,4. Here we show that durable neoantigen-specific immunity is regulated by mRNA N6-methyadenosine (m6A) methylation through the m6A-binding protein YTHDF15. In contrast to wild-type mice, Ythdf1-deficient mice show an elevated antigen-specific CD8+ T cell antitumour response. Loss of YTHDF1 in classical dendritic cells enhanced the cross-presentation of tumour antigens and the cross-priming of CD8+ T cells in vivo. Mechanistically, transcripts encoding lysosomal proteases are marked by m6A and recognized by YTHDF1. Binding of YTHDF1 to these transcripts increases the translation of lysosomal cathepsins in dendritic cells, and inhibition of cathepsins markedly enhances cross-presentation of wild-type dendritic cells. Furthermore, the therapeutic efficacy of PD-L1 checkpoint blockade is enhanced in Ythdf1-/- mice, implicating YTHDF1 as a potential therapeutic target in anticancer immunotherapy.


Subject(s)
Adenosine/analogs & derivatives , Adenosine/metabolism , Dendritic Cells/immunology , Neoplasms/immunology , RNA, Messenger/metabolism , RNA-Binding Proteins/metabolism , Animals , Antigen Presentation/immunology , Antigens, Neoplasm/immunology , Antigens, Neoplasm/metabolism , B7-H1 Antigen/metabolism , Binding Sites , CD8-Positive T-Lymphocytes/immunology , Cathepsins/antagonists & inhibitors , Cathepsins/biosynthesis , Cathepsins/genetics , Cross-Priming/immunology , Dendritic Cells/enzymology , Female , Humans , Methylation , Mice , Mice, Inbred C57BL , Neoplasms/therapy , Protein Biosynthesis , Proteins/genetics , RNA, Messenger/chemistry , RNA-Binding Proteins/genetics , Transcriptome/genetics
16.
Nature ; 568(7751): E3, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30911170

ABSTRACT

In this Letter, a citation to 'Fig. 1e' has been corrected to 'Fig. 1d' in the sentence starting "By contrast, the anti-tumour response…". This has been corrected online.

17.
Mol Cell Proteomics ; 22(9): 100625, 2023 09.
Article in English | MEDLINE | ID: mdl-37500057

ABSTRACT

Diffuse large B-cell lymphoma (DLBCL) is a heterogeneous disease, although disease stratification using in-depth plasma proteomics has not been performed to date. By measuring more than 1000 proteins in the plasma of 147 DLBCL patients using data-independent acquisition mass spectrometry and antibody array, DLBCL patients were classified into four proteomic subtypes (PS-I-IV). Patients with the PS-IV subtype and worst prognosis had increased levels of proteins involved in inflammation, including a high expression of metalloproteinase inhibitor-1 (TIMP-1) that was associated with poor survival across two validation cohorts (n = 180). Notably, the combination of TIMP-1 with the international prognostic index (IPI) identified 64.00% to 88.24% of relapsed and 65.00% to 80.49% of deceased patients in the discovery and two validation cohorts, which represents a 24.00% to 41.67% and 20.00% to 31.70% improvement compared to the IPI score alone, respectively. Taken together, we demonstrate that DLBCL heterogeneity is reflected in the plasma proteome and that TIMP-1, together with the IPI, could improve the prognostic stratification of patients.


Subject(s)
Lymphoma, Large B-Cell, Diffuse , Tissue Inhibitor of Metalloproteinase-1 , Humans , Prognosis , Proteomics , Lymphoma, Large B-Cell, Diffuse/metabolism , Lymphoma, Large B-Cell, Diffuse/pathology , Biomarkers , Retrospective Studies
18.
Mol Cell Proteomics ; 22(7): 100574, 2023 07.
Article in English | MEDLINE | ID: mdl-37209815

ABSTRACT

Hepatocellular carcinoma (HCC) is a prevalent cancer in China, with chronic hepatitis B (CHB) and liver cirrhosis (LC) being high-risk factors for developing HCC. Here, we determined the serum proteomes (762 proteins) of 125 healthy controls and Hepatitis B virus-infected CHB, LC, and HCC patients and constructed the first cancerous trajectory of liver diseases. The results not only reveal that the majority of altered biological processes were involved in the hallmarks of cancer (inflammation, metastasis, metabolism, vasculature, and coagulation) but also identify potential therapeutic targets in cancerous pathways (i.e., IL17 signaling pathway). Notably, the biomarker panels for detecting HCC in CHB and LC high-risk populations were further developed using machine learning in two cohorts comprised of 200 samples (discovery cohort = 125 and validation cohort = 75). The protein signatures significantly improved the area under the receiver operating characteristic curve of HCC (CHB discovery and validation cohort = 0.953 and 0.891, respectively; LC discovery and validation cohort = 0.966 and 0.818, respectively) compared to using the traditional biomarker, alpha-fetoprotein, alone. Finally, selected biomarkers were validated with parallel reaction monitoring mass spectrometry in an additional cohort (n = 120). Altogether, our results provide fundamental insights into the continuous changes of cancer biology processes in liver diseases and identify candidate protein targets for early detection and intervention.


Subject(s)
Carcinoma, Hepatocellular , Hepatitis B, Chronic , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/pathology , Hepatitis B virus , Liver Neoplasms/pathology , Proteomics , Hepatitis B, Chronic/complications , Hepatitis B, Chronic/diagnosis , Biomarkers , ROC Curve , Liver Cirrhosis/complications , Liver Cirrhosis/diagnosis , Biomarkers, Tumor
19.
J Neurosci ; 43(8): 1334-1347, 2023 02 22.
Article in English | MEDLINE | ID: mdl-36653189

ABSTRACT

Itch is an uncomfortable and complex sensation that elicits the desire to scratch. The nucleus accumbens (NAc) activity is important in driving sensation, motivation, and emotion. Excitatory afferents from the medial prefrontal cortex (mPFC), amygdala, and hippocampus are crucial in tuning the activity of dopamine receptor D1-expressing and D2-expressing medium spiny neurons (Drd1-MSN and Drd2-MSN) in the NAc. However, a cell-type and neural circuity-based mechanism of the NAc underlying acute itch remains unclear. We found that acute itch induced by compound 48/80 (C48/80) decreased the intrinsic membrane excitability in Drd1-MSNs, but not in Drd2-MSNs, in the NAc core of male mice. Chemogenetic activation of Drd1-MSNs alleviated C48/80-induced scratching behaviors but not itch-related anxiety-like behaviors. In addition, C48/80 enhanced the frequency of spontaneous EPSCs (sEPSCs) and reduced the paired-pulse ratio (PPR) of electrical stimulation-evoked EPSCs in Drd1-MSNs. Furthermore, C48/80 increased excitatory synaptic afferents to Drd1-MSNs from the mPFC, not from the basolateral amygdala (BLA) or ventral hippocampus (vHipp). Consistently, the intrinsic excitability of mPFC-NAc projecting pyramidal neurons was increased after C48/80 treatment. Chemogenetic inhibition of mPFC-NAc excitatory synaptic afferents relieved the scratching behaviors. Moreover, pharmacological activation of κ opioid receptor (KOR) in the NAc core suppressed C48/80-induced scratching behaviors, and the modulation of KOR activity in the NAc resulted in the changes of presynaptic excitatory inputs to Drd1-MSNs in C48/80-treated mice. Together, these results reveal the neural plasticity in synapses of NAc Drd1-MSNs from the mPFC underlying acute itch and indicate the modulatory role of the KOR in itch-related scratching behaviors.SIGNIFICANCE STATEMENT Itch stimuli cause strongly scratching desire and anxiety in patients. However, the related neural mechanisms remain largely unclear. In the present study, we demonstrated that the pruritogen compound 48/80 (C48/80) shapes the excitability of dopamine receptor D1-expressing medium spiny neurons (Drd1-MSNs) in the nucleus accumbens (NAc) core and the glutamatergic synaptic afferents from medial prefrontal cortex (mPFC) to these neurons. Chemogenetic activation of Drd1-MSNs or inhibition of mPFC-NAc excitatory synaptic afferents relieves the scratching behaviors. In addition, pharmacological activation of κ opioid receptor (KOR) in the NAc core alleviates C48/80-induced itch. Thus, targeting mPFC-NAc Drd1-MSNs or KOR may provide effective treatments for itch.


Subject(s)
Nucleus Accumbens , Receptors, Opioid, kappa , Mice , Male , Animals , Nucleus Accumbens/physiology , Hippocampus/physiology , Neurons/physiology , Receptors, Dopamine D1/metabolism , Prefrontal Cortex/metabolism
20.
Plant J ; 116(1): 161-172, 2023 10.
Article in English | MEDLINE | ID: mdl-37381795

ABSTRACT

Ovules are female reproductive organs of angiosperms, consisting of sporophytic integuments surrounding female gametophytes, that is, embryo sacs. Synchronization between integument growth and embryo sac development requires intracellular communication. However, signaling routes through which cells of the two generations communicate are unclear. We report that symplastic signals through plasmodesmata (PDs) of integuments are critical for the development of female gametophytes. Genetic interferences of PD biogenesis either by functional loss of CHOLINE TRANSPORTER-LIKE1 (CTL1) or by integument-specific expression of a mutated CALLOSE SYNTHASE 3 (cals3m) compromised PD formation in integuments and reduced fertility. Close examination of pINO:cals3m or ctl1 ovules indicated that female gametophytic development was either arrested at various stages after the formation of functional megaspores. In both cases, defective ovules could not attract pollen tubes, leading to the failure of fertilization. Results presented here demonstrate a key role of the symplastic route in sporophytic control of female gametophytic development.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Ovule/genetics , Ovule/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Fertility , Pollen Tube/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL