Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
Ecotoxicol Environ Saf ; 273: 116172, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38458072

ABSTRACT

The toxicity of 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is generally believed to be mediated by aryl hydrocarbon receptor (AhR), but some evidence suggests that the effects of TCDD can also be produced through AhR-independent mechanisms. In previous experiments, we found that mainly AhR-dependent mechanism was involved in the migration inhibition of glioblastoma U87 cells by TCDD. Due to the heterogeneity of glioblastomas, not all tumor cells have significant AhR expression. The effects and mechanisms of TCDD on the migration of glioblastomas with low AhR expression are still unclear. We employed a glioblastoma cell line A172 with low AhR expression as a model, using wound healing and Transwell® assay to detect the effect of TCDD on cell migration. We found that TCDD can inhibit the migration of A172 cells without activating AhR signaling pathway. Further, after being pre-treated with AhR antagonist CH223191, the inhibition of TCDD on A172 cells migration was not changed, indicating that the effect of TCDD on A172 cells is not dependent on AhR activation. By transcriptome sequencing analysis, we propose dysregulation of the expression of certain migration-related genes, such as IL6, IL1B, CXCL8, FOS, SYK, and PTGS2 involved in cytokines, MAPK, NF-κB, and IL-17 signaling pathways, as potential AhR-independent mechanisms that mediate the inhibition of TCDD migration in A172 cells.


Subject(s)
Glioblastoma , Polychlorinated Dibenzodioxins , Humans , Polychlorinated Dibenzodioxins/toxicity , Polychlorinated Dibenzodioxins/metabolism , Receptors, Aryl Hydrocarbon/genetics , Receptors, Aryl Hydrocarbon/metabolism , Signal Transduction , Cell Movement
2.
J Chem Inf Model ; 63(8): 2321-2330, 2023 04 24.
Article in English | MEDLINE | ID: mdl-37011147

ABSTRACT

Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) play important roles in human neurodegenerative disorders such as Alzheimer's disease. In this study, machine learning methods were applied to develop quantitative structure-activity relationship models for the prediction of novel AChE and BChE inhibitors based on data from quantitative high-throughput screening assays. The models were used to virtually screen an in-house collection of ∼360K compounds. The optimal models achieved good performance with area under the receiver operating characteristic curve values ranging from 0.83 ± 0.03 to 0.87 ± 0.01 for the prediction of AChE/BChE inhibition activity and selectivity. Experimental validation showed that the best-performing models increased the assay hit rate by several folds. We identified 88 novel AChE and 126 novel BChE inhibitors, 25% (AChE) and 53% (BChE) of which showed potent inhibitory effects (IC50 < 5 µM). In addition, structure-activity relationship analysis of the BChE inhibitors revealed scaffolds for chemistry design and optimization. In conclusion, machine learning models were shown to efficiently identify potent and selective inhibitors against AChE and BChE and novel structural series for further design and development of potential therapeutics against neurodegenerative disorders.


Subject(s)
Alzheimer Disease , Butyrylcholinesterase , Humans , Butyrylcholinesterase/chemistry , Butyrylcholinesterase/metabolism , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/chemistry , Acetylcholinesterase/metabolism , Structure-Activity Relationship , Quantitative Structure-Activity Relationship , Molecular Docking Simulation
3.
J Chem Inf Model ; 63(3): 846-855, 2023 02 13.
Article in English | MEDLINE | ID: mdl-36719788

ABSTRACT

Inappropriate use of prescription drugs is potentially more harmful in fetuses/neonates than in adults. Cytochrome P450 (CYP) 3A subfamily undergoes developmental changes in expression, such as a transition from CYP3A7 to CYP3A4 shortly after birth, which provides a potential way to distinguish medication effects on fetuses/neonates and adults. The purpose of this study was to build first-in-class predictive models for both inhibitors and substrates of CYP3A7/CYP3A4 using chemical structure analysis. Three metrics were used to evaluate model performance: area under the receiver operating characteristic curve (AUC-ROC), balanced accuracy (BA), and Matthews correlation coefficient (MCC). The performance varied for each CYP3A7/CYP3A4 inhibitor/substrate model depending on the data set type, model type, rebalancing method, and specific feature set. For the active inhibitor/substrate data set, the optimal models achieved AUC-ROC values ranging from 0.77 ± 0.01 to 0.84 ± 0.01. For the selective inhibitor/substrate data set, the optimal models achieved AUC-ROC values ranging from 0.72 ± 0.02 to 0.79 ± 0.04. The predictive power of the optimal models was validated by compounds with known potencies as CYP3A7/CYP3A4 inhibitors or substrates. In addition, we identified structural features significant for CYP3A7/CYP3A4 selective or common inhibitors and substrates. In summary, the top performing models can be further applied as a tool to rapidly evaluate the safety and efficacy of new drugs separately for fetuses/neonates and adults. The significant structural features could guide the design of new therapeutic drugs as well as aid in the optimization of existing medicine for fetuses/neonates.


Subject(s)
Cytochrome P-450 CYP3A , Infant, Newborn , Adult , Humans , Cytochrome P-450 CYP3A/metabolism , Area Under Curve
4.
Toxicol Appl Pharmacol ; 454: 116250, 2022 11 01.
Article in English | MEDLINE | ID: mdl-36150479

ABSTRACT

Drug-induced liver injury (DILI) and cardiotoxicity (DICT) are major adverse effects triggered by many clinically important drugs. To provide an alternative to in vivo toxicity testing, the U.S. Tox21 consortium has screened a collection of ∼10K compounds, including drugs in clinical use, against >70 cell-based assays in a quantitative high-throughput screening (qHTS) format. In this study, we compiled reference compound lists for DILI and DICT and compared the potential of Tox21 assay data with chemical structure information in building prediction models for human in vivo hepatotoxicity and cardiotoxicity. Models were built with four different machine learning algorithms (e.g., Random Forest, Naïve Bayes, eXtreme Gradient Boosting, and Support Vector Machine) and model performance was evaluated by calculating the area under the receiver operating characteristic curve (AUC-ROC). Chemical structure-based models showed reasonable predictive power for DILI (best AUC-ROC = 0.75 ± 0.03) and DICT (best AUC-ROC = 0.83 ± 0.03), while Tox21 assay data alone only showed better than random performance. DILI and DICT prediction models built using a combination of assay data and chemical structure information did not have a positive impact on model performance. The suboptimal predictive performance of the assay data is likely due to insufficient coverage of an adequately predictive number of toxicity mechanisms. The Tox21 consortium is currently expanding coverage of biological response space with additional assays that probe toxicologically important targets and under-represented pathways that may improve the prediction of in vivo toxicity such as DILI and DICT.


Subject(s)
Chemical and Drug Induced Liver Injury , Drug-Related Side Effects and Adverse Reactions , Bayes Theorem , Cardiotoxicity , Chemical and Drug Induced Liver Injury/diagnosis , Chemical and Drug Induced Liver Injury/etiology , High-Throughput Screening Assays , Humans
5.
J Neurochem ; 158(6): 1254-1262, 2021 09.
Article in English | MEDLINE | ID: mdl-33278027

ABSTRACT

Acetylcholinesterase (AChE, EC 3.1.1.7) plays important roles in cholinergic neurotransmission and has been widely recognized as a biomarker for monitoring pollution by organophosphate (OP) and carbamate pesticides. Dioxin is an emerging environmental AChE disruptor and is a typical persistent organic pollutant with multiple toxic effects on the nervous system. Growing evidence has shown that there is a significant link between dioxin exposure and neurodegenerative diseases and neurodevelopmental disorders, most of which involve AChE and cholinergic dysfunctions. Therefore, an in-depth understanding of the effects of dioxin on AChE and the related mechanisms of action might help to shed light on the molecular bases of dioxin impacts on the nervous system. In the past decade, the effects of dioxins on AChE have been revealed in cultured cells of different origins and in rodent animal models. Unlike OP and carbamate pesticides, dioxin-induced AChE disturbance is not due to direct inhibition of enzymatic activity; instead, dioxin causes alterations of AChE expression in certain models. As a widely accepted mechanism for most dioxin effects, the aryl hydrocarbon receptor (AhR)-dependent pathway has become a research focus in studies on the mechanism of action of dioxin-induced AChE dysregulation. In this mini-review, the effects of dioxin on AChE and the diverse roles of the AhR pathway in AChE regulation are summarized. Additionally, the involvement of AhR in AChE regulation during different neurodevelopmental processes is discussed. These AhR-related findings might also provide new insight into AChE regulation triggered by diverse xenobiotics capable of interacting with AhR.


Subject(s)
Acetylcholinesterase/metabolism , Dioxins/metabolism , Neurons/metabolism , Receptors, Aryl Hydrocarbon/metabolism , Animals , Brain/drug effects , Brain/metabolism , Cells, Cultured , Dioxins/toxicity , Humans , Neurodegenerative Diseases/chemically induced , Neurodegenerative Diseases/metabolism , Neurons/drug effects
6.
Anal Chem ; 93(24): 8423-8431, 2021 06 22.
Article in English | MEDLINE | ID: mdl-34110797

ABSTRACT

Major advances have been made to improve the sensitivity of mass analyzers, spectral quality, and speed of data processing enabling more comprehensive proteome discovery and quantitation. While focus has recently begun shifting toward robust proteomics sample preparation efforts, a high-throughput proteomics sample preparation is still lacking. We report the development of a highly automated universal 384-well plate sample preparation platform with high reproducibility and adaptability for extraction of proteins from cells within a culture plate. Digestion efficiency was excellent in comparison to a commercial digest peptide standard with minimal sample loss while improving sample preparation throughput by 20- to 40-fold (the entire process from plated cells to clean peptides is complete in ∼300 min). Analysis of six human cell types, including two primary cell samples, identified and quantified ∼4,000 proteins for each sample in a single high-performance liquid chromatography (HPLC)-tandem mass spectrometry injection with only 100-10K cells, thus demonstrating universality of the platform. The selected protein was further quantified using a developed HPLC-multiple reaction monitoring method for HeLa digests with two heavy labeled internal standard peptides spiked in. Excellent linearity was achieved across different cell numbers indicating a potential for target protein quantitation in clinical research.


Subject(s)
Proteome , Proteomics , Chromatography, High Pressure Liquid , Humans , Mass Spectrometry , Reproducibility of Results
7.
Chem Res Toxicol ; 34(2): 412-421, 2021 02 15.
Article in English | MEDLINE | ID: mdl-33251791

ABSTRACT

The mechanisms leading to organ level toxicities are poorly understood. In this study, we applied an integrated approach to deduce the molecular targets and biological pathways involved in chemically induced toxicity for eight common human organ level toxicity end points (carcinogenicity, cardiotoxicity, developmental toxicity, hepatotoxicity, nephrotoxicity, neurotoxicity, reproductive toxicity, and skin toxicity). Integrated analysis of in vitro assay data, molecular targets and pathway annotations from the literature, and toxicity-molecular target associations derived from text mining, combined with machine learning techniques, were used to generate molecular targets for each of the organ level toxicity end points. A total of 1516 toxicity-related genes were identified and subsequently analyzed for biological pathway coverage, resulting in 206 significant pathways (p-value <0.05), ranging from 3 (e.g., developmental toxicity) to 101 (e.g., skin toxicity) for each toxicity end point. This study presents a systematic and comprehensive analysis of molecular targets and pathways related to various in vivo toxicity end points. These molecular targets and pathways could aid in understanding the biological mechanisms of toxicity and serve as a guide for the design of suitable in vitro assays for more efficient toxicity testing. In addition, these results are complementary to the existing adverse outcome pathway (AOP) framework and can be used to aid in the development of novel AOPs. Our results provide abundant testable hypotheses for further experimental validation.


Subject(s)
Environmental Pollutants/analysis , Machine Learning , Toxicity Tests , Environmental Pollutants/adverse effects , Humans
8.
Chem Res Toxicol ; 33(3): 731-741, 2020 03 16.
Article in English | MEDLINE | ID: mdl-32077278

ABSTRACT

Traditional toxicity testing reliant on animal models is costly and low throughput, posing a significant challenge with the increasing numbers of chemicals that humans are exposed to in the environment. The purpose of this investigation was to build optimal prediction models for various human in vivo/organ-level toxicity end points (extracted from ChemIDPlus) using chemical structure and Tox21 in vitro quantitative high-throughput screening (qHTS) bioactivity assay data. Several supervised machine learning algorithms were applied to model 14 human toxicity end points pertaining to vascular, kidney, ureter and bladder, and liver organ systems. Three metrics were used to evaluate model performance: area under the receiver operating characteristic curve (AUC-ROC), balanced accuracy (BA), and Matthews correlation coefficient (MCC). The top four models, with AUC-ROC values >0.8, were derived for endocrine (0.90 ± 0.00), musculoskeletal (0.88 ± 0.02), peripheral nerve and sensation (0.85 ± 0.01), and brain and coverings (0.83 ± 0.02) toxicities, whereas the best model AUC-ROC values were >0.7 for the remaining 10 toxicities. Model performance was found to be dependent on the specific data set, model type, and feature selection method used. In addition, chemical structure and assay data showed different levels of contribution to the prediction of different toxicity end points. Although in vitro assay data, when combined with chemical structure, slightly improved the predictive accuracy for most end points (11 out of 14), a noteworthy finding was the near equal success of the structure-only models, which do not require Tox21 qHTS screening data, and the relatively poor performance of assay-only models. Thus, the top-performing structure-only models from this study could be applied for hazard screening of large sets of chemicals for potential human toxicity, whereas the largest assay contributions to models (i.e., cellular targets) could be used, along with the top-contributing structural features, to provide insight into toxicity mechanisms.


Subject(s)
Algorithms , High-Throughput Screening Assays , Organic Chemicals/chemistry , Organic Chemicals/toxicity , Toxicity Tests , Humans , Models, Molecular , Molecular Structure , Organic Chemicals/metabolism , ROC Curve
9.
Environ Sci Technol ; 52(15): 8065-8074, 2018 08 07.
Article in English | MEDLINE | ID: mdl-29995397

ABSTRACT

Acetylcholinesterase (AChE, EC 3.1.1.7) is a classical biomarker for monitoring contamination and intoxication of organophosphate (OP) and carbamate pesticides. In addition to these classical environmental AChE inhibitors, other organic toxic substances have been found to alter AChE activity in various species. These emerging organic AChE disruptors include certain persistent organic pollutants (POPs), polycyclic aromatic hydrocarbons (PAHs), and wildly used chemicals, most of which have received considerable public health concern in recent years. It is necessary to re-evaluate the environmental significances of AChE in terms of these toxic substances. Therefore, the present review is aiming to summarize correlations of AChE activity of certain organisms with the level of the contaminants in particular habitats, disruptions of AChE activity upon treatment with the emerging disruptors in vivo and in vitro, and action mechanisms underlying the effects on AChE. Over 40 chemicals belonging to six main categories were reviewed, including 12 POPs listed in the Stockholm Convention. AChE activity in certain organisms has been found to be well correlated with the contamination level of certain persistent pesticides and PAHs in particular habitats. Moreover, it has been documented that most of the listed toxic chemicals could inhibit AChE activity in diverse species ranging from invertebrates to mammals. Besides directly inactivating AChE, the mechanisms in terms of interference with the biosynthesis have been recognized for some emerging AChE disruptors, particularly for dioxins. The collected evidence suggests that AChE could serve as a potential biomarker for a diverse spectrum of organic environmental pollutants.


Subject(s)
Environmental Pollutants , Pesticides , Water Pollutants, Chemical , Acetylcholinesterase , Animals , Biomarkers , Environmental Monitoring
10.
J Environ Sci (China) ; 63: 260-267, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29406108

ABSTRACT

Dioxin can cause a series of neural toxicological effects. MicroRNAs (miRs) play important roles in regulating nervous system function and mediating cellular responses to environmental pollutants, such as dioxin. Hsa-miR-146b-5p appears to be involved in neurodegenerative diseases and brain tumors. However, little is known about effects of dioxin on the expression of hsa-miR-146b-5p. We found that the hsa-miR-146b-5p expression and its promoter activity were significantly increased in dioxin treated SK-N-SH cells, a human-derived neuroblastoma cell line. Potential roles of hsa-miR-146b-5p in mediating neural toxicological effects of dioxin may be due to the regulation of certain target genes. We further confirmed that hsa-miR-146b-5p significantly suppressed acetylcholinesterase (AChE) activity and targeted the 3'-untranslated region of the AChE T subunit, which has been down-regulated in dioxin treated SK-N-SH cells. Functional bioinformatic analysis showed that the known and predicted target genes of hsa-miR-146b-5p were involved in some brain functions or cyto-toxicities related to known dioxin effects, including synapse transmission, in which AChE may serve as a responsive gene for mediating the effect.


Subject(s)
Dioxins/toxicity , Environmental Pollutants/toxicity , Acetylcholinesterase/metabolism , Cell Line, Tumor , Gene Expression/drug effects , Humans , MicroRNAs/metabolism , Neuroblastoma , Toxicity Tests
11.
J Environ Sci (China) ; 51: 165-172, 2017 Jan.
Article in English | MEDLINE | ID: mdl-28115127

ABSTRACT

The health risk of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) and dioxin-like PCBs (dl-PCBs) to human being should be assessed regularly. To evaluate the contamination levels in various food products in the Chinese market and to assess the dietary exposure of the Chinese population, 11 varieties of food groups totaling 634 samples including beef and mutton, chicken and duck, pork, fish and seafood, milk and dairy products were evaluated. The average concentrations of PCDD/Fs in all groups ranged from 0.291 to 8.468pg/g whole weight (w.w.). The average toxic equivalency concentrations were from 0.012pg TEQ/g w.w. for cereal to 0.367pg TEQ/g fat for marine oil. OCDD and 2,3,7,8-TCDF were the dominant congeners in foodstuffs. The dietary estimated mean intake for the Chinese rural and urban populations were 0.656 and 0.514pg TEQ/kg body weight/day, respectively, however, the cereal group exposure were higher to the estimate daily intake and contributed 81% for rural and 48% for urban population, followed by fish and seafood which contributed 4% and 16% to the estimate daily intake. The estimated dietary intakes were compared with the toxicological reference values and showed that both rural and urban populations were well below those values.


Subject(s)
Dibenzofurans, Polychlorinated/analysis , Diet/statistics & numerical data , Environmental Exposure/statistics & numerical data , Environmental Pollutants/analysis , Food Contamination/analysis , Polychlorinated Dibenzodioxins/analysis , China , Humans
12.
J Environ Sci (China) ; 51: 324-331, 2017 Jan.
Article in English | MEDLINE | ID: mdl-28115145

ABSTRACT

Feed security is a prerequisite for safe animal food products. In this study, 13 groups of feed and feed ingredients, totaling 2067 samples, were collected in the period of 2011 to 2014 from China. The highest mean level of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) was found in fish meals and shell powders, with a concentration of 60.35ng/kg, followed by mineral origin materials. In terms of the toxicity equivalent concentration, the fish oil group showed the highest PCDD/F levels because of their bio-accumulation through the aquatic food chain, with an average concentration of 1.26ng WHO-TEQ/kg, while the lowest level was observed in compound feed for chickens and pigs, with an average value of 0.16ng WHO-TEQ/kg. OCDD and OCDF were the predominant congeners in all groups except fish oils, in which the primary congeners were 2,3,4,7,8-PeCDF and 2,3,7,8-TCDF. For zinc chloride samples, different from other zinc-based compound samples, the main congeners were 1,2,3,4,6,7,8-HpCDF (17%), 1,2,3,4,7,8,9-HpCDF (15%), 1,2,3,4,7,8-HxCDF (12%) and OCDF (30%). Considering toxicity equivalency factors, the dominant congeners were 2,3,4,7,8-PeCDF, 1, 2,3,4,7,8-HxCDF, 2,3,7,8-TCDF and 1,2,3,7,8-PeCDD, and the contribution to the total TEQ was 29%, 16%, 14% and 12%, respectively. Overall, 2.1% (43 out of 2067) of all the analyzed samples exceeded the different individual 'European Union maximum limited levels for PCDD/Fs. This study is beneficial for the determination of the status of contamination levels of feed and feed ingredients.


Subject(s)
Animal Feed/analysis , Dibenzofurans, Polychlorinated/analysis , Environmental Pollutants/analysis , Food Contamination/analysis , Polychlorinated Dibenzodioxins/analysis , Environmental Monitoring , Food Contamination/statistics & numerical data
13.
J Environ Sci (China) ; 62: 92-99, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29289296

ABSTRACT

Several cohort studies have reported that dioxin and dioxin-like polychlorinated biphenyls might impair the nervous system and lead to neurological or neurodegenerative diseases in the elder people, but there is limited research on the involved mechanism. By using microarray analysis, we figured out the differentially expressed genes between brain samples from SD rats after low-dose (0.1µg/(kg▪bw)) dioxin exposure for six months and controls. To investigate the function changes in the course of dioxin exposure, Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed on the differentially expressed genes. And the changes of several picked genes have been verified by real-time PCR. A total of 145 up-regulated and 64 down-regulated genes were identified. The metabolic processes, interleukin-1 secretion and production were significantly associated with the differentially expressed genes. And the genes regulated by dioxin also clustered to cholinergic synapse and long-term potentiation. Candidate biomarker genes such as egr1, gad2, gabrb3, abca1, ccr5 and pycard may be toxicological targets for dioxin. Furthermore, synaptic plasticity and neuro-immune system may be two principal affected areas by dioxin.


Subject(s)
Brain/physiology , Gene Expression/drug effects , Hazardous Substances/toxicity , Polychlorinated Dibenzodioxins/toxicity , Animals , Rats , Toxicity Tests, Chronic , Up-Regulation
14.
J Environ Sci (China) ; 39: 218-227, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26899660

ABSTRACT

2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) exposure in humans is associated with marked immune suppressions and increased incidence of lymphoblastic diseases. To elucidate mechanisms of impairments in humoral immune responses, we used a murine model. Following a 20-week administration of low doses of TCDD, we observed severely reduced antibody titers, dramatically decreased number of splenic Th1 and Th2 cells and an increase in CD19(+) B cells. Transcriptional profiling of CD19(+) B cells showed that markers of pre-B cells were significantly elevated, indicating delayed B cell maturation. These changes in B cells were accompanied by decreases of T helper cell numbers and reduced IgM and IgG titers. A transcriptome analysis of splenic B cells followed by Ingenuity Pathway Analysis (IPA) revealed a set of differentially expressed genes known to play roles in tumorigenesis, cell-proliferation and cell-migration. The most up-regulated transcript gene was Eph receptor A2 (EphA2), a known oncogene, and the most down-regulated transcript was ZBTB16 that codes for a negative transcriptional regulator important in epigenetic chromatin remodeling. IPA identified cAMP-responsive element modulator (CREM) and cAMP-responsive element binding protein 1 (CREB1) as top upstream regulators. Consistently, a MAPPER promoter database analysis showed that all top dysregulated genes had CREM and/or CREB1 binding sites in their promoter regions. In summary, our data showed that chronic TCDD exposure in mice caused suppressed humoral immunity accompanied with profound dysregulation of gene expression in splenic B-lymphocytes, likely through cAMP-dependent pathways. This dysregulation resulted in impairments in T-cell and B-cell differentiation and activation of the tumorigenic transcription program.


Subject(s)
B-Lymphocytes/drug effects , Cell Differentiation/drug effects , Gene Expression Regulation/drug effects , Polychlorinated Dibenzodioxins/toxicity , Spleen/immunology , Th1 Cells/drug effects , Th2 Cells/drug effects , Animals , B-Lymphocytes/cytology , B-Lymphocytes/metabolism , Body Weight/drug effects , Circadian Rhythm/drug effects , Humans , Immunity, Humoral/drug effects , Immunity, Humoral/genetics , Immunoglobulins/metabolism , Interleukin-6/metabolism , Interleukins/metabolism , Lymphoma, Non-Hodgkin/genetics , MAP Kinase Signaling System/drug effects , Male , Mice , Mice, Inbred C57BL , Th1 Cells/cytology , Th1 Cells/metabolism , Th2 Cells/cytology , Th2 Cells/metabolism , Interleukin-22
15.
Biotechnol Bioeng ; 112(5): 947-56, 2015 May.
Article in English | MEDLINE | ID: mdl-25421845

ABSTRACT

Since solar light energy is the source of all renewable biological energy, the direct usage of light energy by bacterial cell factory has been a very attractive concept, especially using light energy to promote anaerobic fermentation growth and even recycle low-energy carbon source when energy is the limiting factor. Proteorhodopsin(PR), a light-driven proton pump proven to couple with ATP synthesis when expressed heterogeneously, is an interesting and simple option to enable light usage in engineered strains. However, although it was reported to influence fermentation in some cases, heterogeneous proteorhodopsin expression was never shown to support growth advantage or cause metabolic shift by photophosphorylation so far. Hereby, we presented the first experimental evidence that heterogeneously expressed proteorhodopsin can provide growth advantage and cause ATP-dependent metabolism shift of acetate and lactate changes in Escherichia coli at anaerobic condition. Those discoveries suggest further application potential of PR in anaerobic fermentation where energy is a limiting factor.


Subject(s)
Acetates/metabolism , Adenosine Triphosphate/metabolism , Bacterial Proteins/metabolism , Escherichia coli/growth & development , Lactates/metabolism , Rhodopsins, Microbial/metabolism , Anaerobiosis , Bacterial Proteins/genetics , Cupriavidus necator/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Fermentation , Gene Expression , Light , Photophosphorylation , Rhodopsins, Microbial/genetics
16.
Biotechnol Lett ; 36(10): 2125-33, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24966038

ABSTRACT

Cell-substrate interaction is important in tissue engineering. Vascular smooth muscle cells (VSMCs) cultured on the microgrooved surface of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) showed a distinctive polarized morphology and a high expression level of let-7a compared with the flat substrates. LIMK2, a crucial regulator of actin dynamics, was identified as a new target of let-7a. F-Actin content on flat substrates was significantly higher than that on microgrooved ones. Either overexpression of let-7a on flat substrates or inhibited expression on microgrooved substrates can rescue the difference. In accord with actin dynamics, the expressions of contractile smooth muscle markers, such as SM22 and SMA, decreased in VSMCs cultured on microgrooved substrates compared to those on flat ones, though PHBHHx can induce the synthetic-to-contractile phenotype shift. These results indicate that microgrooved PHBHHx could enhance actin dynamics of VSMCs through let-7a-involved regulation and trigger a synthetic shift.


Subject(s)
3-Hydroxybutyric Acid/chemistry , Biocompatible Materials/chemistry , Caproates/chemistry , MicroRNAs/metabolism , Muscle, Smooth, Vascular/physiology , Tissue Engineering/methods , Actins/metabolism , Animals , Aorta/cytology , Cell Culture Techniques , Cell Line , Gene Expression Regulation , Lim Kinases/metabolism , Materials Testing , Mice , Surface Properties
17.
Front Toxicol ; 6: 1321857, 2024.
Article in English | MEDLINE | ID: mdl-38482198

ABSTRACT

Introduction: Skin sensitization, which leads to allergic contact dermatitis, is a key toxicological endpoint with high occupational and consumer prevalence. This study optimized several in vitro assays listed in OECD skin sensitization test guidelines for use on a quantitative high-throughput screening (qHTS) platform and performed in silico model predictions to assess the skin sensitization potential of prioritized compounds from the Tox21 10K compound library. Methods: First, we screened the entire Tox21 10K compound library using a qHTS KeratinoSensTM (KS) assay and built a quantitative structure-activity relationship (QSAR) model based on the KS results. From the qHTS KS screening results, we prioritized 288 compounds to cover a wide range of structural chemotypes and tested them in the solid phase extraction-tandem mass spectrometry (SPE-MS/MS) direct peptide reactivity assay (DPRA), IL-8 homogeneous time-resolved fluorescence (HTRF) assay, CD86 and CD54 surface expression in THP1 cells, and predicted in silico sensitization potential using the OECD QSAR Toolbox (v4.5). Results: Interpreting tiered qHTS datasets using a defined approach showed the effectiveness and efficiency of in vitro methods. We selected structural chemotypes to present this diverse chemical collection and to explore previously unidentified structural contributions to sensitization potential. Discussion: Here, we provide a skin sensitization dataset of unprecedented size, along with associated tools, and analysis designed to support chemical assessments.

18.
Ecotoxicol Environ Saf ; 89: 29-35, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23290619

ABSTRACT

To explore the respiratory and metabolic responses of the freshwater crab (Sinopotamon henanense) to Cd exposure, crabs were acutely exposed to 7.14, 14.28, 28.55 mg/L Cd for 96 h and subchronically exposed to 0.71, 1.43, 2.86 mg/L for three weeks. The oxygen consumption, concentrations of oxyhemocyanin, hemolymph protein, the activities of respiratory enzymes, i.e. lactate dehydrogenase (LDH), NAD-isocitrate dehydrogenase (IDH), cytochrome c oxidase (CCO), as well as cco-1(CCO active subunit 1) and ldh mRNA expression level and adenosine triphosphate (ATP) content in crab heart were assessed. Oxygen consumption, concentration of oxyhemocyanin and oxyhemocyanin/blood protein proportion were increased during acute exposure and decreased during sub-chronic exposure. Both exposure schemes induced downregulation of cco-1 gene expression and lowered CCO activity. For acute exposure, tissue ATP level was increased, in association with increased IDH activity and decreased LDH activity, whereas subchronic exposure caused decreased IDH activity accompanied with increased ldh gene expression and LDH activity, resulting in lowered ATP level. By coupling gene expression to biochemical and physiological endpoints, this work provides new insights into the mechanisms involved in metal stress and the differential respiratory and metabolic responses of S. henanense to acute and subchronic Cd exposure.


Subject(s)
Brachyura/drug effects , Cadmium/toxicity , Oxygen Consumption/drug effects , Water Pollutants, Chemical/toxicity , Animals , Brachyura/metabolism , Fresh Water , Gene Expression Regulation, Enzymologic/drug effects
19.
Nat Commun ; 14(1): 4798, 2023 08 09.
Article in English | MEDLINE | ID: mdl-37558718

ABSTRACT

UBA1 is the primary E1 ubiquitin-activating enzyme responsible for generation of activated ubiquitin required for ubiquitination, a process that regulates stability and function of numerous proteins. Decreased or insufficient ubiquitination can cause or drive aging and many diseases. Therefore, a small-molecule enhancing UBA1 activity could have broad therapeutic potential. Here we report that auranofin, a drug approved for the treatment of rheumatoid arthritis, is a potent UBA1 activity enhancer. Auranofin binds to the UBA1's ubiquitin fold domain and conjugates to Cys1039 residue. The binding enhances UBA1 interactions with at least 20 different E2 ubiquitin-conjugating enzymes, facilitating ubiquitin charging to E2 and increasing the activities of seven representative E3s in vitro. Auranofin promotes ubiquitination and degradation of misfolded ER proteins during ER-associated degradation in cells at low nanomolar concentrations. It also facilitates outer mitochondrial membrane-associated degradation. These findings suggest that auranofin can serve as a much-needed tool for UBA1 research and therapeutic exploration.


Subject(s)
Ubiquitin-Conjugating Enzymes , Ubiquitin , Ubiquitin/metabolism , Ubiquitin-Conjugating Enzymes/metabolism , Auranofin/pharmacology , Ubiquitination , Ubiquitin-Activating Enzymes/metabolism
20.
Drug Discov Today ; 27(7): 1983-1993, 2022 07.
Article in English | MEDLINE | ID: mdl-35395401

ABSTRACT

Drug repurposing is an appealing method to address the Coronavirus 2019 (COVID-19) pandemic because of the low cost and efficiency. We analyzed our in-house database of approved drug screens and compared their activity profiles with results from a severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) cytopathic effect (CPE) assay. The activity profiles of the human ether-à-go-go-related gene (hERG), phospholipidosis (PLD), and many cytotoxicity screens were found significantly correlated with anti-SARS-CoV-2 activity. hERG inhibition is a nonspecific off-target effect that has contributed to promiscuous drug interactions, whereas drug-induced PLD is an undesirable effect linked to hERG blockers. Thus, this study identifies preferred drug candidates as well as chemical structures that should be avoided because of their potential to induce toxicity. Lastly, we highlight the hERG liability of anti-SARS-CoV-2 drugs currently enrolled in clinical trials.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Antiviral Agents/adverse effects , Drug Repositioning/methods , Humans , Pandemics
SELECTION OF CITATIONS
SEARCH DETAIL