Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Brief Bioinform ; 24(6)2023 09 22.
Article in English | MEDLINE | ID: mdl-37935617

ABSTRACT

Single-cell clustering is a critical step in biological downstream analysis. The clustering performance could be effectively improved by extracting cell-type-specific genes. The state-of-the-art feature selection methods usually calculate the importance of a single gene without considering the information contained in the gene expression distribution. Moreover, these methods ignore the intrinsic expression patterns of genes and heterogeneity within groups of different mean expression levels. In this work, we present a Feature sElection method based on gene Expression Decomposition (FEED) of scRNA-seq data, which selects informative genes to enhance clustering performance. First, the expression levels of genes are decomposed into multiple Gaussian components. Then, a novel gene correlation calculation method is proposed to measure the relationship between genes from the perspective of distribution. Finally, a permutation-based approach is proposed to determine the threshold of gene importance to obtain marker gene subsets. Compared with state-of-the-art feature selection methods, applying FEED on various scRNA-seq datasets including large datasets followed by different common clustering algorithms results in significant improvements in the accuracy of cell-type identification. The source codes for FEED are freely available at https://github.com/genemine/FEED.


Subject(s)
Gene Expression Profiling , Single-Cell Analysis , Gene Expression Profiling/methods , Sequence Analysis, RNA/methods , Single-Cell Analysis/methods , Algorithms , Cluster Analysis , Gene Expression
2.
Bioinformatics ; 39(39 Suppl 1): i368-i376, 2023 06 30.
Article in English | MEDLINE | ID: mdl-37387178

ABSTRACT

MOTIVATION: Single-cell RNA sequencing (scRNA-seq) offers a powerful tool to dissect the complexity of biological tissues through cell sub-population identification in combination with clustering approaches. Feature selection is a critical step for improving the accuracy and interpretability of single-cell clustering. Existing feature selection methods underutilize the discriminatory potential of genes across distinct cell types. We hypothesize that incorporating such information could further boost the performance of single cell clustering. RESULTS: We develop CellBRF, a feature selection method that considers genes' relevance to cell types for single-cell clustering. The key idea is to identify genes that are most important for discriminating cell types through random forests guided by predicted cell labels. Moreover, it proposes a class balancing strategy to mitigate the impact of unbalanced cell type distributions on feature importance evaluation. We benchmark CellBRF on 33 scRNA-seq datasets representing diverse biological scenarios and demonstrate that it substantially outperforms state-of-the-art feature selection methods in terms of clustering accuracy and cell neighborhood consistency. Furthermore, we demonstrate the outstanding performance of our selected features through three case studies on cell differentiation stage identification, non-malignant cell subtype identification, and rare cell identification. CellBRF provides a new and effective tool to boost single-cell clustering accuracy. AVAILABILITY AND IMPLEMENTATION: All source codes of CellBRF are freely available at https://github.com/xuyp-csu/CellBRF.


Subject(s)
Benchmarking , Random Forest , Cell Differentiation , Cluster Analysis
3.
Brief Bioinform ; 22(6)2021 11 05.
Article in English | MEDLINE | ID: mdl-34131702

ABSTRACT

In single-cell RNA-seq (scRNA-seq) data analysis, a fundamental problem is to determine the number of cell clusters based on the gene expression profiles. However, the performance of current methods is still far from satisfactory, presumably due to their limitations in capturing the expression variability among cell clusters. Batch effects represent the undesired variability between data measured in different batches. When data are obtained from different labs or protocols batch effects occur. Motivated by the practice of batch effect removal, we considered cell clusters as batches. We hypothesized that the number of cell clusters (i.e. batches) could be correctly determined if the variances among clusters (i.e. batch effects) were removed. We developed a new method, namely, removal of batch effect and testing (REBET), for determining the number of cell clusters. In this method, cells are first partitioned into k clusters. Second, the batch effects among these k clusters are then removed. Third, the quality of batch effect removal is evaluated with the average range of normalized mutual information (ARNMI), which measures how uniformly the cells with batch-effects-removal are mixed. By testing a range of k values, the k value that corresponds to the lowest ARNMI is determined to be the optimal number of clusters. We compared REBET with state-of-the-art methods on 32 simulated datasets and 14 published scRNA-seq datasets. The results show that REBET can accurately and robustly estimate the number of cell clusters and outperform existing methods. Contact: H.D.L. (hongdong@csu.edu.cn) or Q.S.X. (qsxu@csu.edu.cn).


Subject(s)
Cluster Analysis , RNA-Seq/methods , Single-Cell Analysis/methods , Algorithms , Databases, Genetic , Reproducibility of Results
4.
Bioinformatics ; 36(22-23): 5456-5464, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33331887

ABSTRACT

MOTIVATION: Emerging evidence presents that traditional drug discovery experiment is time-consuming and high costs. Computational drug repositioning plays a critical role in saving time and resources for drug research and discovery. Therefore, developing more accurate and efficient approaches is imperative. Heterogeneous graph inference is a classical method in computational drug repositioning, which not only has high convergence precision, but also has fast convergence speed. However, the method has not fully considered the sparsity of heterogeneous association network. In addition, rough similarity measure can reduce the performance in identifying drug-associated indications. RESULTS: In this article, we propose a heterogeneous graph inference with matrix completion (HGIMC) method to predict potential indications for approved and novel drugs. First, we use a bounded matrix completion (BMC) model to prefill a part of the missing entries in original drug-disease association matrix. This step can add more positive and formative drug-disease edges between drug network and disease network. Second, Gaussian radial basis function (GRB) is employed to improve the drug and disease similarities since the performance of heterogeneous graph inference more relies on similarity measures. Next, based on the updated drug-disease associations and new similarity measures of drug and disease, we construct a novel heterogeneous drug-disease network. Finally, HGIMC utilizes the heterogeneous network to infer the scores of unknown association pairs, and then recommend the promising indications for drugs. To evaluate the performance of our method, HGIMC is compared with five state-of-the-art approaches of drug repositioning in the 10-fold cross-validation and de novo tests. As the numerical results shown, HGIMC not only achieves a better prediction performance but also has an excellent computation efficiency. In addition, cases studies also confirm the effectiveness of our method in practical application. AVAILABILITYAND IMPLEMENTATION: The HGIMC software and data are freely available at https://github.com/BioinformaticsCSU/HGIMC, https://hub.docker.com/repository/docker/yangmy84/hgimc and http://doi.org/10.5281/zenodo.4285640. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

5.
Nat Commun ; 15(1): 7561, 2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39215003

ABSTRACT

Single-cell RNA sequencing (scRNA-seq) technologies have become essential tools for characterizing cellular landscapes within complex tissues. Large-scale single-cell transcriptomics holds great potential for identifying rare cell types critical to the pathogenesis of diseases and biological processes. Existing methods for identifying rare cell types often rely on one-time clustering using partial or global gene expression. However, these rare cell types may be overlooked during the clustering phase, posing challenges for their accurate identification. In this paper, we propose a Cluster decomposition-based Anomaly Detection method (scCAD), which iteratively decomposes clusters based on the most differential signals in each cluster to effectively separate rare cell types and achieve accurate identification. We benchmark scCAD on 25 real-world scRNA-seq datasets, demonstrating its superior performance compared to 10 state-of-the-art methods. In-depth case studies across diverse datasets, including mouse airway, brain, intestine, human pancreas, immunology data, and clear cell renal cell carcinoma, showcase scCAD's efficiency in identifying rare cell types in complex biological scenarios. Furthermore, scCAD can correct the annotation of rare cell types and identify immune cell subtypes associated with disease, thereby offering valuable insights into disease progression.


Subject(s)
Single-Cell Analysis , Single-Cell Analysis/methods , Humans , Mice , Animals , Cluster Analysis , Gene Expression Profiling/methods , Sequence Analysis, RNA/methods , Algorithms , Transcriptome , Pancreas/metabolism , Pancreas/pathology , Pancreas/cytology , RNA-Seq/methods , Computational Biology/methods
6.
Article in English | MEDLINE | ID: mdl-35100120

ABSTRACT

Single cell RNA sequencing (scRNA-seq) provides a powerful approach for profiling transcriptomes at single cell resolution. An essential application of scRNA-seq is the discovery of cell types with the aid of clustering analysis. Currently, existing single cell clustering methods are exclusively based on gene-level expression data, without considering alternative splicing information. It has been shown that alternative splicing has an important influence on biological processes such as cell differentiation and cell cycle. We therefore hypothesize that adding information about alternative splicing may help enhance single cell clustering. This motivates us to develop a way to integrate isoform-level expression and gene-level expression. We report an approach to enhance single cell clustering by integrating isoform-level expression through orthogonal projection. First, we construct an orthogonal projection matrix based on gene expression data. Second, isoforms are projected to the gene space to remove the redundant information between them. Third, isoform selection is performed based on the residual of the projected expression and the selected isoforms are combined with gene expression data for subsequent clustering. We applied our method to sixteen scRNA-seq datasets. We find that alternative splicing contains differential information among cell types and can be integrated to enhance single cell clustering. Compared with using only gene-level expression data, the integration of isoform-level expression leads to better clustering performances for most of the datasets. The integration of isoform-level expression also has potential in the detection of novel cell subgroups. Our study shows that integrating isoform and gene-level expression is a promising way to improve single cell clustering. The IsoCell R package is freely available at both Github (https://github.com/genemine/IsoCell) and Zenodo (https://zenodo.org/record/4395707).


Subject(s)
Gene Expression Profiling , Single-Cell Analysis , Gene Expression Profiling/methods , Sequence Analysis, RNA/methods , Single-Cell Analysis/methods , Protein Isoforms/genetics , Cluster Analysis
7.
Article in English | MEDLINE | ID: mdl-31369384

ABSTRACT

Single-cell RNA sequencing (scRNA-seq) technology provides quantitative gene expression profiles at single-cell resolution. As a result, researchers have established new ways to explore cell population heterogeneity and genetic variability of cells. One of the current research directions for scRNA-seq data is to identify different cell types accurately through unsupervised clustering methods. However, scRNA-seq data analysis is challenging because of their high noise level, high dimensionality and sparsity. Moreover, the impact of multiple latent factors on gene expression heterogeneity and on the ability to accurately identify cell types remains unclear. How to overcome these challenges to reveal the biological difference between cell types has become the key to analyze scRNA-seq data. For these reasons, the unsupervised learning for cell population discovery based on scRNA-seq data analysis has become an important research area. A cell similarity assessment method plays a significant role in cell clustering. Here, we present BioRank, a new cell similarity assessment method based on annotated gene sets and gene ranks. To evaluate the performances, we cluster cells by two classical clustering algorithms based on the similarity between cells obtained by BioRank. In addition, BioRank can be used by any clustering algorithm that requires a similarity matrix. Applying BioRank to 12 public scRNA-seq datasets, we show that it is better than or at least as well as several popular similarity assessment methods for single cell clustering.


Subject(s)
Computational Biology/methods , Sequence Analysis, RNA/methods , Single-Cell Analysis/methods , Algorithms , Animals , Cluster Analysis , Databases, Genetic , Gene Ontology , Humans , Mice , Transcriptome/genetics
8.
Front Genet ; 12: 665843, 2021.
Article in English | MEDLINE | ID: mdl-34386033

ABSTRACT

In recent years, the application of single cell RNA-seq (scRNA-seq) has become more and more popular in fields such as biology and medical research. Analyzing scRNA-seq data can discover complex cell populations and infer single-cell trajectories in cell development. Clustering is one of the most important methods to analyze scRNA-seq data. In this paper, we focus on improving scRNA-seq clustering through gene selection, which also reduces the dimensionality of scRNA-seq data. Studies have shown that gene selection for scRNA-seq data can improve clustering accuracy. Therefore, it is important to select genes with cell type specificity. Gene selection not only helps to reduce the dimensionality of scRNA-seq data, but also can improve cell type identification in combination with clustering methods. Here, we proposed RFCell, a supervised gene selection method, which is based on permutation and random forest classification. We first use RFCell and three existing gene selection methods to select gene sets on 10 scRNA-seq data sets. Then, three classical clustering algorithms are used to cluster the cells obtained by these gene selection methods. We found that the gene selection performance of RFCell was better than other gene selection methods.

9.
Interdiscip Sci ; 12(2): 117-130, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32086753

ABSTRACT

Clustering of single-cell RNA sequencing (scRNA-seq) data enables discovering cell subtypes, which is helpful for understanding and analyzing the processes of diseases. Determining the weight of edges is an essential component in graph-based clustering methods. While several graph-based clustering algorithms for scRNA-seq data have been proposed, they are generally based on k-nearest neighbor (KNN) and shared nearest neighbor (SNN) without considering the structure information of graph. Here, to improve the clustering accuracy, we present a novel method for single-cell clustering, called structural shared nearest neighbor-Louvain (SSNN-Louvain), which integrates the structure information of graph and module detection. In SSNN-Louvain, based on the distance between a node and its shared nearest neighbors, the weight of edge is defined by introducing the ratio of the number of the shared nearest neighbors to that of nearest neighbors, thus integrating structure information of the graph. Then, a modified Louvain community detection algorithm is proposed and applied to identify modules in the graph. Essentially, each community represents a subtype of cells. It is worth mentioning that our proposed method integrates the advantages of both SNN graph and community detection without the need for tuning any additional parameter other than the number of neighbors. To test the performance of SSNN-Louvain, we compare it to five existing methods on 16 real datasets, including nonnegative matrix factorization, single-cell interpretation via multi-kernel learning, SNN-Cliq, Seurat and PhenoGraph. The experimental results show that our approach achieves the best average performance in these datasets.


Subject(s)
Algorithms , Cells , RNA , Sequence Analysis, RNA , Cells/classification , Cluster Analysis , Humans
10.
J Bioinform Comput Biol ; 18(3): 2040009, 2020 06.
Article in English | MEDLINE | ID: mdl-32698720

ABSTRACT

Clustering analysis of gene expression data is essential for understanding complex biological data, and is widely used in important biological applications such as the identification of cell subpopulations and disease subtypes. In commonly used methods such as hierarchical clustering (HC) and consensus clustering (CC), holistic expression profiles of all genes are often used to assess the similarity between samples for clustering. While these methods have been proven successful in identifying sample clusters in many areas, they do not provide information about which gene sets (functions) contribute most to the clustering, thus limiting the interpretability of the resulting cluster. We hypothesize that integrating prior knowledge of annotated gene sets would not only achieve satisfactory clustering performance but also, more importantly, enable potential biological interpretation of clusters. Here we report ClusterMine, an approach that identifies clusters by assessing functional similarity between samples through integrating known annotated gene sets in functional annotation databases such as Gene Ontology. In addition to the cluster membership of each sample as provided by conventional approaches, it also outputs gene sets that most likely contribute to the clustering, thus facilitating biological interpretation. We compare ClusterMine with conventional approaches on nine real-world experimental datasets that represent different application scenarios in biology. We find that ClusterMine achieves better performances and that the gene sets prioritized by our method are biologically meaningful. ClusterMine is implemented as an R package and is freely available at: www.genemine.org/clustermine.php.


Subject(s)
Cluster Analysis , Computational Biology/methods , Gene Expression Profiling/methods , Algorithms , Cell Cycle/genetics , Databases, Genetic , Humans , Molecular Sequence Annotation , Neoplasms/genetics , Neoplasms/pathology , Pluripotent Stem Cells/physiology , Sensory Receptor Cells/physiology
11.
Genes (Basel) ; 10(2)2019 01 29.
Article in English | MEDLINE | ID: mdl-30700040

ABSTRACT

Single-cell RNA sequencing (scRNA-seq) has recently brought new insight into cell differentiation processes and functional variation in cell subtypes from homogeneous cell populations. A lack of prior knowledge makes unsupervised machine learning methods, such as clustering, suitable for analyzing scRNA-seq . However, there are several limitations to overcome, including high dimensionality, clustering result instability, and parameter adjustment complexity. In this study, we propose a method by combining structure entropy and k nearest neighbor to identify cell subpopulations in scRNA-seq data. In contrast to existing clustering methods for identifying cell subtypes, minimized structure entropy results in natural communities without specifying the number of clusters. To investigate the performance of our model, we applied it to eight scRNA-seq datasets and compared our method with three existing methods (nonnegative matrix factorization, single-cell interpretation via multikernel learning, and structural entropy minimization principle). The experimental results showed that our approach achieves, on average, better performance in these datasets compared to the benchmark methods.


Subject(s)
Sequence Analysis, RNA/methods , Single-Cell Analysis/methods , Animals , Cluster Analysis , Humans , Unsupervised Machine Learning
SELECTION OF CITATIONS
SEARCH DETAIL