Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 214
Filter
Add more filters

Country/Region as subject
Affiliation country
Publication year range
1.
BMC Biol ; 22(1): 70, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38519936

ABSTRACT

BACKGROUND: Eriophyoid mites (Eriophyoidea) are among the largest groups in the Acariformes; they are strictly phytophagous. The higher-level phylogeny of eriophyoid mites, however, remains unresolved due to the limited number of available morphological characters-some of them are homoplastic. Nevertheless, the eriophyoid mites sequenced to date showed highly variable mitochondrial (mt) gene orders, which could potentially be useful for resolving the higher-level phylogenetic relationships. RESULTS: Here, we sequenced and compared the complete mt genomes of 153 eriophyoid mite species, which showed 54 patterns of rearranged mt gene orders relative to that of the hypothetical ancestor of arthropods. The shared derived mt gene clusters support the monophyly of eriophyoid mites (Eriophyoidea) as a whole and the monophylies of six clades within Eriophyoidea. These monophyletic groups and their relationships were largely supported in the phylogenetic trees inferred from mt genome sequences as well. Our molecular dating results showed that Eriophyoidea originated in the Triassic and diversified in the Cretaceous, coinciding with the diversification of angiosperms. CONCLUSIONS: This study reveals multiple molecular synapomorphies (i.e. shared derived mt gene clusters) at different levels (i.e. family, subfamily or tribe level) from the complete mt genomes of 153 eriophyoid mite species. We demonstrated the use of derived mt gene clusters in unveiling the higher-level phylogeny of eriophyoid mites, and underlines the origin of these mites and their co-diversification with angiosperms.


Subject(s)
Genome, Mitochondrial , Magnoliopsida , Mites , Animals , Phylogeny , Mites/genetics , Genes, Mitochondrial , Multigene Family , Magnoliopsida/genetics
2.
Biochem Genet ; 62(2): 675-697, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37395850

ABSTRACT

This study aimed to investigate the role of the long non-coding RNA (lncRNA) LINC00342-207 (LINC00342) in the development and progression of primary hepatocellular carcinoma (HCC). Forty-two surgically resected HCC tissues and corresponding paracancerous tissues were collected from October 2019 to December 2020 and examined for lncRNA LINC00342, microRNA (miR)-19a-3p, miR-545-5p, miR-203a-3p, cell cycle protein D1 (CyclinD1/CCND1), murine double minute 2 (MDM2), and fibroblast growth factor 2 (FGF2) expression. The disease-free survival and overall survival of patients with HCC were followed up. HCC cell lines and the normal hepatocyte cell line HL-7702 were cultured and the expression level of LINC00342 was measured. HepG2 cells were transfected with LINC00342 siRNA, LINC00342 overexpression plasmid, miR-19a-3p mimics and their corresponding suppressors, miR-545-5p mimics and their corresponding suppressors, and miR-203a-3p mimics and their corresponding suppressors. The proliferation, apoptosis, migration, and invasion of HepG2 cells were detected. Stably transfected HepG2 cells were inoculated into the left axilla of male BALB/c nude mice, and the volume and quality of transplanted tumors as well as the expression levels of LINC00342, miR-19a-3p, miR-545-5p, miR-203a-3p, CCND1, MDM2, and FGF2 were examined. LINC00342 played an oncogenic role in HCC and exhibited inhibitory effects on proliferation, migration, and invasion, and promoted the apoptosis of HepG2 cells. Moreover, it inhibited the growth of transplanted tumors in vivo in mice. Mechanistically, the oncogenic effect of LINC00342 was associated with the targeted regulation of the miR-19a-3p/CCND1, miR-545-5p/MDM2, and miR-203a-3p/FGF2 axes.

3.
Plant J ; 109(1): 64-76, 2022 01.
Article in English | MEDLINE | ID: mdl-34695260

ABSTRACT

Maize (Zea mays L.) silk contains high levels of flavonoids and is widely used to promote human health. Isoorientin, a natural C-glycoside flavone abundant in maize silk, has attracted considerable attention due to its potential value. Although different classes of flavonoid have been well characterized in plants, the genes involved in the biosynthesis of isoorientin in maize are largely unknown. Here, we used targeted metabolic profiling of isoorientin on the silks in an association panel consisting of 294 maize inbred lines. We identified the gene ZmCGT1 by genome-wide association analysis. The ZmCGT1 protein was characterized as a 2-hydroxyflavanone C-glycosyltransferase that can C-glycosylate 2-hydroxyflavanone to form flavone-C-glycoside after dehydration. Moreover, ZmCGT1 overexpression increased isoorientin levels and RNA interference-mediated ZmCGT1 knockdown decreased accumulation of isoorientin in maize silk. Further, two nucleotide polymorphisms, A502C and A1022G, which led to amino acid changes I168L and E341G, respectively, were identified to be functional polymorphisms responsible for the natural variation in isoorientin levels. In summary, we identified the gene ZmCGT1, which plays an important role in isoorientin biosynthesis, providing insights into the genetic basis of the natural variation in isoorientin levels in maize silk. The identified favorable CG allele of ZmCGT1 may be further used for genetic improvement of nutritional quality in maize.


Subject(s)
Genetic Variation , Glycosyltransferases/metabolism , Luteolin/biosynthesis , Zea mays/genetics , Flavones/biosynthesis , Flavones/chemistry , Genome-Wide Association Study , Glycosyltransferases/genetics , Luteolin/chemistry , Metabolome , Plant Leaves/chemistry , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Roots/chemistry , Plant Roots/genetics , Plant Roots/metabolism , Plant Stems/chemistry , Plant Stems/genetics , Plant Stems/metabolism , Zea mays/chemistry , Zea mays/metabolism
4.
Ann Surg Oncol ; 30(12): 7712-7719, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37530992

ABSTRACT

BACKGROUND: The aim of this study was to develop a nomogram to predict the risk of developing clinically relevant postoperative pancreatic fistula (CR-POPF) after pancreaticoduodenectomy (PD) using preoperative clinical and imaging data. METHODS: The data of 205 patients were retrospectively analyzed, randomly divided into training (n = 125) and testing groups (n = 80). The patients' preoperative laboratory indicators, preoperative clinical baseline data, and preoperative imaging data [enhanced computed tomography (CT), enhanced magnetic resonance imaging (MRI)] were collected. Univariate analyses combined with multivariate logistic regression were used to identify the independent risk factors for CR-POPF. These factors were used to train and validate the model and to develop the risk nomogram. The area under the curve (AUC) was used to measure the predictive ability of the models. The integrated discrimination improvement index (IDI) and decision curve analysis (DCA) were used to assess the clinical feasibility of the nomogram in relation to five other models established in literature. RESULTS: CT visceral fat area (P = 0.014), the pancreatic spleen signal ratio on T1 fat-suppressed MRI sequences (P < 0.001), and CT main pancreatic duct diameter (P = 0.001) were identified as independent prognostic factors and used to develop the model. The final nomogram achieved an AUC of 0.903. The IDI and DCA showed that the nomogram outperformed the other five CR-POPF models in the training and testing cohorts. CONCLUSION: The nomogram achieved a superior predictive ability for CR-POPF following PD than other models described in literature. Clinicians can use this simple model to optimize perioperative planning according to the patient's risk of developing CR-POPF.

5.
Mol Phylogenet Evol ; 179: 107676, 2023 02.
Article in English | MEDLINE | ID: mdl-36535519

ABSTRACT

The superfamily Eriophyoidea includes >5000 named species of very small phytophagous mites. As for many groups of phytophagous invertebrates, factors responsible for diversification of eriophyoid mites are unclear. Here, we used an inferred phylogeny of 566 putative species of eriophyoid mites based on fragments of two mitochondrial genes and two nuclear genes to examine factors associated with their massive evolutionary diversification through time. Our dated phylogeny indicates a Carboniferous origin for gymnosperm-associated Eriophyoidea with subsequent diversification involving multiple host shifts to angiosperms-first to dicots, and then to monocots or shifts back to gymnosperms-beginning in the Cretaceous period when angiosperms diverged. Speciation rates increased more rapidly in the Eriophyidae + Diptilomiopidae (mostly infesting angiosperms) than in the Phytoptidae (mostly infesting gymnosperms). Phylogenetic signal, speciation rates, dispersal and vicariance results combined with inferred topologies show that hosts played a key role in the evolution of eriophyoid mites. Speciation constrained by hosts was probably the main driver behind eriophyoid mite diversification worldwide. We demonstrate monophyly of the Eriophyoidea, whereas all three families, most subfamilies, tribes, and most genera are not monophyletic. Our time-calibrated tree provides a framework for further evolutionary studies of eriophyoid mites and their interactions with host plants as well as taxonomic revisions above the species level.


Subject(s)
Magnoliopsida , Mites , Humans , Animals , Phylogeny , Mites/genetics , Magnoliopsida/genetics , Genes, Mitochondrial , Cell Nucleus/genetics
6.
Blood ; 137(12): 1603-1614, 2021 03 25.
Article in English | MEDLINE | ID: mdl-32967010

ABSTRACT

The initiation and progression of diffuse large B-cell lymphoma (DLBCL) is governed by genetic and epigenetic aberrations. As the most abundant eukaryotic messenger RNA (mRNA) modification, N6-methyladenosine (m6A) is known to influence various fundamental bioprocesses by regulating the target gene; however, the function of m6A modifications in DLBCL is unclear. PIWI-interacting RNAs (piRNAs) have been indicated to be epigenetic effectors in cancer. Here, we show that high expression of piRNA-30473 supports the aggressive phenotype of DLBCL, and piRNA-30473 depletion decreases proliferation and induces cell cycle arrest in DLBCL cells. In xenograft DLBCL models, piRNA-30473 inhibition reduces tumor growth. Moreover, piRNA-30473 is significantly associated with overall survival in a univariate analysis and is statistically significant after adjusting for the National Comprehensive Cancer Network-International Prognostic Index in the multivariate analysis. Additional studies demonstrate that piRNA-30473 exerts its oncogenic role through a mechanism involving the upregulation of WTAP, an m6A mRNA methylase, and thus enhances the global m6A level. Integrating transcriptome and m6A-sequencing analyses reveals that WTAP increases the expression of its critical target gene, hexokinase 2 (HK2), by enhancing the HK2 m6A level, thereby promoting the progression of DLBCL. Together, the piRNA-30473/WTAP/HK2 axis contributes to tumorigenesis by regulating m6A RNA methylation in DLBCL. Furthermore, by comprehensively analyzing our clinical data and data sets, we discover that the m6A regulatory genes piRNA-30473 and WTAP improve survival prediction in DLBCL patients. Our study highlights the functional importance of the m6A modification in DLBCL and might assist in the development of a prognostic stratification and therapeutic approach for DLBCL.


Subject(s)
Carcinogenesis/genetics , Gene Expression Regulation, Neoplastic , Lymphoma, Large B-Cell, Diffuse/genetics , RNA, Small Interfering/genetics , Epigenesis, Genetic , Humans , Lymphoma, Large B-Cell, Diffuse/diagnosis , Methyltransferases/genetics , Prognosis , RNA, Messenger/genetics
7.
Crit Rev Food Sci Nutr ; 63(24): 7197-7223, 2023.
Article in English | MEDLINE | ID: mdl-36397724

ABSTRACT

Tropical fruits are popular because of their unique, delicious flavors and good nutritional value. Polyphenols are considered to be the main bioactive ingredients in tropical fruits, and these exert a series of beneficial effects on the human gastrointestinal tract that can enhance intestinal health and prevent intestinal diseases. Moreover, they are distinct from the polyphenols in fruits grown in other geographical zones. Thus, the comprehensive effects of polyphenols in tropical fruits on gut health warrant in-depth review. This article reviews, first, the biological characteristics of several representative tropical fruits, including mango, avocado, noni, cashew apple, passion fruit and lychee; second, the types and content of the main polyphenols in these tropical fruits; third, the effects of each of these fruit polyphenols on gastrointestinal health; and, fourth, the protective mechanism of polyphenols. Polyphenols and their metabolites play a crucial role in the regulation of the gut microbiota, increasing intestinal barrier function, reducing oxidative stress, inhibiting the secretion of inflammatory factors and regulating immune function. Thus, review highlights the value of tropical fruits, highlighting their significance for future research on their applications as functional foods that are oriented to gastrointestinal protection.


Subject(s)
Gastrointestinal Microbiome , Polyphenols , Humans , Polyphenols/analysis , Fruit/chemistry , Antioxidants/pharmacology , Antioxidants/metabolism , Gastrointestinal Tract/metabolism
8.
Environ Sci Technol ; 57(31): 11442-11451, 2023 08 08.
Article in English | MEDLINE | ID: mdl-37490655

ABSTRACT

Chlorinated paraffins (CPs) have become global pollutants and are of considerable concern as a result of their persistence and long-distance transmission in the environment and toxicity to mammals. However, their risks to pollinating insects are unknown. Honeybees are classical pollinators and sensitive indicators of environmental pollution. Herein, the effects of CPs on the gut microenvironment and underlying mechanisms were evaluated and explored using Apis mellifera L. Both short- and medium-chain CPs had significant sublethal effects on honeybees at a residue dose of 10 mg/L detected in bee products but did not significantly alter the composition or diversity of the gut microbiota. However, this concentration did induce significant immune, detoxification, and antioxidation responses and metabolic imbalances in the midgut. The mechanisms of CP toxicity in bees are complicated by the complex composition of these chemicals, but this study indicated that CPs could substantially affect intestinal physiology and metabolic homeostasis. Therefore, CPs in the environment could have long-lasting impacts on bee health. Future studies are encouraged to identify novel bioindicators of CP exposure to detect early contamination and uncover the detailed mechanisms underlying the adverse effects of CPs on living organisms, especially pollinating insects.


Subject(s)
Bees , Environmental Pollutants , Gastrointestinal Microbiome , Hydrocarbons, Chlorinated , Paraffin , Animals , Bees/physiology , Gastrointestinal Microbiome/drug effects , Hydrocarbons, Chlorinated/toxicity , Paraffin/toxicity , Stress, Physiological , Environmental Pollutants/toxicity
9.
Compr Rev Food Sci Food Saf ; 22(2): 1387-1417, 2023 03.
Article in English | MEDLINE | ID: mdl-36789800

ABSTRACT

α-Dicarbonyl compounds (α-DCs) are readily produced during the heating and storage of foods, mainly through the Maillard reaction, caramelization, lipid-peroxidation, and enzymatic reaction. They contribute to both the organoleptic properties (i.e., aroma, taste, and color) and deterioration of foods and are potential indicators of food quality. α-DCs are also important precursors to hazardous substances, such as acrylamide, furan, advanced lipoxidation end products, and advanced glycation end products, which are genotoxic, neurotoxic, and linked to several diseases. Recent studies have indicated that dietary α-DCs can elevate plasma α-DC levels and lead to "dicarbonyl stress." To accurately assess their health risks, quantifying α-DCs in food products is crucial. Considering their low volatility, inability to absorb ultraviolet light, and high reactivity, the analysis of α-DCs in complex food systems is a challenge. In this review, we comprehensively cover the development of scientific approaches, from extraction, enrichment, and derivatization, to sophisticated detection techniques, which are necessary for quantifying α-DCs in different foods. Exposure to α-DCs is inevitable because they exist in most foods. Recently, novel strategies for reducing α-DC levels in foods have become a hot research topic. These strategies include the use of new processing technologies, formula modification, and supplementation with α-DC scavengers (e.g., phenolic compounds). For each strategy, it is important to consider the potential mechanisms underlying the formation and removal of process contaminants. Future studies are needed to develop techniques to control α-DC formation during food processing, and standardized approaches are needed to quantify and compare α-DCs in different foods.


Subject(s)
Glycation End Products, Advanced , Maillard Reaction , Food Handling/methods , Food , Diet
10.
Cancer Sci ; 113(2): 634-647, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34890089

ABSTRACT

Noncoding RNAs have been verified to regulate the infiltration of macrophages to accelerate tumor biological progression, however the regulation of macrophages by circular RNAs in hepatocellular carcinoma (HCC) remains unresolved. Using high-throughput RNA sequencing, we demonstrated that hsa_circ_0003410 was clearly upregulated in HCC. 5-Ethynyl-2'-deoxyuridine and transwell assays showed that hsa_circ_0003410 facilitated the proliferation and migration of HCC cells in vitro. We knocked down the expression of hsa_circ_0003410 in HepG2 cells and performed next-generation sequencing to determine possible target genes of hsa_circ_0003410. Kyoto Encyclopedia of Genes and Genomes analysis revealed that different genes were mainly enriched in immune-related pathways. Mechanistically, we identified CCL5 as the target gene of hsa_circ_0003410. RNA-FISH showed the co-expression of hsa_circ_0003410 and CCL5. Western blot and ELISA also verified that hsa_circ_0003410 could upregulate the expression of CCL5 protein. Flow cytometry and immunofluorescence assays indicated that CCL5 activated and recruited M2 macrophages and increased the ratio of M2/M1 macrophages to promote the progression of HCC. Animal experiments in vitro also confirmed our results. Taken together, our experiments revealed that noncoding RNAs play a critical role in the HCC microenvironment and can be considered as markers for the diagnosis and prognosis of HCC.


Subject(s)
Carcinoma, Hepatocellular/genetics , Chemokine CCL5/genetics , Liver Neoplasms/genetics , MicroRNAs/genetics , RNA, Circular/genetics , Tumor-Associated Macrophages/immunology , Animals , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Chemokine CCL5/immunology , Gene Expression Regulation, Neoplastic , Humans , Liver Neoplasms/immunology , Liver Neoplasms/pathology , Mice , Tumor Microenvironment/immunology
11.
Cladistics ; 38(4): 452-464, 2022 08.
Article in English | MEDLINE | ID: mdl-35349189

ABSTRACT

Arachnida is an exceptionally diverse class in the Arthropoda, consisting of 20 orders and playing crucial roles in the terrestrial ecosystems. However, their interordinal relationships have been debated for over a century. Rearranged or highly rearranged mitochondrial genomes (mitogenomes) were consistently found in this class, but their various extent in different lineages and efficiency for resolving arachnid phylogenies are unclear. Here, we reconstructed phylogenetic trees using mitogenome sequences of 290 arachnid species to decipher interordinal relationships as well as diversification through time. Our results recovered monophyly of ten orders (i.e. Amblypygi, Araneae, Ixodida, Mesostigmata, Opiliones, Pseudoscorpiones, Ricinulei, Sarcoptiformes, Scorpiones and Solifugae), while rejecting monophyly of the Trombidiformes due to the unstable position of the Eriophyoidea. The monophyly of Acari (subclass) was rejected, possibly due to the long-branch attraction of the Pseudoscorpiones. The monophyly of Arachnida was further rejected because the Xiphosura nested within arachnid orders with unstable positions. Mitogenomes that are highly rearranged in mites but less rearranged or conserved in the remaining lineages point to their exceptional diversification in mite orders; however, shared derived mitochondrial (mt) gene clusters were found within superfamilies rather than interorders, confusing phylogenetic signals in arachnid interordinal relationships. Molecular dating results show that arachnid orders have ancient origins, ranging from the Ordovician to the Carboniferous, yet have significantly diversified since the Cretaceous in orders Araneae, Mesostigmata, Sarcoptiformes, and Trombidiformes. By summarizing previously resolved key positions of some orders, we propose a plausible arachnid tree of life. Our results underline a more precise framework for interordinal phylogeny in the Arachnida and provide new insights into their ancient evolution.


Subject(s)
Arachnida , Genome, Mitochondrial , Mites , Animals , Arachnida/genetics , Ecosystem , Genome, Mitochondrial/genetics , Phylogeny
12.
Molecules ; 27(5)2022 Mar 04.
Article in English | MEDLINE | ID: mdl-35268793

ABSTRACT

The antibacterial activity of propolis has long been of great interest, and the chemical composition of propolis is directly dependent on its source. We recently obtained a type of propolis from China with a red color. Firstly, the antibacterial properties of this unusual propolis were determined against Staphylococcus aureus and methicillin-resistant Staphylococcus aureus (MRSA). Studies on its composition identified and quantified 14 main polyphenols of Chinese red propolis extracts (RPE); quantification was carried out using liquid chromatography triple quadrupole tandem mass spectrometry (LC-QQQ-MS/MS) and RPE was found to be rich in pinobanksin, pinobanksin-3-acetate, and chrysin. In vitro investigations of its antibacterial activity revealed that its activity against S. aureus and MRSA is due to disruption of the cell wall and cell membrane, which then inhibits bacterial growth. Despite its similar antibacterial activities against S. aureus and MRSA, metabolomic analysis further revealed the effects of RPE on bacteria metabolism were different. The untargeted metabolomic results showed that a total of 7 metabolites in 12 metabolic pathways had significant changes (Fold change > 2, p < 0.05 *) after RPE treatment in S. aureus, while 11 metabolites in 9 metabolic pathways had significant changes (Fold change > 2, p < 0.05 *) after RPE treated on MRSA. Furthermore, RPE downregulated several specific genes related to bacterial biofilm formation, autolysis, cell wall synthesis, and bacterial virulence in MRSA. In conclusion, the data obtained indicate that RPE may be a promising therapeutic agent against S. aureus and MRSA.


Subject(s)
Methicillin-Resistant Staphylococcus aureus
13.
Ann Noninvasive Electrocardiol ; 26(6): e12891, 2021 11.
Article in English | MEDLINE | ID: mdl-34582604

ABSTRACT

OBJECTIVE: To investigate the main causes, risk factors, and prognosis of patients hospitalized with syncope. METHODS: The patients admitted due to syncope were included. We analyzed the etiology, risk factors, and prognosis of patients with an average follow-up of 15.3 months. RESULTS: High-risk factors for cardiogenic syncope included age ≥60, male, hypertension, palpitation, troponin T-positive, abnormal ECG, CHD history, and syncope-related trauma. Mortality rate was 4.6%, recurrence rate of syncope was 10.5%, and the rehospitalization rate was 8.5%. Univariate analysis showed that prognosis of syncope was related to age ≥60 years old, hypertension, positive troponin T, abnormal electrocardiogram, and coronary heart disease (p < .05). Multivariate Cox proportional hazard analysis showed that age ≥60 years old (p = .021) and high-sensitivity troponin-positive (p = .024) were strongly related to the prognosis of syncope. Kaplan-Meier curve showed statistical difference in the survival rate between the groups divided by age ≥60 years (p = .028), hs-TnT-positive (p < .001), abnormal ECG (p = .027), and history of CHD (p = .020). CONCLUSION: High-risk factors for cardiogenic syncope included age ≥60, male, hypertension, palpitation, troponin T-positive, abnormal ECG, CHD family history, and syncope-related trauma. Age, hypertension, troponin T-positive, abnormal ECG, and CHD history were associated with the prognosis of syncope.


Subject(s)
Electrocardiography , Syncope , Humans , Male , Middle Aged , Prognosis , Risk Factors , Syncope/diagnosis , Syncope/epidemiology , Syncope/etiology , Troponin T
14.
Ecotoxicol Environ Saf ; 220: 112379, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34058677

ABSTRACT

Sulfoxaflor is a novel sulfoximine insecticide which is widely used to control crop pests. Risk assessments have reported its high toxicity to pollinators. However, sulfoxaflor is not persistent in the environment and few studies have addressed its negative effects on larval and newly emerged honeybees at environmentally relevant concentrations. In the present study, the sublethal effects of a sulfoxaflor commercial product, Isoclast™ Active, were evaluated in the laboratory using larvae and newly emerged worker honeybees. The results of 96-h acute toxicity showed that Isoclast is moderately toxic to adult bees, and it could induce significant death and growth failure of larvae after continuous dietary intake. In addition, Isoclast induced significant changes in antioxidative (SOD, CAT), lipid peroxidation (POD, LPO, MDA), detoxification (GST, GR, GSH) and signal transduction-related (AChE, ACh) enzymes or products both in larvae and adult honey bees under residue levels. Here we firstly reported the lethal and sublethal effects of commercial sulfoxaflor to honeybees' larvae and young workers. All these findings revealed the potential risks of sulfoxaflor residue in environment to honey bees, and may also to other pollinators. This is a laboratory mimic studies, and further studies are still needed to investigate the risks and in-depth mechanisms of sulfoxaflor to bees in field.


Subject(s)
Bees/drug effects , Environmental Exposure/adverse effects , Insecticides/toxicity , Larva/drug effects , Pyridines/toxicity , Sulfur Compounds/toxicity , Animals , Diet , Oxidative Stress , Pollination , Water
15.
Heredity (Edinb) ; 124(2): 383-396, 2020 02.
Article in English | MEDLINE | ID: mdl-31676879

ABSTRACT

The center-periphery hypothesis (CPH) states that the genetic diversity, genetic flow, and population abundance of a species are highest at the center of the species' geographic distribution. However, most CPH studies have focused on the geographic distance and have ignored ecological and historical effects. Studies using niche models to define the center and periphery of a distribution and the interactions among geographical, ecological, and historical gradients have rarely been done in the framework of the CPH, especially in biogeographical studies of animal species. Here, we examined the CPH for a widely distributed arthropod, Tetranychus truncatus (Acari: Tetranychidae), in eastern China using three measurements: geographic distance to the center of the distribution (geography), ecological suitability based on current climate data (ecology), and historical climate data from the last glacial maximum (history). We found that the relative abundances of different populations were more strongly related to ecology than to geography and history. Genetic diversity within populations and genetic differentiation among populations based on mitochondrial marker were only significantly related to history. However, the genetic diversity and population differentiation based on microsatellites were significantly related to all three CPH measurements. Overall, population abundance and genetic pattern cannot be explained very well by geography alone. Our results show that ecological gradients explain the variation in population abundance better than geographic gradients and historical factors, and that current and historical factors strongly influence the spatial patterns of genetic variation. This study highlights the importance of examining more than just geography when assessing the CPH.


Subject(s)
Genetic Variation , Genetics, Population , Tetranychidae/genetics , Animal Distribution , Animals , China , Climate , Gene Flow , Genotype , Geography , Microsatellite Repeats
16.
Ecotoxicol Environ Saf ; 190: 110101, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-31874407

ABSTRACT

Varroa mites often inflict heavy losses on the global bee industry and there are few effective control options. Among these methods to control mites, pesticides are extensively used as a cheap, easy to use, and high-efficiency control measure. However, bees are sensitive to many pesticides; thus, a balance between losses induced by drugs and maximum benefits are important for beekeeping and risk assessment. In this study, the effects of flumethrin, a pyrethroid miticide used on bee colonies, was evaluated using bee larvae reared in vitro. We found that flumethrin induced significant mortality during larval metamorphosis and adult emergence. After continuous exposure during the larval stage, significant changes were observed in antioxidative enzymes (SOD and CAT), lipid peroxidation (MDA, LPO, and POD), and detoxification enzymes (GSH, GST, and GR) in the late instar larvae before pupation. It is also noteworthy that flumethrin significantly regulated the expression of immune (Basket and Dscam) and developmental (Amems, Amhex10869, Vtg and Mfe) genes in larvae, which influences can also be found in the subsequent pupae and adult stages. These findings indicate that flumethrin itself is toxic to bee larvae and has potential risks during colony development. Bees are important pollinators and the sustainable and healthy development of colonies is the foundation of pollinating success for agricultural production. This study would provide some useful thinking for pesticides application techniques and processes in risk assessment of pesticides to bee larvae, even colony.


Subject(s)
Bees/physiology , Pesticides/toxicity , Pyrethrins/toxicity , Stress, Physiological , Animals , Beekeeping , Honey , Larva/drug effects , Pesticides/analysis , Pollination , Pupa/growth & development , Pyrethrins/analysis , Varroidae
17.
Chaos ; 30(11): 113110, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33261326

ABSTRACT

In this paper, we are concerned with the stochastic susceptible-infectious-susceptible epidemic model on the complete graph with n vertices. This model has two parameters, which are the infection rate and the recovery rate. By utilizing the theory of density-dependent Markov chains, we give consistent estimations of the above two parameters as n grows to infinity according to the sample path of the model in a finite time interval. Furthermore, we establish the central limit theorem (CLT) and the moderate deviation principle (MDP) of our estimations. As an application of our CLT, reject regions of hypothesis testings of two parameters are given. As an application of our MDP, confidence intervals of parameters with lengths converging to 0 while confidence levels converging to 1 are given as n grows to infinity.


Subject(s)
Communicable Diseases , Epidemics , Communicable Diseases/epidemiology , Computer Simulation , Disease Susceptibility/epidemiology , Humans , Markov Chains , Models, Biological , Stochastic Processes
18.
J Cell Biochem ; 120(1): 135-142, 2019 01.
Article in English | MEDLINE | ID: mdl-30238497

ABSTRACT

Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related death worldwide. China accounts for over half of the new cases and deaths. Diagnostic imprecision and a lack of complimentary molecular biomarkers are partially responsible for this lack of progress. Herein, serum-derived exosomal microRNA (miRNA) profiling was performed on 80 patients which histologically confirmed HCC and 30 normal controls. A classification of 8 exosomal miRNAs had biologically and statistically significant differences between HCC and normal serum samples, including miR-122, miR-125b, miR-145, miR-192, miR-194, miR-29a, miR-17-5p, and miR-106a. Online algorithm showed strong independent classification accuracy (area under the curve) reached 0.535 to 0.850, separately. The significant correlation between serum exosomal miRNAs and tumor size was observed. In addition, the survival difference of HCC patients with high or low exosomal miR-106a was statistically significant using Kaplan-Meier analysis. Besides, we also measured the proliferation and invasion ability of HCC cells following exosomal miR-106a mimics or inhibitor treatment. After prediction with algorithms, mitogen-activated protein kinase and c-Jun N-terminal kinase pathways were identified associated with miR-106a's function. In summary, differentially expressed serum exosomal miRNAs can be helpful for diagnostic and prognostic of HCC.


Subject(s)
Carcinoma, Hepatocellular/blood , Carcinoma, Hepatocellular/diagnosis , Exosomes/metabolism , Liver Neoplasms/blood , Liver Neoplasms/diagnosis , MicroRNAs/genetics , Adult , Aged , Aged, 80 and over , Area Under Curve , Biomarkers, Tumor/genetics , Carcinogenesis/metabolism , Carcinoma, Hepatocellular/mortality , China , Female , Hep G2 Cells , Humans , Kaplan-Meier Estimate , Liver Neoplasms/mortality , MAP Kinase Signaling System , Male , MicroRNAs/metabolism , Middle Aged , Mitogen-Activated Protein Kinases/metabolism , Prognosis , Survival Rate , Transcriptome , Transfection , Tumor Burden
19.
J Cell Biochem ; 120(10): 17699-17708, 2019 10.
Article in English | MEDLINE | ID: mdl-31127654

ABSTRACT

The long noncoding RNA HANR has been shown to be involved in the progression of hepatocellular carcinoma (HCC). However, the underlying mechanism of HCC-associated long noncoding RNA (HANR)-regulated HCC metastasis and lymphangiogenesis has not been elucidated. RT-qPCR and Western blot methods were utilized to detect the gene expressions. Interaction of HANR with miR-296 was predicted by a bioinformatic program and validated by a dual-luciferase reporter assay. For the functional experiment, a transwell invasion assay was utilized to examine the invasion abilities of HepG2 and Huh-7 cells. The lymphatic vessel formation assay was used to show the HCC-associated lymphatic vessel formation ability of human dermal lymphatic endothelial cells (HDLEC). HANR was shown to directly bind to miR-296, and miR-296 downregulated HANR expression in HepG2 cells. Then, we observed that miR-296 inhibitor transfection in shHANR HCC cells could promote lymphatic vessel formation and invasion of HDLEC cells compared with shHANR HCC cells. EAG1 or VEGFA overexpression in HDLEC cells rescued lymphatic vessel formation and invasion in HDLEC cells coincubated with the medium of HepG2 cells expressing shHANR or miR-296 mimic. Ultimately, HANR knockdown and miR-296 mimic led to a significant decrease in the EAG1 and VEGFA expression levels in HepG2 cells. Here, we reveal a novel molecular mechanism in which the HANR/miR-296/EAG1/VEGF axis is responsible for the lymphangiogenesis of HCC cells. Our findings provide more insights into developing therapeutical or diagnostic methods by targeting HANR.


Subject(s)
Carcinoma, Hepatocellular/genetics , Endothelial Cells/metabolism , Ether-A-Go-Go Potassium Channels/metabolism , Exosomes/metabolism , Lymphangiogenesis/genetics , MicroRNAs/metabolism , RNA, Long Noncoding/metabolism , Vascular Endothelial Growth Factor A/metabolism , Base Sequence , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , Humans , Liver Neoplasms/genetics , Liver Neoplasms/pathology , MicroRNAs/genetics , Models, Biological , Neoplasm Invasiveness , RNA, Long Noncoding/genetics , Signal Transduction
20.
Mol Ecol ; 28(14): 3306-3323, 2019 07.
Article in English | MEDLINE | ID: mdl-31183910

ABSTRACT

While it has been proposed in several taxa that the mitochondrial genome is associated with adaptive evolution to different climatic conditions, making links between mitochondrial haplotypes and organismal phenotypes remains a challenge. Mitonuclear discordance occurs in the small brown planthopper (SBPH), Laodelphax striatellus, with one mitochondrial haplogroup (HGI) more common in the cold climate region of China relative to another form (HGII) despite strong nuclear gene flow, providing a promising model to investigate climatic adaptation of mitochondrial genomes. We hypothesized that cold adaptation through HGI may be involved, and considered mitogenome evolution, population genetic analyses, and bioassays to test this hypothesis. In contrast to our hypothesis, chill-coma recovery tests and population genetic tests of selection both pointed to HGII being involved in cold adaptation. Phylogenetic analyses revealed that HGII is nested within HGI, and has three nonsynonymous changes in ND2, ND5 and CYTB in comparison to HGI. These molecular changes likely increased mtDNA copy number, cold tolerance and fecundity of SBPH, particularly through a function-altering amino acid change involving M114T in ND2. Nuclear background also influenced fecundity and chill recovery (i.e., mitonuclear epistasis) and protein modelling indicates possible nuclear interactions for the two nonsynonymous changes in ND2 and CYTB. The high occurrence frequency of HGI in the cold climate region of China remains unexplained, but several possible reasons are discussed. Overall, our study points to a link between mtDNA variation and organismal-level evolution and suggests a possible role of mitonuclear interactions in maintaining mtDNA diversity.


Subject(s)
Evolution, Molecular , Hemiptera/genetics , Mitochondria/genetics , Quantitative Trait, Heritable , Adaptation, Physiological/genetics , Animals , Body Size/genetics , DNA, Mitochondrial/genetics , Female , Fertility/genetics , Gene Amplification , Genetics, Population , Genome, Mitochondrial , Geography , Haplotypes/genetics , Male , Phylogeny , Structural Homology, Protein , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL