Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
J Biomed Sci ; 31(1): 55, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38802791

ABSTRACT

BACKGROUND: Radioresistance is a key clinical constraint on the efficacy of radiotherapy in lung cancer patients. REV1 DNA directed polymerase (REV1) plays an important role in repairing DNA damage and maintaining genomic stability. However, its role in the resistance to radiotherapy in lung cancer is not clear. This study aims to clarify the role of REV1 in lung cancer radioresistance, identify the intrinsic mechanisms involved, and provide a theoretical basis for the clinical translation of this new target for lung cancer treatment. METHODS: The effect of targeting REV1 on the radiosensitivity was verified by in vivo and in vitro experiments. RNA sequencing (RNA-seq) combined with nontargeted metabolomics analysis was used to explore the downstream targets of REV1. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to quantify the content of specific amino acids. The coimmunoprecipitation (co-IP) and GST pull-down assays were used to validate the interaction between proteins. A ubiquitination library screening system was constructed to investigate the regulatory proteins upstream of REV1. RESULTS: Targeting REV1 could enhance the radiosensitivity in vivo, while this effect was not obvious in vitro. RNA sequencing combined with nontargeted metabolomics revealed that the difference result was related to metabolism, and that the expression of glycine, serine, and threonine (Gly/Ser/Thr) metabolism signaling pathways was downregulated following REV1 knockdown. LC-MS/MS demonstrated that REV1 knockdown results in reduced levels of these three amino acids and that cystathionine γ-lyase (CTH) was the key to its function. REV1 enhances the interaction of CTH with the E3 ubiquitin ligase Rad18 and promotes ubiquitination degradation of CTH by Rad18. Screening of the ubiquitination compound library revealed that the ubiquitin-specific peptidase 9 X-linked (USP9X) is the upstream regulatory protein of REV1 by the ubiquitin-proteasome system, which remodels the intracellular Gly/Ser/Thr metabolism. CONCLUSION: USP9X mediates the deubiquitination of REV1, and aberrantly expressed REV1 acts as a scaffolding protein to assist Rad18 in interacting with CTH, promoting the ubiquitination and degradation of CTH and inducing remodeling of the Gly/Ser/Thr metabolism, which leads to radioresistance. A novel inhibitor of REV1, JH-RE-06, was shown to enhance lung cancer cell radiosensitivity, with good prospects for clinical translation.


Subject(s)
Lung Neoplasms , Nucleotidyltransferases , Radiation Tolerance , Ubiquitin-Protein Ligases , Ubiquitination , Humans , Lung Neoplasms/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/radiotherapy , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Nucleotidyltransferases/metabolism , Nucleotidyltransferases/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Ubiquitin Thiolesterase/metabolism , Ubiquitin Thiolesterase/genetics , Cell Line, Tumor , Mice , Animals , DNA-Directed DNA Polymerase
2.
J Exp Clin Cancer Res ; 43(1): 89, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38520004

ABSTRACT

BACKGROUND: The evasion of the immune response by tumor cells through programmed death-ligand 1 (PD-L1) has been identified as a factor contributing to resistance to radioimmunotherapy in lung cancer patients. However, the precise molecular mechanisms underlying the regulation of PD-L1 remain incompletely understood. This study aimed to investigate the role of cyclin-dependent kinase-like 1 (CDKL1) in the modulation of PD-L1 expression and the response to radioimmunotherapy in lung cancer. METHODS: The tumorigenic roles of CDKL1 were assessed via cell growth, colony formation, and EdU assays and an in vivo nude mouse xenograft model. The in vitro radiosensitization effect of CDKL1 was evaluated using a neutral comet assay, γH2AX foci formation analysis, and a clonogenic cell survival assay. The protein‒protein interactions were confirmed via coimmunoprecipitation and GST pulldown assays. The regulation of PD-L1 by CDKL1 was evaluated via chromatin immunoprecipitation (ChIP), real-time quantitative PCR, and flow cytometry analysis. An in vitro conditioned culture model and an in vivo C57BL/6J mouse xenograft model were developed to detect the activation markers of CD8+ T cells and evaluate the efficacy of CDKL1 overexpression combined with radiotherapy (RT) and an anti-PD-L1 antibody in treating lung cancer. RESULTS: CDKL1 was downregulated and suppressed the growth and proliferation of lung cancer cells and increased radiosensitivity in vitro and in vivo. Mechanistically, CDKL1 interacted with the transcription factor YBX1 and decreased the binding affinity of YBX1 for the PD-L1 gene promoter, which consequently inhibits the expression of PD-L1, ultimately leading to the activation of CD8+ T cells and the inhibition of immune evasion in lung cancer. Moreover, the combination of CDKL1 overexpression, RT, and anti-PD-L1 antibody therapy exhibited the most potent antitumor efficacy against lung cancer. CONCLUSIONS: Our findings demonstrate that CDKL1 plays a crucial role in regulating PD-L1 expression, thereby enhancing the antitumor effects of radioimmunotherapy. These results suggest that CDKL1 may be a promising therapeutic target for the treatment of lung cancer.


Subject(s)
Lung Neoplasms , Humans , Animals , Mice , Lung Neoplasms/genetics , Lung Neoplasms/radiotherapy , Lung Neoplasms/drug therapy , Transcription Factors , CD8-Positive T-Lymphocytes/metabolism , B7-H1 Antigen/metabolism , Radioimmunotherapy , Mice, Inbred C57BL , Cell Line, Tumor , Nerve Tissue Proteins/metabolism , Cyclin-Dependent Kinases/metabolism , Y-Box-Binding Protein 1
3.
Cell Death Dis ; 15(1): 104, 2024 01 31.
Article in English | MEDLINE | ID: mdl-38296976

ABSTRACT

Radioresistance is a major constraint on the efficacy of lung cancer radiotherapy, but its mechanism has not been fully elucidated. Here, we found that FBXO22 was aberrantly highly expressed in lung cancer and that FBXO22 knockdown increased the radiosensitivity of lung cancer cells. Mechanistically, FBXO22 promoted Rad51 gene transcription by increasing the level of FOXM1 at the Rad51 promoter, thereby inducing the formation of lung cancer radioresistance. Furthermore, we found that deguelin, a potential inhibitor of FBXO22, enhanced radiosensitivity in an FBXO22/Rad51-dependent manner and was safely tolerated in vivo. Collectively, our results illustrate that FBXO22 induces lung cancer radioresistance by activating the FOXM1/Rad51 axis and provide preclinical evidence for the clinical translation of this critical target.


Subject(s)
Carcinoma, Non-Small-Cell Lung , F-Box Proteins , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/radiotherapy , Lung Neoplasms/genetics , Lung Neoplasms/radiotherapy , F-Box Proteins/genetics , Receptors, Cytoplasmic and Nuclear , Cell Line, Tumor , Forkhead Box Protein M1/genetics
4.
Int J Radiat Oncol Biol Phys ; 119(4): 1222-1233, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38266782

ABSTRACT

PURPOSE: Radioresistance of lung cancer poses a significant challenge when it comes to the treatment of advanced, recurrent, and metastatic cases. Ovarian tumor domain ubiquitin aldehyde binding 1 (OTUB1) is a key member of the deubiquitinase OTU superfamily. This protein is involved in various cellular functions, including cell proliferation, iron death, lipid metabolism, and cytokine secretion as well as immune response processes. However, its specific role and molecular mechanism in lung cancer radioresistance remain to be clarified. METHODS AND MATERIALS: The expression levels of OTUB1 in paired lung cancer tissues were determined by immunohistochemistry. In vitro and in vivo experiments were conducted to investigate the impact of OTUB1 on the growth and proliferation of lung cancer. Coimmunoprecipitation and Western blotting techniques were performed to examine the interaction between OTUB1 and CHK1. The DNA damage response was measured by comet tailing and immunofluorescence staining. KEGG pathways and Gene Ontology terms were analyzed based on RNA sequencing. RESULTS: Our findings reveal a high frequency of OTUB1 overexpression, which is associated with an unfavorable prognosis in patients with lung cancer. Through comprehensive investigations, we demonstrate that OTUB1 depletion impairs the process of DNA damage repair and overcomes radioresistance. In terms of the underlying mechanism, our study uncovers that OTUB1 deubiquitinates and stabilizes CHK1, which enhances CHK1 stability, thereby regulating DNA damage and repair. Additionally, we identify CHK1 as the primary downstream effector responsible for mediating the functional effects exerted by OTUB1 specifically in lung cancer. Importantly, OTUB1 has the potential to be a valuable marker for improving the efficacy of radiation therapy for lung adenocarcinoma. CONCLUSIONS: These findings unveil a novel role for OTUB1 in enhancing radioresistance by deubiquitination and stabilization of the expression of CHK1 in lung cancer and indicate that targeting OTUB1 holds great potential as an effective therapeutic approach for enhancing the efficacy of radiation therapy in lung cancer.


Subject(s)
Checkpoint Kinase 1 , Disease Progression , Lung Neoplasms , Radiation Tolerance , Ubiquitination , Lung Neoplasms/radiotherapy , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/genetics , Checkpoint Kinase 1/metabolism , Humans , Animals , Cell Line, Tumor , Mice , Cell Proliferation , DNA Repair , Cysteine Endopeptidases/metabolism , DNA Damage , Ubiquitin-Specific Proteases/metabolism , Female , Mice, Nude , Deubiquitinating Enzymes/metabolism , Protein Stability
SELECTION OF CITATIONS
SEARCH DETAIL