Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
Environ Res ; 214(Pt 3): 113965, 2022 11.
Article in English | MEDLINE | ID: mdl-35948145

ABSTRACT

Extraction of radionuclide contaminants from wastewater systems has recently drawn widespread attention, and then developing a novel and green extracting technology has also become an enormous challenge. Herein, a facile hydrothermal method was employed to fabricate cobalt-incorporated cryptomelane-type manganese oxide molecular sieve (Co-OMS-2) for extraction Eu(III) from wastewater under diverse experimental conditions. All kinds of characterized techniques, such as SEM, TEM, XRD, FTIR, BET, EDS and XPS had verified the qualified synthesis process and splendid structural features of the Co-OMS-2. The maximum adsorption capacity of Co-OMS-2 was 7.62 × 10-4 mol/g for Eu(III) at 298 K, which was superior than primarily traditional materials reported previous literatures. The high adsorption capacity of Eu(III) onto Co-OMS-2 was primarily attributed to high specific surface area and abundant surface functional groups, and the interactions were mainly contributed to strong surface complexation and electrostatic attraction. Under the condition of low pH, the outer-sphere surface complexation and cation exchange were primary mechanisms to Eu(III) adsorption onto Co-OMS-2 composites, while inner-sphere surface complexation was mainly assigned to Eu(III) adsorption onto Co-OMS-2 under the high pH sections. The Co-OMS-2 composite achieved equilibrium in a relatively short time, and this excellent performance was conducive to the treatment of Eu(III) under the extreme emergency conditions. In view of the extraordinary adsorption capacity and recycled reusability, the Co-OMS-2 composites can be as prospective adsorbents adopted for the extraction of Eu(III) in real wastewater management.


Subject(s)
Wastewater , Water Pollutants, Chemical , Adsorption , Cobalt , Europium/chemistry , Manganese Compounds/chemistry , Oxides , Water Pollutants, Chemical/analysis
2.
Environ Res ; 196: 110375, 2021 05.
Article in English | MEDLINE | ID: mdl-33130174

ABSTRACT

High background electrolyte and natural organic matter are favorable to migration of hazardous radionuclides in geochemical repository. Herein, Ca-Mg-Al layered double hydroxide coated onto graphene oxide (Ca-Mg-Al LDH/GO) composites were successfully synthesized, characterized and adopted to decontaminate Eu(III) and fulvic acid (FA) under diverse experimental conditions. Diverse concentration gradients and different addition sequences on Eu(III) and FA were also obtained, which revealed different interaction mechanisms. The experimental results displayed that the coexistence of FA and Eu(III) respectively promoted adsorption performance of Eu(III) and FA under the ternary systems. The acquired Ca-Mg-Al LDH/GO composites were adopted to remove Eu(III) and FA, which further illustrated excellent chemo-physical stability and adsorption capacity of 1.12 × 10-3 mol/g and 3.54 × 10-4 mol/g, respectively. The remarkable adsorption performances of Ca-Mg-Al LDH/GO were confirmed through kinetic procedures and depending-temperature isotherms, illustrating that the kinetics processes were simulated using pseudo-second-order pattern, and the adsorption isotherms were splendidly simulated using Langmuir pattern. XPS spectrum analysis revealed that these containing oxygen groups took significant part in the restricting of Eu(III) and FA onto the surfaces of Ca-Mg-Al LDH/GO composites. In view of experimental results, the Ca-Mg-Al LDH/GO composites can be as potential adsorbents with availably recycled reusability for the decontamination of Eu(III) and FA from nuclear fuel partition or nuclear wastewater systems.


Subject(s)
Europium , Wastewater , Adsorption , Benzopyrans , Graphite , Hydroxides
3.
Cell Physiol Biochem ; 42(2): 615-622, 2017.
Article in English | MEDLINE | ID: mdl-28595171

ABSTRACT

BACKGROUND/AIMS: Irisin is a peptide hormone cleaved from a plasma membrane protein fibronectin type III domain containing protein 5 (FNDC5). Emerging studies have indicated association between serum irisin and many major chronic diseases including cardiovascular diseases. However, the role of serum irisin as a predictor for mortality risk in acute heart failure (AHF) patients is not clear. METHODS: AHF patients were enrolled and serum was collected at the admission and all patients were followed up for 1 year. Enzyme-linked immunosorbent assay was used to measure serum irisin levels. To explore predictors for AHF mortality, the univariate and multivariate logistic regression analysis, and receiver-operator characteristic (ROC) curve analysis were used. To determine the role of serum irisin levels in predicting survival, Kaplan-Meier survival analysis was used. RESULTS: In this study, 161 AHF patients were enrolled and serum irisin level was found to be significantly higher in patients deceased in 1-year follow-up. The univariate logistic regression analysis identified 18 variables associated with all-cause mortality in AHF patients, while the multivariate logistic regression analysis identified 2 variables namely blood urea nitrogen and serum irisin. ROC curve analysis indicated that blood urea nitrogen and the most commonly used biomarker, NT-pro-BNP, displayed poor prognostic value for AHF (AUCs ≤ 0.700) compared to serum irisin (AUC = 0.753). Kaplan-Meier survival analysis demonstrated that AHF patients with higher serum irisin had significantly higher mortality (P<0.001). CONCLUSION: Collectively, our study identified serum irisin as a predictive biomarker for 1-year all-cause mortality in AHF patients though large multicenter studies are highly needed.


Subject(s)
Biomarkers/blood , Fibronectins/blood , Heart Failure/blood , Prognosis , Aged , Female , Heart Failure/mortality , Heart Failure/pathology , Humans , Kaplan-Meier Estimate , Male , Middle Aged
4.
Cell Physiol Biochem ; 41(3): 865-874, 2017.
Article in English | MEDLINE | ID: mdl-28214846

ABSTRACT

BACKGROUND/AIMS: Identification of novel biomarkers to identify acute heart failure (AHF) patients at high risk of mortality is an area of unmet clinical need. Recently, we reported that the baseline level of circulating miR-30d was associated with left ventricular remodeling in response to cardiac resynchronization therapy in advanced chronic heart failure patients. However, the role of circulating miR-30d as a prognostic marker of survival in patients with AHF has not been explored. METHODS: Patients clinically diagnosed with AHF were enrolled and followed up for 1 year. Quantitative reverse transcription polymerase chain reactions were used to determine serum miR-30d levels. The univariate logistic regression analysis and multivariate logistic regression analysis were used to determine the predictors for all-cause mortality in AHF patients. Kaplan-Meier survival analysis was used to analyze the role of miR-30d in prediction of survival. RESULTS: A total of 96 AHF patients were enrolled and followed up for 1 year. Serum miR-30d was significantly lower in AHF patients who expired in the one year follow-up period compared to those who survived. Univariate logistic regression analysis yielded 18 variables that were associated with all-cause mortality in AHF patients, while the multivariate logistic regression analysis identified 4 variables including heart rate, hemoglobin, serum sodium, and serum miR-30d level associated with mortality. ROC curve analysis showed that hemoglobin, heart rate and serum sodium displayed poor prognostic value for AHF (AUCs not higher than 0.700) compared to miR-30d level (AUC = 0.806). Kaplan-Meier survival analysis confirmed that patients with higher serum miR-30d levels had significantly lower mortality (P=0.001). CONCLUSION: In conclusion, this study shows evidence for the predictive value of circulating miR-30d as 1-year all-cause mortality in AHF patients. Large multicentre studies are further needed to validate our findings and accelerate the transition to clinical utilization.


Subject(s)
Heart Failure/blood , Heart Failure/diagnosis , MicroRNAs/blood , Ventricular Remodeling , Acute Disease , Aged , Area Under Curve , Biomarkers/blood , Female , Heart Failure/mortality , Heart Failure/physiopathology , Heart Rate , Hemoglobins/metabolism , Humans , Kaplan-Meier Estimate , Logistic Models , Male , Middle Aged , Prognosis , Prospective Studies , ROC Curve , Sodium/blood
5.
Langmuir ; 33(1): 75-81, 2017 01 10.
Article in English | MEDLINE | ID: mdl-27997205

ABSTRACT

The Laplace pressure of a droplet placed on one side of an elastic thin film can cause significant deformation in the form of a bulge on its opposite side. Here, we show that this deformation can be detected by other droplets suspended on the opposite side of the film, leading to interaction between droplets separated by the solid (but deformable) film. The interaction is repulsive when the drops have a large overlap and attractive when they have a small overlap. Thus, if two identical droplets are placed right on top of each other (one on either side of the thin film), they tend to repel each other, eventually reaching an equilibrium configuration where there is a small overlap. This observation can be explained by analyzing the energy landscape of the droplets interacting via an elastically deformed film. We further demonstrate this idea by designing a pattern comprising a big central drop with satellite droplets. This phenomenon can lead to techniques for directed motion of droplets confined to one side of a thin elastic membrane by manipulations on the other side.

6.
Int Heart J ; 58(3): 409-415, 2017 May 31.
Article in English | MEDLINE | ID: mdl-28496020

ABSTRACT

To investigate parameters which were related with long-term mortality in patients hospitalized for acute heart failure (AHF).A total of 287 patients with AHF presenting to the First Affiliated Hospital of Nanjing Medical University were enrolled into the registry from April 2012 to January 2015. The primary endpoint was all-cause mortality within 1 year; the association between variables and prognosis was assessed after 1 year.Among the 287 patients, 17 did not continue follow-up and 47 (17.4%) passed away. Baseline NT-proBNP and sST2 concentrations were higher amongst deceased than among survivors (P < 0.001). Serum sodium concentrations of patients who died were lower (P < 0.001). In receiver operator characteristics (ROC) analyses, the area under the curve (AUC) values for NT-proBNP, sST2, and serum sodium to predict 1-year mortality were 0.699 (95%CI 0.639-0.755), 0.692, (95%CI 0.634-0.747), and 0.694 (95%CI 0.634-0.750), respectively. The optimal cut-off points for NT-proBNP, sST2, and serum sodium were 2137.0 ng/L, 35.711 ng/mL, and 136.6 mmol/L, respectively. In Cox regression analysis, ln-transformed NT-proBNP (HR 1.546, P = 0.039), ln-transformed sST2 (HR1.542, P = 0.049), and serum sodium (HR 0.880, P = 0.000) values reliably predicted long-term mortality after multivariable adjustment.In patients with acute heart failure, NT-proBNP, sST2 and serum sodium are potential predictors of 1-year mortality.


Subject(s)
Heart Failure/mortality , Inpatients , Risk Assessment/methods , Acute Disease , Aged , Biomarkers/blood , China/epidemiology , Female , Follow-Up Studies , Heart Failure/blood , Hospital Mortality/trends , Humans , Interleukin-1 Receptor-Like 1 Protein/blood , Male , Middle Aged , Natriuretic Peptide, Brain/blood , Peptide Fragments/blood , Prognosis , ROC Curve , Retrospective Studies , Sodium/blood , Survival Rate/trends , Time Factors
7.
Soft Matter ; 12(23): 5121-6, 2016 Jun 21.
Article in English | MEDLINE | ID: mdl-27189735

ABSTRACT

We developed an indentation technique to measure the surface tension of relatively stiff solids. In the proposed method, a suspended thin solid film is indented by a rigid sphere and its deflection is measured by optical interferometry. The film deflection is jointly resisted by surface tension, elasticity and residual stress. Using a version of nonlinear von Karman plate theory that includes surface tension, we are able to separate the contribution of elasticity to the total tension in the film. Surface tension is determined by extrapolating the sum of surface tension and residual stress to zero film thickness. We measured the surface tension of polydimethylsiloxane (PDMS) using this technique and obtained a value of 19.5 ± 3.6 mN m(-1), consistent with the surface energy of PDMS reported in the literature.

8.
Soft Matter ; 10(26): 4625-32, 2014 Jul 14.
Article in English | MEDLINE | ID: mdl-24832644

ABSTRACT

In problems of indentation of an elastic half-space by a rigid sphere, the effects of surface tension outside the contact zone are not accounted for by classical theories of contact mechanics. However surface tension plays a dominant role in determining the mechanics of this adhesive contact when the half-space becomes very compliant and the sphere is very small. Using a finite element method (FEM), we present a numerical solution of such a problem, showing the transition between the classical Johnson-Kendall-Roberts (JKR) deformation and a liquid-like deformation in the absence of external load and gravity. The numerical model is in good agreement with previous experiments [R. W. Style et al., Nat. Commun., 2013, 4, 2728].

9.
Soft Matter ; 10(23): 4084-90, 2014 Jun 21.
Article in English | MEDLINE | ID: mdl-24736874

ABSTRACT

We measured the shape change of periodic ridge surface profiles in gelatin organogels resulting from deformation driven by their solid-vapor surface stress. A gelatin organogel was molded onto poly-dimethylsiloxane (PDMS) masters having ridge heights of 1.7 and 2.7 µm and several periodicities. Gel replicas were found to have a shape deformed significantly compared to their PDMS master. Systematically larger deformations in gels were measured for lower elastic moduli. Measuring the elastic modulus independently, we estimate a surface stress of 107 ± 7 mN m(-1) for the organogels in solvent composed of 70 wt% glycerol and 30 wt% water. Shape changes are in agreement with a small strain linear elastic theory. We also measured the deformation of deeper ridges (with height 13 µm), and analysed the resulting large surface strains using finite element analysis.

10.
Dalton Trans ; 53(38): 15849-15858, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39290138

ABSTRACT

This work details the synthesis and characterization of low-coordinate Zn(II)-based organocations [(NHC)Zn(R)]+ incorporating extremely bulky NHCs [ITr] and [IAd] ([ITr] = ([ITr] = [(HCNCPh3)2C:]; [IAd] = [(HCNAd)2C:], Ad = adamantyl)). Their structural features and particularities are thoroughly assessed as well as their air and water tolerance. Neutral ITr and IAd adducts [(ITr)Zn(R)2] (1, R = Me; 2, R = Et) and [(IAd)Zn(R)2] (3, R = Me; 4, R = Et) were synthesized by reaction of carbene [ITr] or [IAd] with a stoichiometric amount of [ZnR2] and isolated in good yields. Despite the steric bulk of [ITr] and [IAd], neutral compounds 1-4 are robust and the solid state structure of adduct 3 was established through X-ray crystallographic studies as a trigonal monomer Zn(II) species. Adducts 1-4 may readily be ionized by [Ph3C][B(C6F5)4] to afford two-coordinate Zn(II) alkyl cations [(ITr)Zn(Me)]+ ([5]+) and [(ITr)Zn(Et)]+ ([6]+), [(IAd)Zn(Me)]+ ([7]+) and [(IAd)Zn(Me)]+ ([8]+), all isolated in high yields (>80%) as [B(C6F5)4]- salts, which were fully characterized. Remarkably, cation [(ITr)Zn(C6F5)]+ ([9]+), prepared by reaction of [5][B(C6F5)4] with [B(C6F5)3], features π-arene interactions with the electrophilic Zn(II), as deduced from solid state data and further completed by DFT-estimated non-covalent interactions (NCI), indicating that [ITr] may provide substantial steric and electrostatic stabilization. The latter certainly explains the remarkable stability of [(ITr)Zn(C6F5)]+ ([9]+) towards hydrolysis at RT, as it only coordinates H2O to afford an unprecedented stable Zn-OH2 organocation [10]+. Also noteworthy, H2O coordination is reversible allowing recovery of [(ITr)Zn(C6F5)]+ cation, even after prolonged air exposure. Yet, controlled hydrolysis of [(ITr)Zn(C6F5)]+ may occur upon heating with selective protonolysis of the Zn-C6F5 bond to afford structurally characterized dication [(ITr)Zn(OH)]22+ [11]2+. Interestingly, despite steric hindrance, the air-/water-tolerant cation [(ITr)Zn(C6F5)]+ is an effective CO2 hydrosilylation catalyst, and was also shown to mediate imine hydrogenation catalysis.

11.
Environ Int ; 186: 108638, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38593689

ABSTRACT

Microplastics (MPs) are pervasive pollutants in the natural environment and contribute to increased levels of illness in both animals and humans. However, thespecific impacts of MPs on skin damage and alopeciaare not yet well understood. In this study, we have examined the effects of two types of polystyrene MPs (pristine and aged) on skin and hair follicle damage in mice. UV irradiation changed the chemical and physical properties of the aged MPs, including functional groups, surface roughness, and contact angles. In both in vivo and in vitro experiments, skin and cell injuries related to oxidative stress, apoptosis, tight junctions (TJs), alopecia, mitochondrial dysfunction, and other damages were observed. Mechanistically, MPs and aged MPs can induce TJs damage via the oxidative stress pathway and inhibition of antioxidant-related proteins, and this can lead to alopecia. The regulation of cell apoptosis was also observed, and this is involved in the ROS-mediated mitochondrial signaling pathway. Importantly, aged MPs showed exacerbated toxicity, which may be due to their elevated surface irregularities and altered chemical compositions. Collectively, this study suggests a potential therapeutic approach for alopecia and hair follicle damage caused by MPs pollution.


Subject(s)
Alopecia , Apoptosis , Microplastics , Oxidative Stress , Polystyrenes , Skin , Tight Junctions , Alopecia/chemically induced , Microplastics/toxicity , Oxidative Stress/drug effects , Apoptosis/drug effects , Animals , Mice , Polystyrenes/toxicity , Tight Junctions/drug effects , Tight Junctions/metabolism , Skin/drug effects , Skin/pathology , Hair Follicle/drug effects , Reactive Oxygen Species/metabolism
12.
Langmuir ; 29(27): 8665-74, 2013 Jul 09.
Article in English | MEDLINE | ID: mdl-23750547

ABSTRACT

Surface tension and gravity, whose influence on the deformation of conventional engineering materials is negligible, become important for soft materials that are typically used in the microfabrication of devices such as microfluidic channels. Although for soft materials the shape change due to these forces can be large, it is often neglected in the design processes. To capture conditions under which the influence of these forces is important, we propose a deformation map in which the shape change is captured by two dimensionless material parameters. Our idea is demonstrated by simulating the large deformation of a short circular cylinder made of a neo-Hookean material in frictionless contact with a rigid substrate. These simulations are carried out using a finite element model that accounts for surface tension and gravity. Our model integrates the two different approaches typically used to determine the shape change of solids and liquid drops in contact with a substrate.


Subject(s)
Elastomers/chemistry , Hydrogels/chemistry , Particle Size , Surface Tension
13.
Front Cell Dev Biol ; 11: 1278278, 2023.
Article in English | MEDLINE | ID: mdl-38033857

ABSTRACT

Hair follicle (HF) homeostasis is regulated by various signaling pathways. Disruption of such homeostasis leads to HF disorders, such as alopecia, pigment loss, and hair aging, which is causing severe health problems and aesthetic concerns. Among these disorders, hair aging is characterized by hair graying, hair loss, hair follicle miniaturization (HFM), and structural changes to the hair shaft. Hair aging occurs under physiological conditions, while premature hair aging is often associated with certain pathological conditions. Numerous investigations have been made to determine the mechanisms and explore treatments to prevent hair aging. The most well-known hypotheses about hair aging include oxidative stress, hormonal disorders, inflammation, as well as DNA damage and repair defects. Ultimately, these factors pose threats to HF cells, especially stem cells such as hair follicle stem cells, melanocyte stem cells, and mesenchymal stem cells, which hamper hair regeneration and pigmentation. Here, we summarize previous studies investigating the above mechanisms and the existing therapeutic methods for hair aging. We also provide insights into hair aging research and discuss the limitations and outlook.

14.
Cell Prolif ; 56(11): e13489, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37150846

ABSTRACT

The skin is a multi-layered structure composed of the epidermis, dermis and hypodermis. The epidermis originates entirely from the ectoderm, whereas the dermis originates from various germ layers depending on its anatomical location; thus, there are different developmental patterns of the skin. Although the regulatory mechanisms of epidermal formation are well understood, mechanisms regulating dermis development are not clear owing to the complex origin. It has been shown that several morphogenetic pathways regulate dermis development. Of these, transforming growth factor-ß (TGF-ß) and fibroblast growth factor (FGF) signalling pathways are the main modulators regulating skin cell induction, fate decision, migration and differentiation. Recently, the successful generation of human skin by modulating TGF-ß and FGF signals further demonstrated the irreplaceable roles of these pathways in skin regeneration. This review provides evidence of the role of TGF-ß and FGF signalling pathways in the development of different skin layers, especially the disparate dermis of different body regions. This review also provides new perspectives on the distinct developmental patterns of skin and explores new ideas for clinical applications in the future.


Subject(s)
Skin , Transforming Growth Factor beta , Humans , Transforming Growth Factor beta/metabolism , Skin/metabolism , Cell Differentiation , Epidermis/metabolism , Signal Transduction , Fibroblast Growth Factors/metabolism
15.
Nat Commun ; 14(1): 6853, 2023 10 27.
Article in English | MEDLINE | ID: mdl-37891329

ABSTRACT

Although the gut microbiota has been reported to influence osteoporosis risk, the individual species involved, and underlying mechanisms, remain largely unknown. We performed integrative analyses in a Chinese cohort of peri-/post-menopausal women with metagenomics/targeted metabolomics/whole-genome sequencing to identify novel microbiome-related biomarkers for bone health. Bacteroides vulgatus was found to be negatively associated with bone mineral density (BMD), which was validated in US white people. Serum valeric acid (VA), a microbiota derived metabolite, was positively associated with BMD and causally downregulated by B. vulgatus. Ovariectomized mice fed B. vulgatus demonstrated increased bone resorption and poorer bone micro-structure, while those fed VA demonstrated reduced bone resorption and better bone micro-structure. VA suppressed RELA protein production (pro-inflammatory), and enhanced IL10 mRNA expression (anti-inflammatory), leading to suppressed maturation of osteoclast-like cells and enhanced maturation of osteoblasts in vitro. The findings suggest that B. vulgatus and VA may represent promising targets for osteoporosis prevention/treatment.


Subject(s)
Bone Resorption , Gastrointestinal Microbiome , Osteoporosis , Humans , Female , Mice , Animals
16.
Biomolecules ; 12(11)2022 11 19.
Article in English | MEDLINE | ID: mdl-36421729

ABSTRACT

Cardiovascular stents enable the rapid re-endothelialization of endothelial cells (ECs), and the constant suppression of smooth muscle cell (SMC) proliferation has been proved to effectively prevent thrombosis. However, the development and application of such stents are still insufficient due the delayed re-endothelialization progress, as well as the poor durability of the SMC inhibition. In this paper, we developed a mussel-inspired coating with the ability for the dual delivery of both growth factor (e.g., platelet-derived growth factor, PDGF) and therapeutic gas (e.g., nitric oxide, NO) for thrombosis prevention. We firstly synthesized the mussel-inspired co-polymer (DMHM) of dopamine methacrylamide (DMA) and hydroxyethyl methacrylate (HEMA) and then coated the DMHM on 316L SS stents combined with CuII. Afterwards, we immobilized the PDGF on the DMHM-coated stent and found that the PDGF could be released in the first 3 days to enhance the recruitment, proliferation, and migration of human umbilical vein endothelial cells (HUVECs) to promote re-endothelialization. The CuII could be "sealed" in the DMHM coating, with extended durability (2 months), with the capacity for catalyzed NO generation for up to 2 months to suppress the proliferation of SMCs. Such a stent surface modification strategy could enhance the development of the cardiovascular stents for thrombosis prevention.


Subject(s)
Fibrinolytic Agents , Intercellular Signaling Peptides and Proteins , Nitric Oxide , Thrombosis , Humans , Fibrinolytic Agents/pharmacology , Human Umbilical Vein Endothelial Cells , Intercellular Signaling Peptides and Proteins/therapeutic use , Nitric Oxide/therapeutic use , Stents , Thrombosis/prevention & control , Thrombosis/metabolism
17.
Stem Cell Rev Rep ; 18(6): 1912-1925, 2022 08.
Article in English | MEDLINE | ID: mdl-35143021

ABSTRACT

Cellular differentiation, the fundamental hallmark of cells, plays a critical role in homeostasis. And stem cells not only regulate the process where embryonic stem cells develop into a complete organism, but also replace ageing or damaged cells by proliferation, differentiation and migration. In characterizing distinct subpopulations of skin epithelial cells, stem cells show large heterogeneity and plasticity for homeostasis, wound healing and tumorigenesis. Epithelial stem cells and committed progenitors replenish each other or by themselves owing to the remarkable plasticity and heterogeneity of epidermal cells under certain circumstance. The development of new assay methods, including single-cell RNA sequence, lineage tracing assay, intravital microscopy systems and photon-ablation assay, highlight the plasticity of epidermal stem cells in response to injure and tumorigenesis. However, the critical mechanisms and key factors that regulate cellular plasticity still need for further exploration. In this review, we discuss the recent insights about the heterogeneity and plasticity of epithelial stem cells in homeostasis, wound healing and skin tumorigenesis. Understanding how stem cells collaborate together to repair injury and initiate tumor will offer new solutions for relevant diseases. Schematic abstract of cellular heterogeneity and plasticity of skin epithelial cells in wound healing and tumorigenesis.


Subject(s)
Skin , Wound Healing , Carcinogenesis/pathology , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/pathology , Epithelial Cells , Humans , Skin/pathology , Stem Cells
18.
Oxid Med Cell Longev ; 2022: 9774570, 2022.
Article in English | MEDLINE | ID: mdl-36160702

ABSTRACT

Sarcopenia is an age-related accelerated loss of muscle strength and mass. Bone and muscle are closely related as they are physically adjacent, and bone can influence muscle. However, the temporal association between bone mineral density (BMD) and muscle mass in different regions of the body after adjustment for potential indicators and the mechanisms by which bone influences muscle in sarcopenia remain unclear. Therefore, this study aimed to explore the temporal association between muscle mass and BMD in different regions of the body and mechanisms by which bone regulates muscle in sarcopenia. Here, cross-lagged models were utilized to analyze the temporal association between BMD and muscle mass. We found that low-density lipoprotein (LDL-C) positively predicted appendicular lean mass. Mean whole-body BMD (WBTOT BMD), lumbar spine BMD (LS BMD), and pelvic BMD (PELV BMD) temporally and positively predicted appendicular lean mass, and appendicular lean mass temporally and positively predicted WBTOT BMD, LS BMD, and PELV BMD. Moreover, this study revealed that primary mice femur osteoblasts, but not primary mice skull osteoblasts, induced differentiation of C2C12 myoblasts through exosomes. Furthermore, the level of long noncoding RNA (lncRNA) taurine upregulated 1 (TUG1) was decreased, and the level of lncRNA differentiation antagonizing nonprotein coding RNA (DANCR) was increased in skull osteoblast-derived exosomes, the opposite of femur osteoblast-secreted exosomes. In addition, lncRNA TUG1 enhanced and lncRNA DANCR suppressed the differentiation of myoblasts through regulating the transcription of oxidative stress-related myogenin (Myog) gene by modifying the binding of myogenic factor 5 (Myf5) to the Myog gene promoter via affecting the nuclear translocation of Myf5. The results of the present study may provide novel diagnostic biomarkers and therapeutic targets for sarcopenia.


Subject(s)
Exosomes , RNA, Long Noncoding , Sarcopenia , Absorptiometry, Photon/methods , Animals , Biomarkers , Body Composition/physiology , Bone Density , Cholesterol, LDL , Mice , Myoblasts , Myogenic Regulatory Factor 5 , Myogenin , Osteoblasts , Oxidative Stress , RNA, Long Noncoding/genetics , Sarcopenia/genetics , Taurine
19.
Dalton Trans ; 50(29): 10059-10066, 2021 Jul 27.
Article in English | MEDLINE | ID: mdl-34169948

ABSTRACT

A hierarchical hollow Ni/Co-codoped MoS2 architecture was successfully prepared using a Ni/Co Prussian Blue analogue as the precursor followed by the solvothermal-assisted insertion of MoS42- and extraction of [Co(CN)6]3- at 200 °C for 32 h. The obtained Ni/Co-codoped MoS2 composite exhibited a hollow microcubic structural characteristic, and the morphology, structure, and chemical compositions were carefully characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS), respectively. The Ni/Co-codoped MoS2 composite used as an electrode material featured excellent glucose sensing activity and a high sensitivity of 2546 µA mM-1 cm-2 with a relatively low detection limit of 0.69 µM (S/N = 3). In addition, the Ni/Co-codoped MoS2 composite showed good anti-interference sensing performance in the presence of ascorbic acid (AA), lysine (Lys), cysteine (Cys), urea, H2O2, KCl, and other interferents. These experimental results revealed that the composite is a promising electrode material for enzyme-free glucose sensing, and the feasible synthetic strategy may provide an effective and controlled route to prepare other multi-metal substituted sulfide-based hierarchical structures with high electrochemical sensing performance.


Subject(s)
Blood Glucose/analysis , Cobalt/chemistry , Glucose/analysis , Isotopes/chemistry , Molybdenum/chemistry , Nickel/chemistry , Sulfides/chemistry , Animals , Carbon , Cattle , Electrodes , Glucose/chemistry
20.
Dalton Trans ; 50(39): 13748-13755, 2021 Oct 12.
Article in English | MEDLINE | ID: mdl-34519736

ABSTRACT

Non-enzymatic glucose sensors based on metal oxides are receiving remarkable attention owing to their outstanding characteristics of being easy-to use, low cost, and reusability. However, the disadvantage of weak anti-interference associated with poor selectivity significantly restricts their applicability. Herein, we report a two-step in situ fabrication of nanosized CuO encapsulated Ni/Co bimetal Prussian blue (PB) with a typical core-shell structure, which can be efficiently used for non-enzymatic glucose detection, ascribing to the permeability and abundant active sites of out-shelled crystalline porous Ni/Co PB and the high catalytic activity and conductivity of embedded CuO nanoparticles, afforded by their mutual synergistic interactions. The glassy carbon electrode modified with the hybrid of the CuO-encapsulated Ni/Co PB (simplified as the Ni/Co-PB/CuO/GCE electrode) exhibited a high glucose sensitivity of 600 µA mM-1 cm-2 with a low detection limit of 0.69 µM (S/N = 3), a fast response time (less than 3 s), and excellent long-term stability. In addition, the CuO-encapsulated Ni/Co PB showed favorable anti-interference ability in the presence of ascorbic acid (AA), L-lysine (Lys), dopamine (DA), cysteine (Cys), dopamine (DA), and KCl interferences. The reusability and long-term stability, as well as the practicability of the Ni/Co-PB/CuO/GCE sensing electrode verified by testing real serum samples were also investigated, and the experimental results demonstrated the applicability of the core-shell NiCo-PB/CuO based flexible electrochemical sensor for non-enzymatic glucose sensing in practical applications.


Subject(s)
Copper
SELECTION OF CITATIONS
SEARCH DETAIL