Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 79
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Opt Express ; 32(12): 21007-21016, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38859466

ABSTRACT

Finding suitable fiber amplifiers is one of the key strategies to increase the transmission capacity of fiber links. Recently, bismuth-doped fiber amplifiers (BDFAs) have attracted much attention due to their distinctive ultra-wideband luminescence properties. In this paper, we propose a linear cavity double pass structure for BDFA operating in the O and E bands. The design creates a linear cavity within the amplifier by combining a fiber Bragg grating (FBG) and a fiber mirror to achieve dual-wavelength pump at 1240 nm and 1310 nm. Meanwhile, the configuration of a circulator and mirror facilitates bidirectional signal propagation through the BDFA, resulting in a double-pass amplification structure. We have tested and analyzed the performance of the linear cavity double pass structure BDFA under different pump schemes and compared it with the conventional structure BDFA. The results show that the gain spectrum of the new structure is shifted toward longer wavelengths, and the gain band is extended from the O band to the O and E bands compared with the conventional structure. In particular, the linear cavity double pass structure BDFA has more relaxed requirements on the stability of the pump and signal power. This work provides a positive reference for the design, application, and development of BDFAs.

2.
Langmuir ; 40(19): 10270-10280, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38696549

ABSTRACT

Tin phosphide (Sn4P3) holds great promise because sodium-ion batteries use this material as an anode with impressive theoretical capacity. In this paper, it is reported that Co-doped Sn4P3 is embedded into carbon-based materials and SnCoP/C with a porous skeleton is prepared. As a result, SnCoP/C-2, as the material utilized in sodium-ion battery anodes, exhibits reversible capacities at 415.6, 345.9, and 315.6 mAh g-1 at current intensities of 0.5, 1.0, and 2.0 A g-1, respectively. The electrochemical reversibility, cycle stability, and rate performance of SnCoP/C samples are obviously better than those of Sn4P3/C. Cobalt in SnCoP/C stabilizes the conductive matrix of tin phosphide and promotes the diffusion kinetics of sodium. These results show that, with an appropriate amount of cobalt doping, highly dispersed nanoparticles can be formed in the tin phosphide matrix, which can significantly enhance the cycle stability of tin-based electrode materials.

3.
Nucleic Acids Res ; 50(5): 2826-2835, 2022 03 21.
Article in English | MEDLINE | ID: mdl-35188572

ABSTRACT

Some proteins, like the lac repressor (LacI), mediate long-range loops that alter DNA topology and create torsional barriers. During transcription, RNA polymerase generates supercoiling that may facilitate passage through such barriers. We monitored E. coli RNA polymerase progress along templates in conditions that prevented, or favored, 400 bp LacI-mediated DNA looping. Tethered particle motion measurements revealed that RNA polymerase paused longer at unlooped LacI obstacles or those barring entry to a loop than those barring exit from the loop. Enhanced dissociation of a LacI roadblock by the positive supercoiling generated ahead of a transcribing RNA polymerase within a torsion-constrained DNA loop may be responsible for this reduction in pause time. In support of this idea, RNA polymerase transcribed 6-fold more slowly through looped DNA and paused at LacI obstacles for 66% less time on positively supercoiled compared to relaxed templates, especially under increased tension (torque). Positive supercoiling propagating ahead of polymerase facilitated elongation along topologically complex, protein-coated templates.


Subject(s)
DNA , Escherichia coli , DNA/genetics , DNA/metabolism , DNA, Bacterial/genetics , DNA, Bacterial/metabolism , DNA, Superhelical/genetics , DNA, Superhelical/metabolism , DNA-Directed RNA Polymerases/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Lac Operon , Lac Repressors/genetics , Lac Repressors/metabolism , Nucleic Acid Conformation
4.
Nano Lett ; 23(19): 8978-8987, 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37726233

ABSTRACT

Acute kidney injury (AKI) is closely associated with the overproduction of reactive oxygen species (ROS), which can cause multiple organ dysfunctions without timely treatment. However, only supportive treatments are currently available for AKI in clinics. Here, we developed nanomaterials of hyperbranched polyphosphoester (PPE) containing abundant thioether (S-PPE NP) and thioketal bonds (TK-PPE NP). Our data demonstrates that S-PPE NP exhibits an excellent capability of absorbing and scavenging multiple types of ROS, including H2O2, •OH, and •O2-, via thioether oxidation to sulfone or sulfoxide; it was also determined that S-PPE NP efficiently eliminates intracellular ROS, thus preventing cellular damage. Moreover, S-PPE NP was able to efficiently accumulate in the injured kidneys of AKI-bearing mice. As a result, the administration of S-PPE NP provided a superior therapeutic effect in AKI-bearing mice by downregulating ROS- and inflammation-related signaling pathways, thus reducing cell apoptosis. This thioether-containing polymer represents a promising broad-spectrum ROS scavenger that can be used for effective AKI treatments.

5.
Small ; 19(4): e2205772, 2023 01.
Article in English | MEDLINE | ID: mdl-36424140

ABSTRACT

The interaction between platelets and circulating tumor cells (CTCs) contributes to distal tumor metastasis by protecting CTCs from immunological assault and shear stress, which can be disrupted by nitric oxide (NO) through inhibiting platelet-mediated adhesion. To eradicate primitive tumors and inhibit CTC-based pulmonary metastasis, a novel biomimetic nanomedicine (mCuMNO) is designed by encapsulating Cu+ -responsive S-nitrosoglutathione as a NO donor into a copper-based metal-organic framework (CuM). This work discovers that mCuMNO can target tumor regions and deplete local glutathione (GSH) to reduce Cu2+ to Cu+ , followed by triggering NO release and hydroxyl radicals (·OH) production, thereby interrupting platelet/CTC interplay and contributing to chemodynamic therapy. Detailed studies demonstrate that mCuMNO exhibits high efficiency and safety in tumor therapy and antimetastasis activity, sheding new light on the development of CuM-based tumor synthetic therapy.


Subject(s)
Metal-Organic Frameworks , Neoplasms , Humans , Nitric Oxide , Metal-Organic Frameworks/pharmacology , Copper , Nitric Oxide Donors , Glutathione , Cell Line, Tumor , Hydrogen Peroxide/pharmacology , Tumor Microenvironment
6.
Br J Nutr ; 129(1): 29-40, 2023 01 14.
Article in English | MEDLINE | ID: mdl-35473947

ABSTRACT

Dietary l-carnitine (LC) is a nutritional factor that reduces liver lipid content. However, whether dietary LC can improve lipid metabolism via simultaneous activation of mitochondrial fatty acid (FA) ß-oxidation and suppression of endoplasmic reticulum (ER) stress is still unknown. Large yellow croaker were fed with a high-fat diet (HFD) supplemented with dietary LC at 0, 1·2 or 2·4 ‰ for 10 weeks. The results indicated that a HFD supplemented with LC reduced the liver total lipid and TAG content and improved serum lipid profiles. LC supplementation administered to this fish increased the liver antioxidant capacity by decreasing serum and liver malondialdehyde levels and enhancing the liver antioxidant capacity, which then relieved the liver damage. Dietary LC increased the ATP dynamic process and mitochondrial number, decreased mitochondrial DNA damage and enhanced the protein expression of mitochondrial ß-oxidation, biogenesis and mitophagy. Furthermore, dietary LC supplementation increased the expression of genes and proteins related to peroxisomal ß-oxidation and biogenesis. Interestingly, feeding fish with LC-enriched diets decreased the protein levels indicative of ER stress, such as glucose-regulated protein 78, p-eukaryotic translational initiation factor 2a and activating transcription factor 6. Dietary LC supplementation downregulated mRNA expression relative to FA synthesis, reduced liver lipid and relieved liver damage through regulating ß-oxidation and biogenesis of mitochondria and peroxisomes, as well as the ER stress pathway in fish fed with HFD. The present study provides the first evidence that dietary LC can improve lipid metabolism via simultaneously promoting FA ß-oxidation capability and suppressing the ER stress pathway in fish.


Subject(s)
Lipid Metabolism , Perciformes , Animals , Diet, High-Fat/adverse effects , Antioxidants/metabolism , Carnitine/metabolism , Liver/metabolism , Fatty Acids/metabolism , Perciformes/genetics , Endoplasmic Reticulum Stress , Lipids
7.
Cell Biol Toxicol ; 39(3): 729-749, 2023 06.
Article in English | MEDLINE | ID: mdl-34405320

ABSTRACT

Hepatocyte senescence is a key event participating in the progression of alcoholic liver disease. Autophagy is a critical biological process that controls cell fates by affecting cell behaviors like senescence. Pterostilbene is a natural compound with hepatoprotective potential; however, its implication for alcoholic liver disease was not understood. This study was aimed to investigate the therapeutic effect of pterostilbene on alcoholic liver disease and elucidate the potential mechanism. Our results showed that pterostilbene alleviated ethanol-triggered hepatocyte damage and senescence. Intriguingly, pterostilbene decreased the protein abundance of cellular communication network factor 1 (CCN1) in ethanol-exposed hepatocytes, which was essential for pterostilbene to execute its anti-senescent function. In vivo studies verified the anti-senescent effect of pterostilbene on hepatocytes of alcohol-intoxicated mice. Pterostilbene also relieved senescence-associated secretory phenotype (SASP), redox imbalance, and steatosis by suppressing hepatic CCN1 expression. Mechanistically, pterostilbene-forced CCN1 reduction was dependent on posttranscriptional regulation via autophagy machinery but not transcriptional regulation. To be specific, pterostilbene restored autophagic flux in damaged hepatocytes and activated p62-mediated selective autophagy to recognize and lead CCN1 to autolysosomes for degradation. The protein abundance of Sestrin2 (SESN2), a core upstream modulator of autophagy pathway, was decreased in ethanol-administrated hepatocytes but rescued by co-treatment with pterostilbene. Induction of SESN2 protein by pterostilbene rescued ethanol-triggered autophagic dysfunction in hepatocytes, which then reduced senescence-associated markers, postponed hepatocyte senescence, and relieved alcohol-caused liver injury and inflammation. In conclusion, this work discovered a novel compound pterostilbene with therapeutic implications for alcoholic liver disease and uncover its underlying mechanism.


Subject(s)
Ethanol , Hepatocytes , Mice , Animals , Ethanol/metabolism , Ethanol/pharmacology , Hepatocytes/metabolism , Liver , Autophagy
8.
Nucleic Acids Res ; 49(20): 11550-11559, 2021 11 18.
Article in English | MEDLINE | ID: mdl-34723343

ABSTRACT

Protein-mediated DNA looping is fundamental to gene regulation and such loops occur stochastically in purified systems. Additional proteins increase the probability of looping, but these probabilities maintain a broad distribution. For example, the probability of lac repressor-mediated looping in individual molecules ranged 0-100%, and individual molecules exhibited representative behavior only in observations lasting an hour or more. Titrating with HU protein progressively compacted the DNA without narrowing the 0-100% distribution. Increased negative supercoiling produced an ensemble of molecules in which all individual molecules more closely resembled the average. Furthermore, in only 12 min of observation, well within the doubling time of the bacterium, most molecules exhibited the looping probability of the ensemble. DNA supercoiling, an inherent feature of all genomes, appears to impose time-constrained, emergent behavior on otherwise random molecular activity.


Subject(s)
DNA, Superhelical/chemistry , DNA-Binding Proteins/metabolism , Escherichia coli Proteins/metabolism , Cell Division , DNA, Superhelical/genetics , DNA, Superhelical/metabolism , DNA-Binding Proteins/chemistry , Escherichia coli , Escherichia coli Proteins/chemistry , Nucleic Acid Conformation , Protein Binding
9.
Opt Express ; 30(22): 39932-39945, 2022 Oct 24.
Article in English | MEDLINE | ID: mdl-36298935

ABSTRACT

A novel physics- and data-driven deep-learning (PDDL) method is proposed to execute complete mode decomposition (MD) for few-mode fibers (FMFs). The PDDL scheme underlies using the embedded beam propagation model of FMF to guide the neural network (NN) to learn the essential physical features and eliminate unexpected features that conflict with the physical laws. It can greatly enhance the NN's robustness, adaptability, and generalization ability in MD. In the case of obtaining the real modal weights (ρ2) and relative phases (θ), the PDDL method is investigated both in theory and experiment. Numerical results show that the PDDL scheme eliminates the generalization defect of traditional DL-based MD and the error fluctuation is alleviated. Compared with the DL-based MD, in the 8-mode case, the errors of ρ2 and θ can be reduced by 12 times and 100 times for beam patterns that differ greatly from the training dataset. Moreover, the PDDL maintains high accuracy even in the 8-mode MD case with a practical maximum noise factor of 0.12. In terms of adaptation, with a large variation of the core radius and NA of the FMF, the error keeps lower than 0.43% and 2.08% for ρ2 and θ, respectively without regenerating new dataset and retraining NN. The experimental configuration is set up and verifies the accuracy of the PDDL-based MD. Results show that the correlation factor of the real and reconstructed beam patterns is higher than 98%. The proposed MD-scheme shows much potential in the application of practical modal coupling characterization and laser beam quality analysis.

10.
Br J Nutr ; : 1-14, 2022 Jul 11.
Article in English | MEDLINE | ID: mdl-35811407

ABSTRACT

The nutritional status experienced in the early development of life plays a vital role in the long-term metabolic state of the individual, which is known as nutritional programming. The present study investigated the long-term effects of vegetable oil (VO) nutritional programming during the early life of large yellow croaker. First, larvae were fed either a fish oil (FO) diet or a VO diet for 30 d. Subsequently, under the same conditions, all fish were fed a commercial diet for 90 d and thereafter challenged with an FO or VO diet for 30 d. The results showed that growth performance was significantly lower in larvae fed the VO diet than in those in fed the FO diet in the stimulus phase. Notably, VO nutritional history fish showed lower levels of liver lipids liver total triglycerides and serum nonesterified free fatty acids than the FO nutritional history fish when juveniles were challenged with the VO diet, which was consistent with the expression of lipogenesis-related genes and proteins. Moreover, the VO nutritional history fish showed lower liver damage and higher antioxidant capacity than FO nutritional history fish when challenged with the VO diet. In summary, this study showed that a short VO stimulus during the early life stage of large yellow croaker, had a long-term effect on lipid metabolism and the antioxidant system. Specifically, VO nutritional programming had a positive effect on alleviating abnormal lipid deposition on the liver, liver damage, and the reduction of hepatic antioxidant capacity caused by a VO diet.

11.
Br J Nutr ; 128(9): 1711-1719, 2022 11 14.
Article in English | MEDLINE | ID: mdl-34789344

ABSTRACT

A 30-d feeding trial was conducted to investigate effects of dietary eucommia ulmoides leaf extract (ELE) on growth performance, activities of digestive enzymes, antioxidant capacity, immunity, expression of inflammatory factors and feeding-related genes of large yellow croaker larvae. Five micro-diets were formulated with supplementation of 0 g kg-1 (the control), 5 g kg-1 (0·5 %), 10 g kg-1 (1·0 %) and 20 g kg-1 (2·0 %) of ELE, respectively. Results showed that the best growth performance was found in larvae fed the diet with 1·0 % ELE. Furthermore, ELE supplementation significantly increased the npy expression at 1·0 % dosage, while increased ghrelin in larvae at 0·5 % dosages. The activity of leucine aminopeptidase in larvae fed the diet with 1·0 % ELE was significantly higher than the control, while alkaline phosphatase was significantly upregulated in larvae fed the diet with 2·0 % ELE. A clear increase in total antioxidant capacity in larvae fed the diet with 1·0 % ELE was observed, whereas catalase activity was significantly higher in 1·0 % and 2·0 % ELE supplementation compared with the control. Larvae fed the diet with 1·0 % ELE had a significantly higher activities of lysozyme, total nitric oxide synthase and nitric oxide content than the control. Moreover, transcriptional levels of cox-2, il-1ß and il-6 were remarkably downregulated by the supplementation of 0·5-1·0 % ELE. This study demonstrated that the supplementation of 1·0 % ELE in diet could increase the growth performance of large yellow croaker larvae probably by promoting expression of feeding-related genes, enhancing antioxidant capacity and immunity and inhibiting expression of inflammatory factors.


Subject(s)
Eucommiaceae , Perciformes , Animals , Antioxidants/metabolism , Eucommiaceae/metabolism , Cytokines/metabolism , Larva , Diet , Plant Extracts/metabolism , Animal Feed/analysis , Dietary Supplements
12.
Appl Opt ; 61(34): 10214-10221, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36606783

ABSTRACT

In this paper, a ring-core trench-assisted few-mode bismuth-doped fiber amplifier (BDFA) is simulated on the basis of the three-energy level. The fiber is designed to support four modes of signal group transmission for practical considerations, including LP01, LP11, LP21, and LP31. The results suggest that (1) it is possible to obtain gain equalization of the three signal groups by using the LP21 mode pump independently, where the maximum difference in modal gain (MAX DMG) is about 0.9 dB, except for the LP31 mode signal; (2) by combining the LP01 and LP31 mode pumps, the average gain of the groups increases by 14%, and the MAX DMG decreases by nearly 60% (3.8 to 1.5 dB) compared to the LP01 pump alone; and (3) with the same combination of mode pumps, the ring-core BDFA (1.5 dB) achieves better gain equalization than the single-core BDFA (2.8 dB). The analysis is informative for the future development of a multimode BDFA.

13.
J Environ Manage ; 302(Pt B): 114089, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34775337

ABSTRACT

Maintaining ecosystem services (ESs) and reducing ecosystem degradation are important goals for achieving sustainable development. However, under the influence of various anthropogenic factors, the total ecosystem service value (ESV) of China continues to decline, and the detailed processes involved in this decline are unclear. In this paper, a new long-term annual land cover dataset (the Climate Change Initiative Land Cover or CCI-LC dataset) with a spatial resolution of 300 m was employed to estimate the ESV of China, and Bayesian spatiotemporal hierarchy models were built to examine the detailed patterns and anthropogenic driving factors. From 1992 to 2018, the total ESV of China fluctuated and decreased from 3265.3 to 3253.29 billion US$ at an average rate of 0.55 billion US$ per year. Furthermore, the model revealed the spatiotemporal variations in the ESV pattern, and simultaneously detected the influences of 9 variables related to economic factors, population, infrastructure, energy, agriculture and ecological restoration, providing a convenient and effective method for ESV spatiotemporal analysis. The results enrich our understanding of the detailed spatiotemporal variation and anthropogenic driving factors underlying the declining ESV in China. These findings have substantial guiding implications for adjusting ecological regulation policies.


Subject(s)
Conservation of Natural Resources , Ecosystem , Anthropogenic Effects , Bayes Theorem , China
14.
Aquac Nutr ; 2022: 4355182, 2022.
Article in English | MEDLINE | ID: mdl-36860430

ABSTRACT

A 30-day feeding trial was designed to investigate the physical properties of chitosan-coated microdiet (CCD) and the effect of CCD on survival, growth performance, activities of digestive enzymes, intestinal development, antioxidant capacity, and inflammatory response of large yellow croaker larvae (initial weight: 3.81 ± 0.20 mg). Four isonitrogenous (50% crude protein) and isolipidic (20% crude lipid) microdiets were prepared with different concentrations of chitosan wall material by spray drying method (0.00%, 0.30%, 0.60%, and 0.90%, weight (chitosan) : volume (acetic acid)). Results showed that the lipid encapsulation efficiency (control: 60.52%, Diet1: 84.63%, Diet2: 88.06%, Diet3: 88.65%) and nitrogen retention efficiency (control: 63.76%, Diet1: 76.14%, Diet2: 79.52%, Diet3: 84.68%) correlated positively with the concentration of wall material (P < 0.05). Furthermore, the loss rate of CCD was significantly lower than the uncoated diet. Larvae fed the diet with 0.60% CCD had significantly higher specific growth rate (13.52 and 9.95%/day) and survival rate (14.73 and 12.58%) compared to the control group (P < 0.05). Larvae fed the diet with 0.30% CCD had significantly higher trypsin activity in pancreatic segments than the control group (4.47 and 3.05 U/mg protein) (P < 0.05). Larvae fed the diet with 0.60% CCD had significantly higher activity of leucine aminopeptidase (7.29 and 4.77 mU/mg protein) and alkaline phosphatase (83.37 and 46.09 U/mg protein) in the brush border membrane than those of the control group (P < 0.05). The intestinal epithelial proliferation- and differentiation-related factors (zo-1, zo-2, and pcna) in larvae fed the diet with 0.30% CCD had higher expression than those of the control group (P < 0.05). When the concentration of wall material reached 0.90%, the larvae had significantly higher superoxide dismutase activity than that of the control group (27.27 and 13.72 U/mg protein) (P < 0.05). Meanwhile, malondialdehyde contents were significantly lower in larvae fed the diet with 0.90% CCD than that of the control group (8.79 and 6.79 nmol/mg protein) (P < 0.05). 0.30%~0.60% CCD significantly increased the activity of total nitric oxide synthase (2.31, 2.60, and 2.05 mU/mg protein) and inducible nitric oxide synthase (1.91, 2.01, and 1.63 mU/mg protein) and had significantly higher transcriptional levels of inflammatory factor genes (il-1ß, tnf-α, and il-6) than those of the control group (P < 0.05). The results indicated chitosan-coated microdiet had great potential in feeding large yellow croaker larvae in addition to reducing nutrition loss.

15.
Aquac Nutr ; 2022: 5508120, 2022.
Article in English | MEDLINE | ID: mdl-36860459

ABSTRACT

A 30-day feeding trial was conducted to determine the effects of dietary glycyrrhizin (GL) on survival, growth performance, expression of feeding-related genes, activities of digestive enzymes, antioxidant capacity, and expression of inflammatory factors of large yellow croaker larvae with an initial weight of 3.78 ± 0.27 mg. Four 53.80% crude protein and 16.40% crude lipid diets were formulated with supplementation of 0%, 0.005%, 0.01%, and 0.02% GL, respectively. Results indicated that larvae fed diets with GL had higher survival rate and specific growth rate than the control (P < 0.05). Compared with the control, the mRNA expression of orexigenic factor genes including neuropeptide Y (npy) and agouti-related protein (agrp) were significantly increased in larvae fed the diet with 0.005% GL, while the mRNA expression of anorexigenic factor genes including thyrotropin-releasing hormone (trh), cocaine and amphetamine regulated transcript (cart), and leptin receptor (lepr) were significantly decreased in larvae fed the diet with 0.005% GL (P < 0.05). The trypsin activity in larvae fed the diet with 0.005% GL was significantly higher than the control (P < 0.05). The alkaline phosphatase (AKP) activity in larvae fed the diet with 0.01% GL was significantly higher than the control (P < 0.05). A clear increase of total glutathione (T-GSH) content, activities of superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) was observed in larvae fed the diet with 0.01% GL compared with the control (P < 0.05). Moreover, the mRNA expression of interleukin-1ß (il-1ß) and interleukin-6 (il-6) (proinflammatory genes) in larvae fed the diet with 0.02% GL were significantly lower than the control (P < 0.05). In conclusion, the supplementation of 0.005% -0.01% GL could enhance the expression of orexigenic factor genes, activities of digestive enzymes and antioxidant capacity, ultimately improving the survival, and growth performance of large yellow croaker larvae.

16.
Fish Physiol Biochem ; 48(6): 1635-1648, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36178594

ABSTRACT

A 30-day feeding trial was conducted to investigate the effects of supplemental ferulic acid (FA) on survival, growth performance, digestive enzyme activities, antioxidant capacity and lipid metabolism of the large yellow croaker larvae (initial weight: 2.58 ± 0.30 mg). Four isonitrogenous and isolipidic micro-diets were formulated with graded levels of FA (0, 20, 40, and 80 mg/kg) and fed to the experimental larvae seven times daily. Results showed that larvae fed the diet with 40 mg/kg FA had significantly higher survival rate, while the specific growth rate was higher in larvae fed diets with 40 and 80 mg/kg FA than the control group (P < 0.05). Activities of trypsin in pancreatic segments (PS) and intestinal segments, lipase in PS and alkaline phosphatase in brush border membrane were significantly increased by supplementation of FA compared to the control group (P < 0.05). Supplementation of FA significantly increased activities of total superoxide dismutase and catalase, and reduced the malondialdehyde content compared to the control group (P < 0.05). Meanwhile, activities of lysozyme, total nitric oxide synthase and nitric oxide content were significantly improved by supplemental FA in diets. Furthermore, supplementation of 40 mg/kg FA reduced the triglyceride content in larval visceral mass probably through down-regulating expression of lipogenesis-related genes (scd1, fas and dgat2) and up-regulating expression of lipid catabolism-related genes (aco, cpt-1 and hl). In conclusion, appropriate supplementation of 40 mg/kg FA could improve the survival and growth performance of large yellow croaker larvae through increasing digestive function, antioxidant capacity and promoting lipid metabolism.


Subject(s)
Antioxidants , Perciformes , Animals , Antioxidants/metabolism , Lipid Metabolism , Larva/metabolism , Liver/metabolism , Diet , Perciformes/genetics , Animal Feed/analysis
17.
Angew Chem Int Ed Engl ; 61(45): e202210624, 2022 Nov 07.
Article in English | MEDLINE | ID: mdl-36121380

ABSTRACT

The [2+2] cycloaddition of allenes with alkenes is of much interest and importance as a straightforward route for the construction of four-membered carbocycles but has remained much underexplored to date. Herein we report for the first time the intermolecular regio- and diastereoselective formal [2+2] cycloaddition of a wide range of allenes with amino-functionalized alkenes by half-sandwich rare-earth catalysts. The reaction proceeded through an allene C(sp2 )-H activation mechanism initiated by the site-selective deprotonation of the allene unit by a rare-earth metal alkyl species followed by alkene insertion into the resulting metal-allenyl bond and the subsequent intramolecular cycloaddition to an allene C=C bond. This protocol offers a unique route for the synthesis of a new family of cyclobutane and cyclobutene derivatives which were difficult to access previously.

18.
Biophys J ; 120(16): 3242-3252, 2021 08 17.
Article in English | MEDLINE | ID: mdl-33974883

ABSTRACT

Our goal is to review the main theoretical models used to calculate free energy changes associated with common, torsion-induced conformational changes in DNA and provide the resulting equations hoping to facilitate quantitative analysis of both in vitro and in vivo studies. This review begins with a summary of work regarding the energy change of the negative supercoiling-induced B- to L-DNA transition, followed by a discussion of the energetics associated with the transition to Z-form DNA. Finally, it describes the energy changes associated with the formation of DNA curls and plectonemes, which can regulate DNA-protein interactions and promote cross talk between distant DNA elements, respectively. The salient formulas and parameters for each scenario are summarized in table format to facilitate comparison and provide a concise, user-friendly resource.


Subject(s)
DNA, Z-Form , DNA , DNA/genetics , DNA, Superhelical , Models, Theoretical , Nucleic Acid Conformation , Thermodynamics
19.
Small ; 17(40): e2102932, 2021 10.
Article in English | MEDLINE | ID: mdl-34472212

ABSTRACT

By leveraging the ability of bacteria to express therapeutic protein cytolysin A (ClyA) through plasmid transformation, a thermally-activated biohybrid (TAB@Au) is constructed by biomineralizing gold nanoparticles (AuNPs) on the E. coli surface. Due to the feature of anaerobic bacteria homing to tumor microenvironments, the bacteria-based antitumor vehicles can be efficaciously accumulated at tumor sites. Under NIR laser irradiation, the biomineralized AuNPs harvest transdermal photons and convert them into local heat for photothermal therapy. After that, the produced heat elicits the expression of ClyA for killing tumor cells. In vitro and in vivo experiments verify the conception that the current therapeutic modality greatly inhibits the proliferation of tumor cells. In terms of the spatial specificity and non-invasiveness of NIR laser, the bacteria-based phototherapy represents an appealing way for tumor therapy.


Subject(s)
Gold , Metal Nanoparticles , Cell Line, Tumor , Cytotoxins , Escherichia coli , Phototherapy
20.
Ecotoxicol Environ Saf ; 197: 110607, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32304922

ABSTRACT

Estimation of critical load (CL) is important for soil environmental management and pollution prevention. We developed a mass balance-based dynamic critical load (DCL) model, which improved the model performance, applicability and functionality compared with the traditional one. Paddy soils in two typical fields in central south China and two scenarios were chosen as case studies. The result of case study showed that atmospheric deposition was the main source of Cd, Cu, Pb, and Zn in the soils, with percentage contributions ranging from 59.9 to 79.8%. Crop uptake, particularly the rice straw harvest, was the primary output pathway, accounting for 35.1-71.2% of the total output flux. The critical loads also known as annual input limits (Imax) of heavy metals in the paddy soils were calculated by the developed DCL model. For example, the Imax of Cd was recommended as 0.05 kg ha-1 in the paddy soils under the default scenario for a protection period of 40 years, and that became 0.12 kg ha-1 and 0.17 kg ha-1 under the straw removal scenario in the two typical fields, respectively. The scenario simulation suggested that the straw removal strategy reduced the total concentrations of heavy metals (Ct) in the soils and notably increased the Imax. Meanwhile, the sensitivity analysis indicated that the changes of Ct and Imax can be controlled by adjusting the partition coefficient (Kd), plant uptake factor (PUF) and input flux. The mass balance-based DCL model provides a reference method to establish the standard for controlling heavy metal inputs to agricultural soil, this will be helpful to develop strategies for the prevention of soil contamination.


Subject(s)
Metals, Heavy/analysis , Soil Pollutants/analysis , Agriculture , Environmental Monitoring , Models, Theoretical , Oryza , Soil
SELECTION OF CITATIONS
SEARCH DETAIL