Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.321
Filter
Add more filters

Publication year range
1.
Nature ; 593(7859): 418-423, 2021 05.
Article in English | MEDLINE | ID: mdl-33727703

ABSTRACT

The COVID-19 pandemic is the third outbreak this century of a zoonotic disease caused by a coronavirus, following the emergence of severe acute respiratory syndrome (SARS) in 20031 and Middle East respiratory syndrome (MERS) in 20122. Treatment options for coronaviruses are limited. Here we show that clofazimine-an anti-leprosy drug with a favourable safety profile3-possesses inhibitory activity against several coronaviruses, and can antagonize the replication of SARS-CoV-2 and MERS-CoV in a range of in vitro systems. We found that this molecule, which has been approved by the US Food and Drug Administration, inhibits cell fusion mediated by the viral spike glycoprotein, as well as activity of the viral helicase. Prophylactic or therapeutic administration of clofazimine in a hamster model of SARS-CoV-2 pathogenesis led to reduced viral loads in the lung and viral shedding in faeces, and also alleviated the inflammation associated with viral infection. Combinations of clofazimine and remdesivir exhibited antiviral synergy in vitro and in vivo, and restricted viral shedding from the upper respiratory tract. Clofazimine, which is orally bioavailable and comparatively cheap to manufacture, is an attractive clinical candidate for the treatment of outpatients and-when combined with remdesivir-in therapy for hospitalized patients with COVID-19, particularly in contexts in which costs are an important factor or specialized medical facilities are limited. Our data provide evidence that clofazimine may have a role in the control of the current pandemic of COVID-19 and-possibly more importantly-in dealing with coronavirus diseases that may emerge in the future.


Subject(s)
Antiviral Agents/pharmacology , Clofazimine/pharmacology , Coronavirus/classification , Coronavirus/drug effects , SARS-CoV-2/drug effects , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/pharmacology , Adenosine Monophosphate/therapeutic use , Alanine/analogs & derivatives , Alanine/pharmacology , Alanine/therapeutic use , Animals , Anti-Inflammatory Agents/pharmacokinetics , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Antiviral Agents/pharmacokinetics , Antiviral Agents/therapeutic use , Biological Availability , Cell Fusion , Cell Line , Clofazimine/pharmacokinetics , Clofazimine/therapeutic use , Coronavirus/growth & development , Coronavirus/pathogenicity , Cricetinae , DNA Helicases/antagonists & inhibitors , Drug Synergism , Female , Humans , Life Cycle Stages/drug effects , Male , Mesocricetus , Pre-Exposure Prophylaxis , SARS-CoV-2/growth & development , Species Specificity , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Transcription, Genetic/drug effects , Transcription, Genetic/genetics
2.
EMBO J ; 41(19): e110988, 2022 10 04.
Article in English | MEDLINE | ID: mdl-35942625

ABSTRACT

One of the hallmarks of plant senescence is the global transcriptional reprogramming coordinated by a plethora of transcription factors (TFs). However, mechanisms underlying the interactions between different TFs in modulating senescence remain obscure. Previously, we discovered that plant ABS3 subfamily MATE transporter genes regulate senescence and senescence-associated transcriptional changes. In a genetic screen for mutants suppressing the accelerated senescence phenotype of the gain-of-function mutant abs3-1D, AUXIN RESPONSE FACTOR 2 (ARF2) and PHYTOCHROME-INTERACTING FACTOR 5 (PIF5) were identified as key TFs responsible for transcriptional regulation in the ABS3-mediated senescence pathway. ARF2 and PIF5 (as well as PIF4) interact directly and function interdependently to promote senescence, and they share common target genes such as key senescence promoting genes ORESARA 1 (ORE1) and STAY-GREEN 1 (SGR1) in the ABS3-mediated senescence pathway. In addition, we discovered reciprocal regulation between ABS3-subfamily MATEs and the ARF2 and PIF5/4 TFs. Taken together, our findings reveal a regulatory paradigm in which the ARF2-PIF5/4 functional module facilitates the transcriptional reprogramming in the ABS3-mediated senescence pathway.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Phytochrome , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Factor V/genetics , Factor V/metabolism , Gene Expression Regulation, Plant , Indoleacetic Acids/metabolism , Phytochrome/genetics , Plant Senescence , Transcription Factors/genetics , Transcription Factors/metabolism
3.
Proc Natl Acad Sci U S A ; 120(47): e2316011120, 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-37967217

ABSTRACT

Potassium (K) is an essential macronutrient for plant growth, and its availability in the soil varies widely, requiring plants to respond and adapt to the changing K nutrient status. We show here that plant growth rate is closely correlated with K status in the medium, and this K-dependent growth is mediated by the highly conserved nutrient sensor, target of rapamycin (TOR). Further study connected the TOR complex (TORC) pathway with a low-K response signaling network consisting of calcineurin B-like proteins (CBL) and CBL-interacting kinases (CIPK). Under high K conditions, TORC is rapidly activated and shut down the CBL-CIPK low-K response pathway through regulatory-associated protein of TOR (RAPTOR)-CIPK interaction. In contrast, low-K status activates CBL-CIPK modules that in turn inhibit TORC by phosphorylating RAPTOR, leading to dissociation and thus inactivation of the TORC. The reciprocal regulation of the TORC and CBL-CIPK modules orchestrates plant response and adaptation to K nutrient status in the environment.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Calcium/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism , Potassium/metabolism , Calcium-Binding Proteins/metabolism , Calcium, Dietary , Plant Proteins/metabolism
4.
Plant J ; 118(2): 506-518, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38169508

ABSTRACT

Thermosensitive genic female sterility (TGFS) is a promising property to be utilized for hybrid breeding. Here, we identified a rice TGFS line, tfs2, through an ethyl methyl sulfone (EMS) mutagenesis strategy. This line showed sterility under high temperature and became fertile under low temperature. Few seeds were produced when the tfs2 stigma was pollinated, indicating that tfs2 is female sterile. Gene cloning and genetic complementation showed that a point mutation from leucine to phenylalanine in HEI10 (HEI10tfs2), a crossover formation protein, caused the TGFS trait of tfs2. Under high temperature, abnormal univalents were formed, and the chromosomes were unequally segregated during meiosis, similar to the reported meiotic defects in oshei10. Under low temperature, the number of univalents was largely reduced, and the chromosomes segregated equally, suggesting that crossover formation was restored in tfs2. Yeast two-hybrid assays showed that HEI10 interacted with two putative protein degradation-related proteins, RPT4 and SRFP1. Through transient expression in tobacco leaves, HEI10 were found to spontaneously aggregate into dot-like foci in the nucleus under high temperature, but HEI10tfs2 failed to aggregate. In contrast, low temperature promoted HEI10tfs2 aggregation. This result suggests that protein aggregation at the crossover position contributes to the fertility restoration of tfs2 under low temperature. In addition, RPT4 and SRFP1 also aggregated into dot-like foci, and these aggregations depend on the presence of HEI10. These findings reveal a novel mechanism of fertility restoration and facilitate further understanding of HEI10 in meiotic crossover formation.


Subject(s)
Infertility , Oryza , Crossing Over, Genetic , Point Mutation , Oryza/genetics , Plant Breeding
5.
J Cell Sci ; 136(12)2023 06 15.
Article in English | MEDLINE | ID: mdl-37259855

ABSTRACT

The mammalian epidermis undergoes constant renewal, replenished by a pool of stem cells and terminal differentiation of their progeny. This is accompanied by changes in gene expression and morphology that are orchestrated, in part, by epigenetic modifiers. Here, we define the role of the histone acetyltransferase KAT2A in epidermal homeostasis and provide a comparative analysis that reveals key functional divergence with its paralog KAT2B. In contrast to the reported function of KAT2B in epidermal differentiation, KAT2A supports the undifferentiated state in keratinocytes. RNA-seq analysis of KAT2A- and KAT2B- depleted keratinocytes revealed dysregulated epidermal differentiation. Depletion of KAT2A led to premature expression of epidermal differentiation genes in the absence of inductive signals, whereas loss of KAT2B delayed differentiation. KAT2A acetyltransferase activity was indispensable in regulating epidermal differentiation gene expression. The metazoan-specific N terminus of KAT2A was also required to support its function in keratinocytes. We further showed that the interplay between KAT2A- and KAT2B-mediated regulation was important for normal cutaneous wound healing in vivo. Overall, these findings reveal a distinct mechanism in which keratinocytes use a pair of highly homologous histone acetyltransferases to support divergent functions in self-renewal and differentiation processes.


Subject(s)
Histone Acetyltransferases , Keratinocytes , Animals , Histone Acetyltransferases/genetics , Histone Acetyltransferases/metabolism , Keratinocytes/metabolism , Cell Differentiation/genetics , Skin/metabolism , Epidermis/metabolism , Mammals/metabolism
6.
Hepatology ; 79(1): 118-134, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37594323

ABSTRACT

BACKGROUND AND AIM: Baveno VII workshop recommends the use of preemptive TIPS (p-TIPS) in patients with cirrhosis and acute variceal bleeding (AVB) at high- risk of treatment failure. However, the criteria defining "high-risk" have low clinical accessibility or include subjective variables. We aimed to develop and externally validate a model for better identification of p-TIPS candidates. APPROACH AND RESULTS: The derivation cohort included 1554 patients with cirrhosis and AVB who were treated with endoscopy plus drug (n = 1264) or p-TIPS (n = 290) from 12 hospitals in China between 2010 and 2017. We first used competing risk regression to develop a score for predicting 6-week and 1-year mortality in patients treated with endoscopy plus drugs, which included age, albumin, bilirubin, international normalized ratio, white blood cell, creatinine, and sodium. The score was internally validated with the bootstrap method, which showed good discrimination (6 wk/1 y concordance-index: 0.766/0.740) and calibration, and outperformed other currently available models. In the second stage, the developed score was combined with treatment and their interaction term to predicate the treatment effect of p-TIPS (mortality risk difference between treatment groups) in the whole derivation cohort. The estimated treatment effect of p-TIPS varied substantially among patients. The prediction model had good discriminative ability (6 wk/1 y c -for-benefit: 0.696/0.665) and was well calibrated. These results were confirmed in the validation dataset of 445 patients with cirrhosis with AVB from 6 hospitals in China between 2017 and 2019 (6-wk/1-y c-for-benefit: 0.675/0.672). CONCLUSIONS: We developed and validated a clinical prediction model that can help to identify individuals who will benefit from p-TIPS, which may guide clinical decision-making.


Subject(s)
Esophageal and Gastric Varices , Portasystemic Shunt, Transjugular Intrahepatic , Humans , Esophageal and Gastric Varices/etiology , Prognosis , Models, Statistical , Gastrointestinal Hemorrhage/etiology , Gastrointestinal Hemorrhage/prevention & control , Liver Cirrhosis/etiology , Portasystemic Shunt, Transjugular Intrahepatic/adverse effects
7.
Plant Physiol ; 2024 May 23.
Article in English | MEDLINE | ID: mdl-38781292

ABSTRACT

Plant senescence is a highly regulated developmental program crucial for nutrient reallocation and stress adaptation in response to developmental and environmental cues. Stress-induced and age-dependent natural senescence share both overlapping and distinct molecular responses and regulatory schemes. Previously, we have utilized a carbon-deprivation (C-deprivation) senescence assay using Arabidopsis (Arabidopsis thaliana) seedlings to investigate senescence regulation. Here we conducted a comprehensive time-resolved transcriptomic analysis of Arabidopsis wild type seedlings subjected to C-deprivation treatment at multiple time points, unveiling substantial temporal changes and distinct gene expression patterns. Moreover, we identified ALTERED MERISTEM PROGRAM 1 (AMP1), encoding an endoplasmic reticulum protein, as a potential regulator of senescence based on its expression profile. By characterizing loss-of-function alleles and overexpression lines of AMP1, we confirmed its role as a negative regulator of plant senescence. Genetic analyses further revealed a synergistic interaction between AMP1 and the autophagy pathway in regulating senescence. Additionally, we discovered a functional association between AMP1 and the endosome-localized ABNORMAL SHOOT3 (ABS3)-mediated senescence pathway and positioned key senescence-promoting transcription factors downstream of AMP1. Overall, our findings shed light on the molecular intricacies of transcriptome reprogramming during C-deprivation-induced senescence and the functional interplay among endomembrane compartments in controlling plant senescence.

8.
Plant Physiol ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38743633

ABSTRACT

The cultivated apple (Malus domestica Borkh.) is a cross-pollinated perennial fruit tree of great economic importance. Previous versions of apple reference genomes were unphased, fragmented, and lacked comprehensive insights into the highly heterozygous genome, which impeded genetic studies and breeding programs in apple. In this study, we assembled a haplotype-resolved telomere-to-telomere reference genome for the diploid apple cultivar Golden Delicious. Subsequently, we constructed a pangenome based on twelve assemblies from wild and cultivated apples to investigate different types of resistance gene analogs (RGAs). Our results revealed the dynamics of the gene gain and loss events during apple domestication. Compared with cultivated species, more gene families in wild species were significantly enriched in oxidative phosphorylation, pentose metabolic process, responses to salt, and abscisic acid biosynthesis process. Interestingly, our analyses demonstrated a higher prevalence of RGAs in cultivated apples than their wild relatives, partially attributed to segmental and tandem duplication events in certain RGAs classes. Other types of structural variations, mainly deletions and insertions, have affected the presence and absence of TIR-NB-ARC-LRR (TNL), NB-ARC-LRR (NL), and CC-NB-ARC-LRR (CNL) genes. Additionally, hybridization/introgression from wild species has also contributed to the expansion of resistance genes in domesticated apples. Our haplotype-resolved T2T genome and pangenome provide important resources for genetic studies of apples, emphasizing the need to study the evolutionary mechanisms of resistance genes in apple breeding programs.

9.
Mol Cell Proteomics ; 22(2): 100494, 2023 02.
Article in English | MEDLINE | ID: mdl-36621768

ABSTRACT

AMP-activated protein kinase alpha 2 (AMPKα2) regulates energy metabolism, protein synthesis, and glucolipid metabolism myocardial cells. Ketone bodies produced by fatty acid ß-oxidation, especially ß-hydroxybutyrate, are fatty energy-supplying substances for the heart, brain, and other organs during fasting and long-term exercise. They also regulate metabolic signaling for multiple cellular functions. Lysine ß-hydroxybutyrylation (Kbhb) is a ß-hydroxybutyrate-mediated protein posttranslational modification. Histone Kbhb has been identified in yeast, mouse, and human cells. However, whether AMPK regulates protein Kbhb is yet unclear. Hence, the present study explored the changes in proteomics and Kbhb modification omics in the hearts of AMPKα2 knockout mice using a comprehensive quantitative proteomic analysis. Based on mass spectrometry (LC-MS/MS) analysis, the number of 1181 Kbhb modified sites in 455 proteins were quantified between AMPKα2 knockout mice and wildtype mice; 244 Kbhb sites in 142 proteins decreased or increased after AMPKα2 knockout (fold change >1.5 or <1/1.5, p < 0.05). The regulation of Kbhb sites in 26 key enzymes of fatty acid degradation and tricarboxylic acid cycle was noted in AMPKα2 knockout mouse cardiomyocytes. These findings, for the first time, identified proteomic features and Kbhb modification of cardiomyocytes after AMPKα2 knockout, suggesting that AMPKα2 regulates energy metabolism by modifying protein Kbhb.


Subject(s)
3-Hydroxybutyric Acid , AMP-Activated Protein Kinases , Myocardium , Animals , Humans , Mice , 3-Hydroxybutyric Acid/chemistry , 3-Hydroxybutyric Acid/metabolism , AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/metabolism , Chromatography, Liquid , Mice, Inbred C57BL , Mice, Knockout , Myocardium/metabolism , Proteomics , Tandem Mass Spectrometry
10.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Article in English | MEDLINE | ID: mdl-35064078

ABSTRACT

Prostate-specific membrane antigen (PSMA) is highly overexpressed in most prostate cancers and is clinically visualized using PSMA-specific probes incorporating glutamate-ureido-lysine (GUL). PSMA is effectively absent from certain high-mortality, treatment-resistant subsets of prostate cancers, such as neuroendocrine prostate cancer (NEPC); however, GUL-based PSMA tracers are still reported to have the potential to identify NEPC metastatic tumors. These probes may bind unknown proteins associated with PSMA-suppressed cancers. We have identified the up-regulation of PSMA-like aminopeptidase NAALADaseL and the metabotropic glutamate receptors (mGluRs) in PSMA-suppressed prostate cancers and find that their expression levels inversely correlate with PSMA expression and are associated with GUL-based radiotracer uptake. Furthermore, we identify that NAALADaseL and mGluR expression correlates with a unique cell cycle signature. This provides an opportunity for the future study of the biology of NEPC and potential therapeutic directions. Computationally predicting that GUL-based probes bind well to these targets, we designed and synthesized a fluorescent PSMA tracer to investigate these proteins in vitro, where it shows excellent affinity for PSMA, NAALADaseL, and specific mGluRs associated with poor prognosis.


Subject(s)
Antigens, Surface/metabolism , Glutamate Carboxypeptidase II/metabolism , Glutamates , Lysine , Molecular Probes , Prostatic Neoplasms/diagnosis , Prostatic Neoplasms/metabolism , Urea , Animals , Antigens, Surface/chemistry , Binding Sites , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Disease Models, Animal , Disease Progression , Fluorescent Antibody Technique , Fluorescent Dyes/chemical synthesis , Fluorescent Dyes/chemistry , Gene Expression , Glutamate Carboxypeptidase II/chemistry , Glutamates/chemistry , Humans , Immunohistochemistry , Lysine/chemistry , Male , Mice , Models, Molecular , Molecular Conformation , Molecular Imaging/methods , Molecular Probes/chemistry , Prostatic Neoplasms/genetics , Protein Binding , Receptors, Kainic Acid/genetics , Receptors, Kainic Acid/metabolism , Structure-Activity Relationship , Urea/analogs & derivatives , Urea/chemistry
11.
Circulation ; 148(15): 1138-1153, 2023 10 10.
Article in English | MEDLINE | ID: mdl-37746744

ABSTRACT

BACKGROUND: Type 2 diabetes (T2D) is associated with an increased risk of left ventricular dysfunction after aortic valve replacement (AVR) in patients with severe aortic stenosis (AS). Persistent impairments in myocardial energetics and myocardial blood flow (MBF) may underpin this observation. Using phosphorus magnetic resonance spectroscopy and cardiovascular magnetic resonance, this study tested the hypothesis that patients with severe AS and T2D (AS-T2D) would have impaired myocardial energetics as reflected by the phosphocreatine to ATP ratio (PCr/ATP) and vasodilator stress MBF compared with patients with AS without T2D (AS-noT2D), and that these differences would persist after AVR. METHODS: Ninety-five patients with severe AS without coronary artery disease awaiting AVR (30 AS-T2D and 65 AS-noT2D) were recruited (mean, 71 years of age [95% CI, 69, 73]; 34 [37%] women). Thirty demographically matched healthy volunteers (HVs) and 30 patients with T2D without AS (T2D controls) were controls. One month before and 6 months after AVR, cardiac PCr/ATP, adenosine stress MBF, global longitudinal strain, NT-proBNP (N-terminal pro-B-type natriuretic peptide), and 6-minute walk distance were assessed in patients with AS. T2D controls underwent identical assessments at baseline and 6-month follow-up. HVs were assessed once and did not undergo 6-minute walk testing. RESULTS: Compared with HVs, patients with AS (AS-T2D and AS-noT2D combined) showed impairment in PCr/ATP (mean [95% CI]; HVs, 2.15 [1.89, 2.34]; AS, 1.66 [1.56, 1.75]; P<0.0001) and vasodilator stress MBF (HVs, 2.11 mL min g [1.89, 2.34]; AS, 1.54 mL min g [1.41, 1.66]; P<0.0001) before AVR. Before AVR, within the AS group, patients with AS-T2D had worse PCr/ATP (AS-noT2D, 1.74 [1.62, 1.86]; AS-T2D, 1.44 [1.32, 1.56]; P=0.002) and vasodilator stress MBF (AS-noT2D, 1.67 mL min g [1.5, 1.84]; AS-T2D, 1.25 mL min g [1.22, 1.38]; P=0.001) compared with patients with AS-noT2D. Before AVR, patients with AS-T2D also had worse PCr/ATP (AS-T2D, 1.44 [1.30, 1.60]; T2D controls, 1.66 [1.56, 1.75]; P=0.04) and vasodilator stress MBF (AS-T2D, 1.25 mL min g [1.10, 1.41]; T2D controls, 1.54 mL min g [1.41, 1.66]; P=0.001) compared with T2D controls at baseline. After AVR, PCr/ATP normalized in patients with AS-noT2D, whereas patients with AS-T2D showed no improvements (AS-noT2D, 2.11 [1.79, 2.43]; AS-T2D, 1.30 [1.07, 1.53]; P=0.0006). Vasodilator stress MBF improved in both AS groups after AVR, but this remained lower in patients with AS-T2D (AS-noT2D, 1.80 mL min g [1.59, 2.0]; AS-T2D, 1.48 mL min g [1.29, 1.66]; P=0.03). There were no longer differences in PCr/ATP (AS-T2D, 1.44 [1.30, 1.60]; T2D controls, 1.51 [1.34, 1.53]; P=0.12) or vasodilator stress MBF (AS-T2D, 1.48 mL min g [1.29, 1.66]; T2D controls, 1.60 mL min g [1.34, 1.86]; P=0.82) between patients with AS-T2D after AVR and T2D controls at follow-up. Whereas global longitudinal strain, 6-minute walk distance, and NT-proBNP all improved after AVR in patients with AS-noT2D, no improvement in these assessments was observed in patients with AS-T2D. CONCLUSIONS: Among patients with severe AS, those with T2D demonstrate persistent abnormalities in myocardial PCr/ATP, vasodilator stress MBF, and cardiac contractile function after AVR; AVR effectively normalizes myocardial PCr/ATP, vasodilator stress MBF, and cardiac contractile function in patients without T2D.


Subject(s)
Aortic Valve Stenosis , Diabetes Mellitus, Type 2 , Heart Valve Prosthesis Implantation , Humans , Female , Male , Aortic Valve/diagnostic imaging , Aortic Valve/surgery , Diabetes Mellitus, Type 2/complications , Ventricular Function, Left/physiology , Vasodilator Agents , Adenosine Triphosphate , Heart Valve Prosthesis Implantation/adverse effects
12.
Neuroimage ; 289: 120551, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38382862

ABSTRACT

It has been revealed that abnormal voxel-mirrored homotopic connectivity (VMHC) is present in patients with schizophrenia, yet there are inconsistencies in the relevant findings. Moreover, little is known about their association with brain gene expression profiles. In this study, transcription-neuroimaging association analyses using gene expression data from Allen Human Brain Atlas and case-control VMHC differences from both the discovery (meta-analysis, including 9 studies with a total of 386 patients and 357 controls) and replication (separate group-level comparisons within two datasets, including a total of 258 patients and 287 controls) phases were performed to identify genes associated with VMHC alterations. Enrichment analyses were conducted to characterize the biological functions and specific expression of identified genes, and Neurosynth decoding analysis was performed to examine the correlation between cognitive-related processes and VMHC alterations in schizophrenia. In the discovery and replication phases, patients with schizophrenia exhibited consistent VMHC changes compared to controls, which were correlated with a series of cognitive-related processes; meta-regression analysis revealed that illness duration was negatively correlated with VMHC abnormalities in the cerebellum and postcentral/precentral gyrus. The abnormal VMHC patterns were stably correlated with 1287 genes enriched for fundamental biological processes like regulation of cell communication, nervous system development, and cell communication. In addition, these genes were overexpressed in astrocytes and immune cells, enriched in extensive cortical regions and wide developmental time windows. The present findings may contribute to a more comprehensive understanding of the molecular mechanisms underlying VMHC alterations in patients with schizophrenia.


Subject(s)
Schizophrenia , Humans , Schizophrenia/diagnostic imaging , Schizophrenia/genetics , Magnetic Resonance Imaging , Brain , Brain Mapping , Gene Expression
13.
Curr Issues Mol Biol ; 46(6): 5682-5700, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38921011

ABSTRACT

It is known that sialyllactose (SL) in mammalians is a major source of sialic acid (Sia), which can further form cytidine monophosphate sialic acid (CMP-Sia), and the final product is polysialic acid (polySia) using polysialyltransferases (polySTs) on the neural cell adhesion molecule (NCAM). This process is called NCAM polysialylation. The overexpression of polysialylation is strongly related to cancer cell migration, invasion, and metastasis. In order to inhibit the overexpression of polysialylation, in this study, SL was selected as an inhibitor to test whether polysialylation could be inhibited. Our results suggest that the interactions between the polysialyltransferase domain (PSTD) in polyST and CMP-Siaand the PSTD and polySia could be inhibited when the 3'-sialyllactose (3'-SL) or 6'-sialyllactose (6'-SL) concentration is about 0.5 mM or 6'-SL and 3 mM, respectively. The results also show that SLs (particularly for 3'-SL) are the ideal inhibitors compared with another two inhibitors, low-molecular-weight heparin (LMWH) and cytidine monophosphate (CMP), because 3'-SL can not only be used to inhibit NCAM polysialylation, but is also one of the best supplements for infant formula and the gut health system.

14.
Article in English | MEDLINE | ID: mdl-38759828

ABSTRACT

BACKGROUND & AIMS: The effect of transjugular intrahepatic portosystemic shunt (TIPS) plus variceal embolization for treating gastric varices (GVs) remains controversial. This nationwide multicenter cohort study aimed to evaluate whether adding variceal embolization to a small diameter (8-mm) TIPS could reduce the rebleeding incidence in patients with different types of GVs. METHODS: This retrospective cohort study involved 629 patients who underwent 8-mm TIPS for gastric varices at 7 medical centers. The primary endpoint was all-cause rebleeding, and the secondary endpoints included overt hepatic encephalopathy (OHE) and all-cause mortality. RESULTS: A total of 629 patients were included. Among them, 429 (68.2%) had gastroesophageal varices type 1 (GOV1), 145 (23.1%) had gastroesophageal varices type 2 (GOV2), and 55 (8.7%) had isolated gastric varices type 1 (IGV1). In the entire cohort, adjunctive embolization reduced rebleeding (6.2% vs 13.6%; P = .005) and OHE (31.0% vs 39.4%; P = .02) compared with TIPS alone. However, no significant differences were found in mortality (12.0% vs 9.7%; P = .42). In patients with GOV2 and IGV1, TIPS plus variceal embolization reduced both rebleeding (GOV2: 7.8% vs 25.1%; P = .01; IGV1: 5.6% vs 30.8%; P = .03) and OHE (GOV2: 31.8% vs 51.5%; P = .008; IGV1: 11.6% vs 38.5%; P = .04). However, in patients with GOV1, adjunctive embolization did not reduce rebleeding (5.9% vs 8.7%; P = .37) or OHE (33.1% vs 35.3%; P = .60). CONCLUSIONS: Compared with TIPS alone, 8-mm TIPS plus variceal embolization reduced rebleeding and OHE in patients with GOV2 and IGV1. These findings suggest that patients with GOV2 and IGV1, rather than GOV1, could benefit from embolization with TIPS.

15.
J Gene Med ; 26(5): e3689, 2024 May.
Article in English | MEDLINE | ID: mdl-38676365

ABSTRACT

BACKGROUND: Intrahepatic cholangiocarcinoma (ICC) is a highly aggressive malignancy characterized by a poor prognosis and closely linked to tumor stemness. However, the key molecules that regulate ICC stemness remain elusive. Although Y-box binding protein 1 (YBX1) negatively affects prognosis in various cancers by enhancing stemness and chemoresistance, its effect on stemness and cisplatin sensitivity in ICC remains unclear. METHODS: Three bulk and single-cell RNA-seq datasets were analyzed to investigate YBX1 expression in ICC and its association with stemness. Clinical samples and colony/sphere formation assays validated the role of YBX1 in stemness and sensitivity to cisplatin. AZD5363 and KYA1979K explored the interaction of YBX1 with the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB/AKT) and WNT/ß-catenin pathways. RESULTS: YBX1 was significantly upregulated in ICC, correlated with worse overall survival and shorter postoperative recurrence time, and was higher in chemotherapy-non-responsive ICC tissues. The YBX1-high group exhibited significantly elevated stemness scores, and genes linked to YBX1 upregulation were enriched in multiple stemness-related pathways. Moreover, YBX1 expression is significantly correlated with several stemness-related genes (SOX9, OCT4, CD133, CD44 and EPCAM). Additionally, YBX1 overexpression significantly enhanced the colony- and spheroid-forming abilities of ICC cells, accelerated tumor growth in vivo and reduced their sensitivity to cisplatin. Conversely, the downregulation of YBX1 exerted the opposite effect. The transcriptomic analysis highlighted the link between YBX1 and the PI3K/AKT and WNT/ß-catenin pathways. Further, AZD5363 and KYA1979K were used to clarify that YBX1 promoted ICC stemness through the regulation of the AKT/ß-catenin axis. CONCLUSIONS: YBX1 is upregulated in ICC and promotes stemness and cisplatin insensitivity via the AKT/ß-catenin axis. Our study describes a novel potential therapeutic target for improving ICC prognosis.


Subject(s)
Cholangiocarcinoma , Cisplatin , Drug Resistance, Neoplasm , Gene Expression Regulation, Neoplastic , Y-Box-Binding Protein 1 , beta Catenin , Animals , Female , Humans , Male , Mice , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , beta Catenin/metabolism , beta Catenin/genetics , Bile Duct Neoplasms/genetics , Bile Duct Neoplasms/metabolism , Bile Duct Neoplasms/pathology , Bile Duct Neoplasms/drug therapy , Cell Line, Tumor , Cell Proliferation , Cholangiocarcinoma/genetics , Cholangiocarcinoma/metabolism , Cholangiocarcinoma/drug therapy , Cholangiocarcinoma/pathology , Cholangiocarcinoma/mortality , Cisplatin/pharmacology , Cisplatin/therapeutic use , Drug Resistance, Neoplasm/genetics , Neoplastic Stem Cells/metabolism , Prognosis , Proto-Oncogene Proteins c-akt/metabolism , Wnt Signaling Pathway , Xenograft Model Antitumor Assays , Y-Box-Binding Protein 1/metabolism , Y-Box-Binding Protein 1/genetics
16.
Plant Biotechnol J ; 22(7): 2020-2032, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38421616

ABSTRACT

P/TGMS (Photo/thermo-sensitive genic male sterile) lines are crucial resources for two-line hybrid rice breeding. Previous studies revealed that slow development is a general mechanism for sterility-fertility conversion of P/TGMS in Arabidopsis. However, the difference in P/TGMS genes between rice and Arabidopsis suggests the presence of a distinct P/TGMS mechanism in rice. In this study, we isolated a novel P/TGMS line, ostms19, which shows sterility under high-temperature conditions and fertility under low-temperature conditions. OsTMS19 encodes a novel pentatricopeptide repeat (PPR) protein essential for pollen formation, in which a point mutation GTA(Val) to GCA(Ala) leads to ostms19 P/TGMS phenotype. It is highly expressed in the tapetum and localized to mitochondria. Under high temperature or long-day photoperiod conditions, excessive ROS accumulation in ostms19 anthers during pollen mitosis disrupts gene expression and intine formation, causing male sterility. Conversely, under low temperature or short-day photoperiod conditions, ROS can be effectively scavenged in anthers, resulting in fertility restoration. This indicates that ROS homeostasis is critical for fertility conversion. This relationship between ROS homeostasis and fertility conversion has also been observed in other tested rice P/TGMS lines. Therefore, we propose that ROS homeostasis is a general mechanism for the sterility-fertility conversion of rice P/TGMS lines.


Subject(s)
Fertility , Homeostasis , Oryza , Plant Infertility , Plant Proteins , Pollen , Reactive Oxygen Species , Oryza/genetics , Oryza/metabolism , Reactive Oxygen Species/metabolism , Fertility/genetics , Pollen/genetics , Pollen/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Infertility/genetics , Gene Expression Regulation, Plant , Temperature , Light , Photoperiod
17.
Diabetes Metab Res Rev ; 40(1): e3706, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37545385

ABSTRACT

OBJECTIVE: To explore the difference in temperature recovery following cold stimulation between participants with and without diabetes mellitus (DM). MATERIALS AND METHODS: The participants without (control group; n = 25) and with (DM group; n = 26) DM were subjected to local cold stimulation (10º C for 90 s). The thermal images of their hands were continuously captured using a thermal camera within 7 min following cold stimulation, and the highest temperature of each fingertip was calculated. According to the temperature values at different timepoints, the temperature recovery curves were drawn, and the baseline temperature (T-base), initial temperature after cooling (T0), temperature decline amplitude (T-range), and area under the temperature recovery curve > T0 (S) were calculated. Finally, symmetry differences between the two groups were analysed. RESULTS: No statistical differences in the T-base, T0, and T-range were observed between the DM and control groups. After drawing the rewarming curve according to the temperature of the fingertips of the patients following cold stimulation, the S in the DM group was significantly lower than that in the control group (p < 0.05). Furthermore, the asymmetry of the base temperature of the hand was observed in the DM group. CONCLUSIONS: Following cold stimulation, the patients with DM exhibited a different rewarming pattern than those without DM. Thus, cold stimulation tests under infrared thermography may contribute to the early screening of diabetic peripheral neuropathy in future.


Subject(s)
Diabetes Mellitus , Thermography , Humans , Temperature , Thermography/methods , Cold Temperature , Rewarming , Skin Temperature
18.
Nat Chem Biol ; 18(3): 281-288, 2022 03.
Article in English | MEDLINE | ID: mdl-34937912

ABSTRACT

Sphingosine-1-phosphate receptor 1 (S1PR1) is a master regulator of lymphocyte egress from the lymph node and an established drug target for multiple sclerosis (MS). Mechanistically, therapeutic S1PR1 modulators activate the receptor yet induce sustained internalization through a potent association with ß-arrestin. However, a structural basis of biased agonism remains elusive. Here, we report the cryo-electron microscopy (cryo-EM) structures of Gi-bound S1PR1 in complex with S1P, fingolimod-phosphate (FTY720-P) and siponimod (BAF312). In combination with functional assays and molecular dynamics (MD) studies, we reveal that the ß-arrestin-biased ligands direct a distinct activation path in S1PR1 through the extensive interplay between the PIF and the NPxxY motifs. Specifically, the intermediate flipping of W2696.48 and the retained interaction between F2656.44 and N3077.49 are the key features of the ß-arrestin bias. We further identify ligand-receptor interactions accounting for the S1PR subtype specificity of BAF312. These structural insights provide a rational basis for designing novel signaling-biased S1PR modulators.


Subject(s)
Fingolimod Hydrochloride , Multiple Sclerosis , Cryoelectron Microscopy , Fingolimod Hydrochloride/pharmacology , Fingolimod Hydrochloride/therapeutic use , Humans , Multiple Sclerosis/drug therapy , Sphingosine-1-Phosphate Receptors , beta-Arrestins
19.
Neurochem Res ; 49(8): 1993-2004, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38782837

ABSTRACT

Phosphodiesterase 8 (PDE8), as a member of PDE superfamily, specifically promotes the hydrolysis and degradation of intracellular cyclic adenosine monophosphate (cAMP), which may be associated with pathogenesis of Alzheimer's disease (AD). However, little is currently known about potential role in the central nervous system (CNS). Here we investigated the distribution and expression of PDE8 in brain of mouse, which we believe can provide evidence for studying the role of PDE8 in CNS and the relationship between PDE8 and AD. Here, C57BL/6J mice were used to observe the distribution patterns of two subtypes of PDE8, PDE8A and PDE8B, in different sexes in vivo by western blot (WB). Meanwhile, C57BL/6J mice were also used to demonstrate the distribution pattern of PDE8 in selected brain regions and localization in neural cells by WB and multiplex immunofluorescence staining. Furthermore, the triple transgenic (3×Tg-AD) mice and wild type (WT) mice of different ages were used to investigate the changes of PDE8 expression in the hippocampus and cerebral cortex during the progression of AD. PDE8 was found to be widely expressed in multiple tissues and organs including heart, kidney, stomach, brain, and liver, spleen, intestines, and uterus, with differences in expression levels between the two subtypes of PDE8A and PDE8B, as well as two sexes. Meanwhile, PDE8 was widely distributed in the brain, especially in areas closely related to cognitive function such as cerebellum, striatum, amygdala, cerebral cortex, and hippocampus, without differences between sexes. Furthermore, PDE8A was found to be expressed in neuronal cells, microglia and astrocytes, while PDE8B is only expressed in neuronal cells and microglia. PDE8A expression in the hippocampus of both female and male 3×Tg-AD mice was gradually increased with ages and PDE8B expression was upregulated only in cerebral cortex of female 3×Tg-AD mice with ages. However, the expression of PDE8A and PDE8B was apparently increased in both cerebral cortex and hippocampus in both female and male 10-month-old 3×Tg-AD mice compared WT mice. These results suggest that PDE8 may be associated with the progression of AD and is a potential target for its prevention and treatment in the future.


Subject(s)
3',5'-Cyclic-AMP Phosphodiesterases , Alzheimer Disease , Mice, Inbred C57BL , Mice, Transgenic , Animals , Alzheimer Disease/metabolism , Female , Male , 3',5'-Cyclic-AMP Phosphodiesterases/metabolism , 3',5'-Cyclic-AMP Phosphodiesterases/genetics , Mice , Brain/metabolism , Hippocampus/metabolism
20.
J Cardiovasc Magn Reson ; 26(1): 101007, 2024.
Article in English | MEDLINE | ID: mdl-38316344

ABSTRACT

BACKGROUND: Quantitative cardiovascular magnetic resonance (CMR) first pass perfusion maps are conventionally acquired with 3 short-axis (SAX) views (basal, mid, and apical) in every heartbeat (3SAX/1RR). Thus, a significant part of the left ventricle (LV) myocardium, including the apex, is not covered. The aims of this study were 1) to investigate if perfusion maps acquired with 3 short-axis views sampled every other RR-interval (2RR) yield comparable quantitative measures of myocardial perfusion (MP) as 1RR and 2) to assess if acquiring 3 additional perfusion views (i.e., total of 6) every other RR-interval (2RR) increases diagnostic confidence. METHODS: In 287 patients with suspected ischemic heart disease stress and rest MP were performed on clinical indication on a 1.5T MR scanner. Eighty-three patients were examined by acquiring 3 short-axis perfusion maps with 1RR sampling (3SAX/1RR); for which also 2RR maps were reconstructed. Additionally, in 103 patients 3 short-axis and 3 long-axis (LAX; 2-, 3, and 4-chamber view) perfusion maps were acquired using 2RR sampling (3SAX + 3LAX/2RR) and in 101 patients 6 short-axis perfusion maps using 2RR sampling (6SAX/2RR) were acquired. The diagnostic confidence for ruling in or out stress-induced ischemia was scored according to a Likert scale (certain ischemia [2 points], probably ischemia [1 point], uncertain [0 points], probably no ischemia [1 point], certain no ischemia [2 points]). RESULTS: There was a strong correlation (R = 0.99) between 3SAX/1RR and 3SAX/2RR for global MP (mL/min/g). The diagnostic confidence score increased significantly when the number of perfusion views was increased from 3 to 6 (1.24 ± 0.68 vs 1.54 ± 0.64, p < 0.001 with similar increase for 3SAX+3LAX/2RR (1.29 ± 0.68 vs 1.55 ± 0.65, p < 0.001) and for 6SAX/2RR (1.19 ± 0.69 vs 1.53 ± 0.63, p < 0.001). CONCLUSION: Quantitative perfusion mapping with 2RR sampling of data yields comparable perfusion values as 1RR sampling, allowing for the acquisition of additional views within the same perfusion scan. The diagnostic confidence for stress-induced ischemia increases when adding 3 additional views, short- or long axes, to the conventional 3 short-axis views. Thus, future development and clinical implementation of quantitative CMR perfusion should aim at increasing the LV coverage from the current standard using 3 short-axis views.


Subject(s)
Coronary Circulation , Heart Ventricles , Myocardial Ischemia , Myocardial Perfusion Imaging , Predictive Value of Tests , Humans , Male , Female , Myocardial Perfusion Imaging/methods , Middle Aged , Aged , Myocardial Ischemia/diagnostic imaging , Myocardial Ischemia/physiopathology , Reproducibility of Results , Heart Ventricles/diagnostic imaging , Heart Ventricles/physiopathology , Ventricular Function, Left , Image Interpretation, Computer-Assisted , Magnetic Resonance Imaging, Cine , Heart Rate
SELECTION OF CITATIONS
SEARCH DETAIL