Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
BMC Genomics ; 20(1): 263, 2019 Apr 02.
Article in English | MEDLINE | ID: mdl-30940068

ABSTRACT

BACKGROUND: There are hundreds of phenotypically distinguishable domestic chicken breeds or lines with highly specialized traits worldwide, which provide a unique opportunity to illustrate how selection shapes patterns of genetic variation. There are many local chicken breeds in China. RESULTS: Here, we provide a population genome landscape of genetic variations in 86 domestic chickens representing 10 phenotypically diverse breeds. Genome-wide analysis indicated that sex chromosomes have less genetic diversity and are under stronger selection than autosomes during domestication and local adaptation. We found an evidence of admixture between Tibetan chickens and other domestic population. We further identified strong signatures of selection affecting genomic regions that harbor genes underlying economic traits (typically related to feathers, skin color, growth, reproduction and aggressiveness) and local adaptation (to high altitude). By comparing the genomes of the Tibetan and lowland fowls, we identified genes associated with high-altitude adaptation in Tibetan chickens were mainly involved in energy metabolism, body size maintenance and available food sources. CONCLUSIONS: The work provides crucial insights into the distinct evolutionary scenarios occurring under artificial selection for agricultural production and under natural selection for success at high altitudes in chicken. Several genes were identified as candidates for chicken economic traits and other phenotypic traits.


Subject(s)
Chickens/genetics , Genetic Variation , Genetics, Population , Selection, Genetic , Adaptation, Physiological/genetics , Animals , Body Weight , Genome , High-Throughput Nucleotide Sequencing , Linkage Disequilibrium , Phenotype , Polymorphism, Single Nucleotide , Sequence Analysis, DNA , Tibet
2.
Genomics ; 110(5): 304-309, 2018 09.
Article in English | MEDLINE | ID: mdl-29247769

ABSTRACT

We characterized 26 wild fruit flies comparative population genomics from six different altitude and latitude locations by whole genome resequencing. Genetic diversity was relatively higher in Ganzi and Chongqing populations. We also found 13 genes showing selection signature between different altitude flies and variants related to hypoxia and temperature stimulus, were preferentially selected during the flies evolution. One of the most striking selective sweeps found in all high altitude flies occurred in the region harboring Hsp70Aa and Hsp70Ab on chromosome 3R. Interestingly, these two genes are involved in GO terms including response to hypoxia, unfolded protein, temperature stimulus, heat, oxygen levels. Mutation in HPH gene, a candidate gene in the hypoxia inducible factor pathway, might contributes to hypoxic high-altitude adaptation. Intriguingly, some of the selected genes, primarily utilized in humans, were involved in the response to hypoxia, which could imply a conserved molecular mechanisms underlying high-altitude adaptation between insects and humans.


Subject(s)
Acclimatization/genetics , Drosophila/genetics , Genetic Variation , Genome, Insect , Selection, Genetic , Altitude , Animals , Cold Temperature , Drosophila/metabolism , HSP70 Heat-Shock Proteins/genetics , Insect Proteins/genetics , Whole Genome Sequencing
3.
BMC Genomics ; 19(1): 917, 2018 Dec 13.
Article in English | MEDLINE | ID: mdl-30545297

ABSTRACT

BACKGROUND: The transcriptional profiles of mammals during brain development and ageing have been characterized. However the global expression patterns of transcriptome in the chicken brain have not been explored. Here, we systematically investigated the temporal expression profiles of lncRNAs and mRNAs across 8 stages (including 3 embryonic stages, 2 growth stages and 3 adult stages) in the female chicken cerebrum. RESULTS: We identified 39,907 putative lncRNAs and 14,558 mRNAs, investigated the temporal expression patterns by tracking a set of age-dependent genes and predicted potential biological functions of lncRNAs based on co-expression network. The results showed that genes with functions in development, synapses and axons exhibited a progressive decay; genes related to immune response were up-regulated with age. CONCLUSIONS: These results may reflect changes in the regulation of transcriptional networks and provide non-coding RNA gene candidates for further studies and would contribute to a comprehensive understanding of the molecular mechanisms of chicken development and may provide insights or deeper understanding regarding the regulatory mechanisms of age-dependent protein coding and non-protein coding genes in chicken. In addition, as the chicken is an important model organism bridging the evolutionary gap between mammals and other vertebrates, these high resolution data may provide a novel evidence to improve our comprehensive understanding of the brain transcriptome during vertebrate evolution.


Subject(s)
Aging/genetics , Brain/metabolism , Chickens/genetics , Transcriptome , Animals , Brain/growth & development , Chick Embryo , Female , Gene Expression Profiling , Gene Regulatory Networks , RNA/chemistry , RNA/isolation & purification , RNA/metabolism , RNA, Long Noncoding/metabolism , RNA, Messenger/metabolism , Sequence Analysis, RNA
4.
BMC Genomics ; 18(1): 255, 2017 03 23.
Article in English | MEDLINE | ID: mdl-28335741

ABSTRACT

BACKGROUND: MicroRNAs exist widely in viruses, plants and animals. As endogenous small non-coding RNAs, miRNAs regulate a variety of biological processes. Tissue miRNA expression studies have discovered numerous functions for miRNAs in various tissues of chicken, but the regulation of miRNAs in chicken pituitary and hypothalamic development related to high and low egg-laying performance has remained unclear. RESULTS: In this study, using high-throughput sequencing technology, we sequenced two tissues (pituitary and hypothalamus) in 3 high- and 3 low-rate egg production Luhua chickens at the age of 300 days. By comparing low- and high-rate egg production chickens, 46 known miRNAs and 27 novel miRNAs were identified as differentially expressed (P < 0.05). Six differentially expressed known miRNAs, which are expressed in both tissues, were used in RT-qPCR validation and SNP detection. Among them, seven SNPs in two miRNA precursors (gga-miR-1684a and gga-miR-1434) were found that might enhance or reduce the production of the mature miRNAs. In addition, 124 and 30 reciprocally expressed miRNA-target pairs were identified by RNA-seq in pituitary and hypothalamic tissues, respectively and randomly selected candidate miRNA and miRNA-target pairs were validated by RT-qPCR in Jiuyuan black fowl. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway annotation illustrated that a large number of egg laying-related pathways were enriched in the high-rate egg production chickens, including ovarian steroidogenesis and steroid hormone biosynthesis. CONCLUSIONS: These differentially expressed miRNAs and their predicted target genes, especially identified reciprocally expressed miRNA-target pairs, advance the study of miRNA function and egg production associated miRNA identification. The analysis of the miRNA-related SNPs and their effects provided insights into the effects of SNPs on miRNA biogenesis and function. The data generated in this study will further our understanding of miRNA regulation mechanisms in the chicken egg-laying process.


Subject(s)
Eggs , Gene Expression Profiling , High-Throughput Nucleotide Sequencing , Hypothalamus/metabolism , MicroRNAs/genetics , Pituitary Gland/metabolism , Sequence Analysis, RNA , Animals , Chickens/genetics , Chickens/metabolism , Cluster Analysis , Molecular Sequence Annotation
5.
Liver Int ; 34(1): 136-46, 2014 Jan.
Article in English | MEDLINE | ID: mdl-23875825

ABSTRACT

BACKGROUND: Epigenetic alterations are well documented in hepatocarcinogenesis. However, hypomethylation of long interspersed nuclear element 1(LINE-1) promoter and its relationship with clinicopathological features in hepatocellular carcinoma(HCC) remain unknown. METHODS: The bisulfite-specific PCR and DNA sequencing analysis was performed to assess the methylation status of LINE-1 promoter in a pilot cohort of 71 patients with HCC. Additionally,methylation levels of two hot CpG sites of LINE-1 promoter, site 7 and 18 were measured by real-time PCR and compared with clinicopathological parameters in a cohort of 172 HCC. All the patients included were in BCLC stage A or B. RESULTS: Most patients with HCC (87.3%) showed hypomethylation of LINE-1 promoter compared with HBV-related cirrhosis and normal controls (P < 0.001). The HCC patients with LINE-1 promoter hypomethylation had a median tumour-free survival (TFS) and overall survival (OS)post-resection of 22.0 (95% CI: 13.3­30.7) months and 35.0 (95% CI: 24.0­46.1) months, respectively, compared with 40 months and ~60 months for those with LINE-1 promoter hypermethylation (P < 0.05). Multivariate analyses showed that the hypomethylation level at CpG site 7 and 18 of LINE-1 promoter, along with tumour size and tumour differentiation, was independently associated with both TFS and OS for patients with HCC after resection. CONCLUSION: Promoter hypomethylation of LINE-1, especially at the CpG site 7 and 18, was associated with a poor prognosis in HCC.


Subject(s)
Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/surgery , DNA Methylation , Hepatectomy , Liver Neoplasms/genetics , Liver Neoplasms/surgery , Long Interspersed Nucleotide Elements/genetics , Promoter Regions, Genetic , Adolescent , Adult , Aged , Base Sequence , Carcinoma, Hepatocellular/mortality , Carcinoma, Hepatocellular/pathology , Cell Differentiation , Chi-Square Distribution , CpG Islands , Disease-Free Survival , Epigenesis, Genetic , Female , Hepatectomy/adverse effects , Hepatectomy/mortality , Humans , Liver Neoplasms/mortality , Liver Neoplasms/pathology , Male , Middle Aged , Molecular Sequence Data , Multivariate Analysis , Proportional Hazards Models , Prospective Studies , Real-Time Polymerase Chain Reaction , Risk Factors , Sequence Analysis, DNA , Time Factors , Treatment Outcome , Tumor Burden , Young Adult
6.
Sci Rep ; 14(1): 2212, 2024 01 26.
Article in English | MEDLINE | ID: mdl-38278859

ABSTRACT

MicroRNAs (miRNAs) play a crucial role as transcription regulators in various aspects of follicular development, including steroidogenesis, ovulation, apoptosis, and gene regulation in poultry. However, there is a paucity of studies examining the specific impact of miRNAs on ovarian granulosa cells (GCs) across multiple grades in laying hens. Consequently, this study aims to investigate the roles of miRNAs in chicken GCs. By constructing miRNA expression profiles of GCs at 10 different time points, encompassing 4 pre-hierarchical, 5 preovulatory, and 1 postovulatory follicles stage, we identified highly expressed miRNAs involved in GC differentiation (miR-148a-3p, miR-143-3p), apoptosis (let7 family, miR-363-3p, miR-30c-5p, etc.), and autophagy (miR-128-3p, miR-21-5p). Furthermore, we discovered 48 developmentally dynamic miRNAs (DDMs) that target 295 dynamic differentially expressed genes (DDGs) associated with follicular development and selection (such as oocyte meiosis, progesterone-mediated oocyte maturation, Wnt signaling pathway, TGF-ß signaling pathway) as well as follicular regression (including autophagy and cellular senescence). These findings contribute to a more comprehensive understanding of the intricate mechanisms underlying follicle recruitment, selection, and degeneration, aiming to enhance poultry's reproductive capacity.


Subject(s)
Chickens , MicroRNAs , Female , Animals , Chickens/genetics , Chickens/metabolism , Ovarian Follicle/metabolism , Granulosa Cells/metabolism , Gene Expression , Gene Expression Profiling , MicroRNAs/metabolism
7.
Front Microbiol ; 15: 1322316, 2024.
Article in English | MEDLINE | ID: mdl-38505545

ABSTRACT

Forest musk deer is the most important animal for natural musk production, and the musk composition changes periodically during musk secretion, accompanied by variation in the com-position of deer-symbiotic bacteria. GC-MS and 16S rRNA sequencing were conducted in this study, the dynamic changes to correlated chemical composition and the microbiota across musk secretion periods (prime musk secretion period, vigorous musk secretion period and late musk secretion period) were investigated by integrating its serum testosterone level in different mating states. Results showed that the testosterone level, musk composition and microbiota changed with annual cycle of musk secretion and affected by its mating state. Muscone and the testosterone level peaked at vigorous musk secretion period, and the microbiota of this stage was distinct from the other 2 periods. Actinobacteria, Firmicutes and Proteobacteria were dominant bacteria across musk secretion period. PICRUSt analysis demonstrated that bacteria were ubiquitous in musk pod and involved in the metabolism of antibiotics and terpenoids in musk. "Carbohydrates and amino acids," "fatty acids and CoA" and "secretion of metabolites" were enriched at 3 periods, respectively. Pseudomonas, Corynebacterium, Clostridium, Sulfuricurvum were potential biomarkers across musk secretion. This study provides a more comprehensive understanding of genetic mechanism during musk secretion, emphasizing the importance of Actinobacteria and Corynebacterium in the synthesis of muscone and etiocholanone during musk secretion, which required further validation.

8.
Emerg Microbes Infect ; 13(1): 2356153, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38767199

ABSTRACT

Men who have sex with men and people living with HIV are disproportionately affected in the 2022 multi-country monkeypox epidemic. The smallpox vaccine can induce cross-reactive antibodies against the monkeypox virus (MPXV) and reduce the risk of infection. Data on antibodies against MPXV induced by historic smallpox vaccination in people with HIV are scarce. In this observational study, plasma samples were collected from people living with and without HIV in Shenzhen, China. We measured antibodies binding to two representative proteins of vaccinia virus (VACV; A27L and A33R) and homologous proteins of MPXV (A29L and A35R) using an enzyme-linked immunosorbent assay. We compared the levels of these antibodies between people living with and without HIV. Stratified analyses were performed based on the year of birth of 1981 when the smallpox vaccination was stopped in China. Plasma samples from 677 people living with HIV and 746 people without HIV were tested. A consistent pattern was identified among the four antibodies, regardless of HIV status. VACV antigen-reactive and MPXV antigen-reactive antibodies induced by historic smallpox vaccination were detectable in the people born before 1981, and antibody levels reached a nadir during or after 1981. The levels of smallpox vaccine-induced antibodies were comparable between people living with HIV and those without HIV. Our findings suggest that the antibody levels against MPXV decreased in both people living with and without HIV due to the cessation of smallpox vaccination.


Subject(s)
Antibodies, Viral , HIV Infections , Monkeypox virus , Smallpox Vaccine , Humans , Antibodies, Viral/blood , Antibodies, Viral/immunology , Male , Smallpox Vaccine/immunology , Smallpox Vaccine/administration & dosage , HIV Infections/immunology , HIV Infections/epidemiology , HIV Infections/virology , Adult , Female , China/epidemiology , Middle Aged , Monkeypox virus/immunology , Smallpox/immunology , Smallpox/prevention & control , Smallpox/epidemiology , Smallpox/history , Vaccination , Mpox (monkeypox)/immunology , Mpox (monkeypox)/epidemiology , Mpox (monkeypox)/history , Cross Reactions/immunology , Young Adult , Enzyme-Linked Immunosorbent Assay , Vaccinia virus/immunology
9.
J Transl Med ; 11: 41, 2013 Feb 15.
Article in English | MEDLINE | ID: mdl-23414367

ABSTRACT

BACKGROUND: Cryoablation is one of the local therapies for hepatocellular carcinoma (HCC), but its safety and effect has not been studied in patients with Child class A or B and Barcelona Clinic Liver Cancer (BCLC) stage C HCC. Metastasis-associated in colon cancer-1 (MACC1) overexpression has been associated with poor prognosis of HCC, but its predictive value to post-cryoablation outcomes remains unknown in patients with BCLC stage C HCC. METHODS: This study assessed the safety and outcomes of cryoablation measured by time to progression (TTP) and overall survival (OS), and predictive value of MACC1 mRNA and protein overexpression in tumorous tissue to post-cryoablation outcomes in 120 advanced HCC patients with child-pugh class A or B by quantitative polymerase chain reaction and immunohistochemical staining. The potenial correlation of MACC1 and c-Met expression to tumor cell proliferation and apoptosis was also analyzed. RESULTS: The cryoablation in patients with advanced unresectable HCC resulted in a median TTP and OS of 5.5 (4.2- 6.7) months and 10.5 (9.0-12.0) months, respectively and no significant complications, comparable to the historical report for RFA therapy. The MACC1 mRNA and nuclear protein expression was significantly increased in tumorous tissues in these patients than that in normal liver tissue controls. Higher expression of MACC1 mRNA and nuclear protein in tumorous tissues in these patients was associated with shorter post cryoablation median TTP and OS than that with lower MACC1 expression. CONCLUSIONS: Cryoablation is a safe and effective therapeutic option for patients with advanced HCC and Child-pugh class A or B cirrhosis; and a higher intratumoral expression of MACC1 or nuclear translocation predicts poor outcomes of cryotherapy in these patients.


Subject(s)
Carcinoma, Hepatocellular/therapy , Cryosurgery , Liver Neoplasms/therapy , Neoplasm Metastasis , RNA, Messenger/genetics , Transcription Factors/metabolism , Adult , Aged , Base Sequence , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , DNA Primers , Female , Humans , Immunohistochemistry , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Male , Middle Aged , Reverse Transcriptase Polymerase Chain Reaction , Trans-Activators , Transcription Factors/genetics , Treatment Outcome
10.
Poult Sci ; 102(5): 102528, 2023 May.
Article in English | MEDLINE | ID: mdl-36907131

ABSTRACT

DNA N(6)-methyladenine (DNA-6mA) is a new epigenetic mark in eukaryotes, the distribution and functions of which in genomic DNA remain unknown. Although recent studies have suggested that 6mA is present in multiple model organisms and is dynamically regulated during development, the genomic features of 6mA in avian species have yet to be elucidated. 6mA immunoprecipitation sequencing approach was used to analysis the distribution and function of 6mA in the muscle genomic DNA during embryonic chicken development. 6mA immunoprecipitation sequencing was combined with transcriptomic sequencing to reveal the role of 6mA in the regulation of gene expression and to explore possible pathways by which 6mA is involved in muscle development. We here provide evidence that 6mA modification exists widely throughout the chicken genome, and show preliminary data regarding genome-wide distribution of this epigenetic mark. Gene expression was shown to be inhibited by 6mA modification in promoter regions. In addition, the promoters of some genes related to development were modified by 6mA, indicating that 6mA may be involved in embryonic chicken development. Furthermore, 6mA may participate in muscle development and immune function by regulating HSPB8 and OASL expression. Our study improves our understanding of the distribution and function of 6mA modification in higher organisms and provide new information about differences between mammals and other vertebrates. These findings demonstrate an epigenetic role for 6mA in gene expression and potential involvement in chicken muscle development. Furthermore, the results suggest a potential epigenetic role for 6mA in avian embryonic development.


Subject(s)
Chickens , DNA Methylation , Animals , Chickens/genetics , DNA/genetics , Muscles , Mammals/genetics
11.
ISA Trans ; 128(Pt B): 136-143, 2022 Sep.
Article in English | MEDLINE | ID: mdl-34865844

ABSTRACT

By integrating the event-based mechanism and the model predictive control (MPC) method, an improved event-based MPC framework is constructed for the nonlinear control problem subject to disturbances. Firstly, a new event-triggering condition is suggested, which is constructed on the basis of the gradients of the differences between the optimal state prediction and the actual one at two consecutive sample times. Then, an event-based MPC algorithm is further proposed, in which the dual-mode control technique is incorporated to handle the nonlinear perturbed system. Furthermore, it is strictly demonstrated that the proposed algorithm will ensure the feasibility of the MPC method and the stability of the considered system, while significantly decreasing the number of solving optimization problems, based on which resources for information transfer can be effectively saved. Finally, simulations and comparisons are shown to verify the efficacy of the proposed framework.

12.
Toxins (Basel) ; 14(11)2022 11 19.
Article in English | MEDLINE | ID: mdl-36422982

ABSTRACT

Aflatoxin B1 (AFB1) is a widely distributed contaminant in moldy corn, rice, soybean, and oil crops. Many studies have revealed its adverse effects, such as carcinogenicity, immunotoxicity, and hepatotoxicity, on the health of humans and animals. To investigate the immunotoxic effects on chicken immune organs induced by AFB1, we integrated RNA and small-RNA sequencing data of the spleen and the bursa of Fabricius to elucidate the response of the differentially expressed transcriptional profiles and related pathways. AFB1 consumption negatively influenced egg quality, but no obvious organ damage was observed compared to that of the control group. We identified 3918 upregulated and 2415 downregulated genes in the spleen and 231 upregulated and 65 downregulated genes in the bursa of Fabricius. We confirmed that several core genes related to immune and metabolic pathways were activated by AFB1. Furthermore, 42 and 19 differentially expressed miRNAs were found in the spleen and the bursa of Fabricius, respectively. Differentially expressed genes and target genes of differentially expressed miRNAs were mainly associated with cancer progression and immune response. The predicted mRNA-miRNA pathway network illustrated the potential regulatory mechanisms. The present study identified the transcriptional profiles and revealed potential mRNA-miRNA pathway crosstalk. This genetic regulatory network will facilitate the understanding of the immunotoxicity mechanisms of chicken immune organs induced by high concentrations of AFB1.


Subject(s)
MicroRNAs , Animals , Female , Aflatoxin B1/toxicity , Chickens , Gene Expression Profiling , Gene Regulatory Networks , MicroRNAs/genetics , RNA, Messenger
14.
Poult Sci ; 100(11): 101422, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34534851

ABSTRACT

Body weight at the onset of egg production is a major factor influencing hen productivity, as suitable body weight is crucial to laying performance in laying hens. To better understand the association between body weight and microbial community membership and structure in different sites of the digestive and reproductive tracts in chickens, we performed 16S rRNA sequencing surveys and focused on how the microbiota may interact to influence body weight. Our results demonstrated that the microbial community and structure of the digestive and reproductive tracts differed between low and high body weight groups. In particular, we found that the species Pseudomonas viridiflava was negatively associated with body weight in the 3 digestive tract sites, while Bacteroides salanitronis was negatively associated with body weight in the 3 reproductive tract sites; and further in-depth studies are needed to explore their function. These findings will help extend our understanding of the influence of the bird digestive and reproductive tract microbiotas on body weight trait and provide future directions regarding the control of body weight in the production of laying hens.


Subject(s)
Chickens , Microbiota , Animal Feed/analysis , Animals , Bacteroides , Body Weight , Female , Pseudomonas , RNA, Ribosomal, 16S
15.
PeerJ ; 9: e12710, 2021.
Article in English | MEDLINE | ID: mdl-35036174

ABSTRACT

BACKGROUND: The formation of musk is a complex biophysical and biochemical process that change with the rut of male forest musk deer. We have reported that the mating status of male forest musk deer might result to the variations of chemical composition and microbiota of musk and its yields. Critical roles for microRNAs (miRNAs) of multi-tissues were profiled in our previous study; however, the role for miRNAs of the musk gland remains unclear in this species. METHODS: In this study, we used Illumina deep sequencing technology to sequence the small RNA transcriptome of unmated male (UM) and mated male (UM) of Chinese forest musk deer. RESULTS: We identified 1,652 known miRNAs and 45 novel miRNAs, of which there were 174 differentially expressed miRNAs between UM and MM. chi-miR-21-5p, ipu-miR-99b and bta-miR-26a were up-regulated in UM among the 10 most differentially expressed miRNAs. Functional enrichment of the target genes showed that monosaccharide biosynthetic process, protein targeting, cellular protein catabolic process enriched higher in MM. Meanwhile, structural molecule activity, secretion by cell, regulated exocytosis and circulatory system process enriched more in UM, hinting that the formation of musk in UM was mediated by target genes related to exocytosis. The miRNA-mRNA pairs such as miR-21: CHD7, miR143: HSD17B7, miR-141/200a: Noc2 might involve in musk gland development and musk secretion, which need to be verified in future study.

16.
Medicine (Baltimore) ; 100(32): e26872, 2021 Aug 13.
Article in English | MEDLINE | ID: mdl-34397903

ABSTRACT

ABSTRACT: Overweight/obesity can influence bone mineral accretion, but the conclusions are not consistent. We aimed to examine the association between bone mineral density (BMD) levels and body mass index (BMI) in 12 to 15 years old adolescents.We performed a cross-sectional study including 8365 adolescents. BMD was evaluated using a quantitative ultrasound device. Z scores for BMI were evaluated using World Health Organization references. Logistic regression models were performed to evaluate the association between BMD levels and BMI.Totally 1866 (22.3%) adolescents had low /reduced BMD, and boys had a higher rate than girls (72.6% vs 27.4%, P < .001). The rates of thinness, normal weight, overweight, and obesity were 2.8%, 57.1%, 22.3%, and 17.8%, respectively. The multivariable-adjusted (age, sex, systolic blood pressure, and height Z score) ORs (95% CIs) of low/reduced BMD associated with BMI groups (thinness, normal [reference], overweight, and obesity) were 0.59 (0.39-0.89), 1.00, 1.61 (1.41-1.84), and 1.98 (1.69-2.30), respectively (Ptrend < .001). This positive association existed in boys and girls though the differences were not significant between normal weight and thin girls. The multivariable-adjusted ORs for each 1-unit increase in BMI Z score were 1.36 (1.24-1.49) for girls, and 1.23 (1.16-1.30) for boys, and 1.26 (1.20-1.32) for all participants.We observed a positive association between BMI and low/reduced BMD in 12 to 15 years old adolescents. More attention should be paid on overweight and obese adolescents to reduce the risk of low BMD. Further studies are needed to explore the mechanisms of this association.


Subject(s)
Bone Density , Bone Diseases, Metabolic , Obesity , Overweight , Thinness , Adolescent , Body Mass Index , Bone Diseases, Metabolic/diagnosis , Bone Diseases, Metabolic/epidemiology , Causality , China/epidemiology , Correlation of Data , Cross-Sectional Studies , Female , Humans , Male , Obesity/diagnosis , Obesity/epidemiology , Obesity/metabolism , Overweight/diagnosis , Overweight/epidemiology , Overweight/metabolism , Risk Assessment , Thinness/diagnosis , Thinness/metabolism , Ultrasonography/methods
17.
Gene ; 769: 145206, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33059030

ABSTRACT

microRNA (miRNA) is a small endogenous noncoding RNA molecule that plays multiple roles in regulating most biological processes. However, for China's national treasure giant panda, a world-famous rare and protected species, reports of its miRNA have been found only in blood and breast milk. To explore the miRNA expression differences between different giant panda tissues, here, we generated the miRNA profiles of five tissues (heart, liver, spleen, lung, and kidney) from four giant pandas with Illumina Hiseq 2500 platform, and filtered the differentially expressed miRNAs (DEmiRs) in each tissue, predicted the target genes of miRNA from each tissue based on the DEmiRs. Then, the GO and KEGG enrichment analysis were conducted using the target genes predicted from DEmiRs in each tissue. The RNA-seq generated an average of 0.718 GB base per sample. A total of 1,256 known miRNAs and 12 novel miRNAs were identified, and there were 215, 131, 185, 83, and 126 tissue-specific DEmiRs filtered in the heart, liver, spleen, lung, and kidney, respectively, including miR-1b-5p, miR-122-5p, miR-143, miR-126-5p, and miR-10b-5p, respectively. The predicted target genes, including MYL2, LRP5, MIF, CFD, and PEBP1 in the heart, liver, spleen, lung, and kidney, respectively, were closely associated with tissue-specific biological functions. The enrichment analysis results of target genes showed tissue-specific characteristics, such as the significantly enriched GO terms extracellular matrix in the heart and insulin-like growth factor binding in the liver. The miRNA profiles of the heart, liver, spleen, lung, and kidney of giant panda have been reported in this study, it reveals the miRNA expression differences between different tissues of the giant panda, and provides valuable genetic resources for the further related molecular genetic research of the rare and protected species giant panda and other mammals.


Subject(s)
MicroRNAs/genetics , Ursidae/genetics , Animals , Female , Gene Expression Profiling , Male , Tissue Distribution
18.
Gigascience ; 10(9)2021 09 23.
Article in English | MEDLINE | ID: mdl-34555848

ABSTRACT

BACKGROUND: The microbiota of the female reproductive tract is increasingly recognized as playing fundamental roles in animal reproduction. To explore the relative contribution of reproductive tract microbiomes to egg production in chickens, we investigated the microbiota in multiple reproductive and digestive tract sites from 128 female layer (egg-producing) chickens in comparable environments. RESULTS: We identified substantial differences between the diversity, composition, and predicted function of site-associated microbiota. Differences in reproductive tract microbiota were more strongly associated with egg production than those in the digestive tract. We identified 4 reproductive tract microbial species, Bacteroides fragilis, Bacteroides salanitronis, Bacteroides barnesiae, and Clostridium leptum, that were related to immune function and potentially contribute to enhanced egg production. CONCLUSIONS: These findings provide insights into the diverse microbiota characteristics of reproductive and digestive tracts and may help in designing strategies for controlling and manipulating chicken reproductive tract microbiota to improve egg production.


Subject(s)
Chickens , Microbiota , Animals , Female , Gastrointestinal Tract
19.
Sci Rep ; 10(1): 5976, 2020 04 06.
Article in English | MEDLINE | ID: mdl-32249807

ABSTRACT

The hypothalamic-pituitary-ovarian (HPO) axis regulates the breeding process cycle of laying hens. However, the key regulatory genes of the HPO axis and pathways that drive chicken egg laying performance remain elusive. A total of 856 Chinese Luhua chicken was raised and the highest two hundred and the lowest two hundred chicken egg production were considered as high egg production (HEP) and low egg production (LEP) according to the total egg number at 300 days of age, respectively. RNA-seq sequencing (RNA-Seq) was conducted to explore the chicken transcriptome from the hypothalamus, pituitary gland and ovary tissue of 6 Chinese Luhua chicken with 3 high and low-rate egg production. In total, 76.09 Gb RNA-seq sequences were generated from 15 libraries with an average of 5.07 Gb for each library. Further analysis showed that 414, 356 and 10 differentially expressed genes (DEGs) were identified in pituitary gland, ovary and hypothalamus between HEP and LEP chickens, respectively. In pituitary gland, DEGs were involve in regulation of cellular glucose homeostasis, Ras protein signal transduction, negative regulation of hormone secretion. In Ovary DEGs were mainly involved in embryonic organ development, regulation of canonical Wnt signaling, response to peptide hormone. Our study identified DEGs that regulate mTOR signaling pathway, Jak-STAT signaling pathway, Tryptophan metabolism and PI3K-Akt signaling pathways at HPO-axis in laying hens. These important data contribute to improve our understanding of reproductive biology of chicken and isolating effective molecular markers that can be used for genetic selection in Chinese domestic Luhua chicken.


Subject(s)
Eggs , Hypothalamus/metabolism , Ovary/metabolism , Pituitary Gland/metabolism , Transcriptome , Animals , Breeding , Chickens , Female , Gene Expression , Gene Expression Profiling , Hypothalamo-Hypophyseal System/metabolism
20.
Biomed Res Int ; 2020: 3852586, 2020.
Article in English | MEDLINE | ID: mdl-32851066

ABSTRACT

Gene differential expression studies can serve to explore and understand the laws and characteristics of animal life activities, and the difference in gene expression between different animal tissues has been well demonstrated and studied. However, for the world-famous rare and protected species giant panda (Ailuropoda melanoleuca), only the transcriptome of the blood and spleen has been reported separately. Here, in order to explore the transcriptome differences between the different tissues of the giant panda, transcriptome profiles of the heart, liver, spleen, lung, and kidney from five captive giant pandas were constructed with Illumina HiSeq 2500 platform. The comparative analysis of the intertissue gene expression patterns was carried out based on the generated RNA sequencing datasets. Analyses of Gene Ontology (GO) enrichment, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment, and protein-protein interaction (PPI) network were performed according to the identified differentially expressed genes (DEGs). We generated 194.52 GB clean base data from twenty-five sequencing libraries and identified 18,701 genes, including 3492 novel genes. With corrected p value <0.05 and |log2FoldChange| >2, we finally obtained 921, 553, 574, 457, and 638 tissue-specific DEGs in the heart, liver, spleen, lung, and kidney, respectively. In addition, we identified TTN, CAV3, LDB3, TRDN, and ACTN2 in the heart; FGA, AHSG, and SERPINC1 in the liver; CD19, CD79B, and IL21R in the spleen; NKX2-4 and SFTPB in the lung; GC and HRG in the kidney as hub genes in the PPI network. The results of the analyses showed a similar gene expression pattern between the spleen and lung. This study provided for the first time the heart, liver, lung, and kidney's transcriptome resources of the giant panda, and it provided a valuable resource for further genetic research or other potential research.


Subject(s)
Genome/genetics , Tissue Distribution/genetics , Transcriptome/genetics , Ursidae/genetics , Animals , Gene Expression Profiling , High-Throughput Nucleotide Sequencing , Protein Interaction Maps/genetics , Sequence Analysis, RNA/methods
SELECTION OF CITATIONS
SEARCH DETAIL