Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.659
Filter
Add more filters

Publication year range
1.
Cell ; 186(7): 1432-1447.e17, 2023 03 30.
Article in English | MEDLINE | ID: mdl-37001503

ABSTRACT

Cancer immunotherapies, including adoptive T cell transfer, can be ineffective because tumors evolve to display antigen-loss-variant clones. Therapies that activate multiple branches of the immune system may eliminate escape variants. Here, we show that melanoma-specific CD4+ T cell therapy in combination with OX40 co-stimulation or CTLA-4 blockade can eradicate melanomas containing antigen escape variants. As expected, early on-target recognition of melanoma antigens by tumor-specific CD4+ T cells was required. Surprisingly, complete tumor eradication was dependent on neutrophils and partly dependent on inducible nitric oxide synthase. In support of these findings, extensive neutrophil activation was observed in mouse tumors and in biopsies of melanoma patients treated with immune checkpoint blockade. Transcriptomic and flow cytometry analyses revealed a distinct anti-tumorigenic neutrophil subset present in treated mice. Our findings uncover an interplay between T cells mediating the initial anti-tumor immune response and neutrophils mediating the destruction of tumor antigen loss variants.


Subject(s)
Melanoma , T-Lymphocytes , Mice , Animals , T-Lymphocytes/pathology , Neutrophils/pathology , Antigenic Drift and Shift , Immunotherapy , CTLA-4 Antigen
2.
Immunity ; 53(2): 238-240, 2020 08 18.
Article in English | MEDLINE | ID: mdl-32814021

ABSTRACT

Stress is linked to negative outcomes in cardiovascular diseases but exactly why is unclear. In this issue of Immunity, Xu et al. report that stress elicits glucocorticoid-induced gut permeability, in turn triggering the expansion of a population of neutrophils that can stimulate vaso-occlusive episodes.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Vascular Diseases , Emotions , Humans , Inflammation
3.
Nature ; 607(7917): 169-175, 2022 07.
Article in English | MEDLINE | ID: mdl-35576971

ABSTRACT

Tuft cells are a rare chemosensory lineage that coordinates immune and neural responses to foreign pathogens in mucosal tissues1. Recent studies have also revealed tuft-cell-like human tumours2,3, particularly as a variant of small-cell lung cancer. Both normal and neoplastic tuft cells share a genetic requirement for the transcription factor POU2F3 (refs. 2,4), although the transcriptional mechanisms that generate this cell type are poorly understood. Here we show that binding of POU2F3 to the uncharacterized proteins C11orf53 and COLCA2 (renamed here OCA-T1/POU2AF2 and OCA-T2/POU2AF3, respectively) is critical in the tuft cell lineage. OCA-T1 and OCA-T2 are paralogues of the B-cell-specific coactivator OCA-B; all three proteins are encoded in a gene cluster and contain a conserved peptide that binds to class II POU transcription factors and a DNA octamer motif in a bivalent manner. We demonstrate that binding between POU2F3 and OCA-T1 or OCA-T2 is essential in tuft-cell-like small-cell lung cancer. Moreover, we generated OCA-T1-deficient mice, which are viable but lack tuft cells in several mucosal tissues. These findings reveal that the POU2F3-OCA-T complex is the master regulator of tuft cell identity and a molecular vulnerability of tuft-cell-like small-cell lung cancer.


Subject(s)
Cell Lineage , Lung Neoplasms , Neoplasm Proteins , Octamer Transcription Factors , Small Cell Lung Carcinoma , Animals , Humans , Mice , Lung Neoplasms/pathology , Mucous Membrane/pathology , Multigene Family/genetics , Neoplasm Proteins/metabolism , Nucleotide Motifs , Octamer Transcription Factors/metabolism , POU Domain Factors/metabolism , Small Cell Lung Carcinoma/pathology , Trans-Activators
4.
Mol Cell ; 75(4): 700-710.e6, 2019 08 22.
Article in English | MEDLINE | ID: mdl-31442422

ABSTRACT

Microrchidia (MORC) ATPases are critical for gene silencing and chromatin compaction in multiple eukaryotic systems, but the mechanisms by which MORC proteins act are poorly understood. Here, we apply a series of biochemical, single-molecule, and cell-based imaging approaches to better understand the function of the Caenorhabditis elegans MORC-1 protein. We find that MORC-1 binds to DNA in a length-dependent but sequence non-specific manner and compacts DNA by forming DNA loops. MORC-1 molecules diffuse along DNA but become static as they grow into foci that are topologically entrapped on DNA. Consistent with the observed MORC-1 multimeric assemblies, MORC-1 forms nuclear puncta in cells and can also form phase-separated droplets in vitro. We also demonstrate that MORC-1 compacts nucleosome templates. These results suggest that MORCs affect genome structure and gene silencing by forming multimeric assemblages to topologically entrap and progressively loop and compact chromatin.


Subject(s)
Caenorhabditis elegans Proteins/chemistry , Caenorhabditis elegans/chemistry , DNA, Helminth/chemistry , Nuclear Proteins/chemistry , Nucleic Acid Conformation , Nucleosomes/chemistry , Protein Multimerization , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans/ultrastructure , DNA, Helminth/metabolism , Nucleosomes/metabolism , Nucleosomes/ultrastructure
5.
Genes Dev ; 32(13-14): 915-928, 2018 07 01.
Article in English | MEDLINE | ID: mdl-29945888

ABSTRACT

Small cell lung cancer (SCLC) is widely considered to be a tumor of pulmonary neuroendocrine cells; however, a variant form of this disease has been described that lacks neuroendocrine features. Here, we applied domain-focused CRISPR screening to human cancer cell lines to identify the transcription factor (TF) POU2F3 (POU class 2 homeobox 3; also known as SKN-1a/OCT-11) as a powerful dependency in a subset of SCLC lines. An analysis of human SCLC specimens revealed that POU2F3 is expressed exclusively in variant SCLC tumors that lack expression of neuroendocrine markers and instead express markers of a chemosensory lineage known as tuft cells. Using chromatin- and RNA-profiling experiments, we provide evidence that POU2F3 is a master regulator of tuft cell identity in a variant form of SCLC. Moreover, we show that most SCLC tumors can be classified into one of three lineages based on the expression of POU2F3, ASCL1, or NEUROD1. Our CRISPR screens exposed other unique dependencies in POU2F3-expressing SCLC lines, including the lineage TFs SOX9 and ASCL2 and the receptor tyrosine kinase IGF1R (insulin-like growth factor 1 receptor). These data reveal POU2F3 as a cell identity determinant and a dependency in a tuft cell-like variant of SCLC, which may reflect a previously unrecognized cell of origin or a trans-differentiation event in this disease.


Subject(s)
Gene Expression Regulation, Neoplastic , Lung Neoplasms/genetics , Lung Neoplasms/physiopathology , Octamer Transcription Factors/genetics , Octamer Transcription Factors/metabolism , Small Cell Lung Carcinoma/genetics , Small Cell Lung Carcinoma/physiopathology , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Cell Differentiation , Cell Line, Tumor , Cell Lineage , Humans , Lung/pathology , Mice , Receptor, IGF Type 1/metabolism
6.
J Biol Chem ; : 107482, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38897567

ABSTRACT

Siglecs are cell surface receptors whose functions are tied to the binding of their sialoglycan ligands. Recently, we developed an optimized liposome formulation and used it to investigate the binding of human Siglecs (hSiglec) against a panel of gangliosides. Animal models, more specifically murine models, are used to understand human biology, however, species-specific differences can complicate the interpretation of the results. Herein, we used our optimized liposome formulation to dissect the interactions between murine Siglecs (mSiglecs) and gangliosides to assess the appropriateness of mSiglecs as a proxy to better understand the biological roles of hSiglec-ganglioside interactions. Using our optimized liposome formulation, we found that ganglioside binding is generally conserved between mice and humans with mSiglec-1, -E, -F, and -15 binding multiple gangliosides like their human counterparts. However, in contrast to the hSiglecs, we observed little to no binding between the mSiglecs and ganglioside GM1a. Detailed analysis of mSiglec-1 interacting with GM1a and its structural isomer, GM1b, suggests that mSiglec-1 preferentially binds α2-3-linked sialic acids presented from the terminal galactose residue. The ability of mSiglecs to interact or not interact with gangliosides, particularly GM1a, has implications for using mice to study neurodegenerative diseases, infections, and cancer, where interactions between Siglecs and glycolipids have been proposed to modulate these human diseases.

7.
Nature ; 572(7769): 341-346, 2019 08.
Article in English | MEDLINE | ID: mdl-31367039

ABSTRACT

Salinity is detrimental to plant growth, crop production and food security worldwide. Excess salt triggers increases in cytosolic Ca2+ concentration, which activate Ca2+-binding proteins and upregulate the Na+/H+ antiporter in order to remove Na+. Salt-induced increases in Ca2+ have long been thought to be involved in the detection of salt stress, but the molecular components of the sensing machinery remain unknown. Here, using Ca2+-imaging-based forward genetic screens, we isolated the Arabidopsis thaliana mutant monocation-induced [Ca2+]i increases 1 (moca1), and identified MOCA1 as a glucuronosyltransferase for glycosyl inositol phosphorylceramide (GIPC) sphingolipids in the plasma membrane. MOCA1 is required for salt-induced depolarization of the cell-surface potential, Ca2+ spikes and waves, Na+/H+ antiporter activation, and regulation of growth. Na+ binds to GIPCs to gate Ca2+ influx channels. This salt-sensing mechanism might imply that plasma-membrane lipids are involved in adaption to various environmental salt levels, and could be used to improve salt resistance in crops.


Subject(s)
Arabidopsis/cytology , Arabidopsis/metabolism , Calcium Signaling , Calcium/metabolism , Glycosphingolipids/metabolism , Plant Cells/metabolism , Sodium Chloride/metabolism , Arabidopsis/genetics , Glucuronosyltransferase/genetics , Glucuronosyltransferase/metabolism , Membrane Potentials/drug effects , Mutation , Salt Stress/genetics , Salt Stress/physiology , Sodium Chloride/pharmacology , Sodium-Hydrogen Exchangers/metabolism
8.
Cell Mol Life Sci ; 81(1): 126, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38470510

ABSTRACT

Stress-induced intestinal epithelial injury (IEI) and a delay in repair in infancy are predisposing factors for refractory gut diseases in adulthood, such as irritable bowel syndrome (IBS). Hence, it is necessary to develop appropriate mitigation methods for mammals when experiencing early-life stress (ELS). Weaning, as we all know, is a vital procedure that all mammalian newborns, including humans, must go through. Maternal separation (MS) stress in infancy (regarded as weaning stress in animal science) is a commonly used ELS paradigm. Drinking silicon-rich alkaline mineral water (AMW) has a therapeutic effect on enteric disease, but the specific mechanisms involved have not been reported. Herein, we discover the molecular mechanism by which silicon-rich AMW repairs ELS-induced IEI by maintaining intestinal stem cell (ISC) proliferation and differentiation through the glucagon-like peptide (GLP)2-Wnt1 axis. Mechanistic study showed that silicon-rich AMW activates GLP2-dependent Wnt1/ß-catenin pathway, and drives ISC proliferation and differentiation by stimulating Lgr5+ ISC cell cycle passage through the G1-S-phase checkpoint, thereby maintaining intestinal epithelial regeneration and IEI repair. Using GLP2 antagonists (GLP23-33) and small interfering RNA (SiWnt1) in vitro, we found that the GLP2-Wnt1 axis is the target of silicon-rich AMW to promote intestinal epithelium regeneration. Therefore, silicon-rich AMW maintains intestinal epithelium regeneration through the GLP2-Wnt1 axis in piglets under ELS. Our research contributes to understanding the mechanism of silicon-rich AMW promoting gut epithelial regeneration and provides a new strategy for the alleviation of ELS-induced IEI.


Subject(s)
Adverse Childhood Experiences , Mineral Waters , Infant, Newborn , Humans , Animals , Swine , Silicon/metabolism , Maternal Deprivation , Intestinal Mucosa/metabolism , Mammals
9.
Opt Express ; 32(8): 14719-14734, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38859409

ABSTRACT

Modulation format identification (MFI) and optical signal-to-noise ratio (OSNR) monitoring are important portions of optical performance monitoring (OPM) for future dynamic optical networks. In this paper, we proposed a fusion module few-shot learning (FMFSL) algorithm as an improvement upon the ordinary few-shot learning algorithms for image recognition with the specialty in adopting a combination of a dilated convolutional group and an asymmetric convolutional group to advance the feature extraction. FMFSL algorithm is applied in MFI and OSNR monitoring in coherent optical communication systems with its performance investigated in both back-to-back and fiber transmission scenarios using small-scale constellation diagrams. The results show that FMFSL algorithm can achieve 100% accuracy in MFI and higher OSNR monitoring accuracy compared to the few-shot learning algorithms Deep Nearest Neighbor Neural Network (DN4) and Prototypical Nets (PN) with 2.14% and 4.28% for 64QAM and 3.38% and 8.06% for 128QAM, respectively, without much increase in time consumption. Furthermore, the trained FMFSL algorithm remains excellent in MFI and OSNR monitoring without retraining while employed in back-to-back transmission scenarios with smaller OSNR intervals and fiber transmission scenarios with different amounts of Kerr nonlinearity, demonstrating its high capabilities in generalization and robustness. FMFSL algorithm provides a potential solution for OPM in future dynamic optical networks as a novel machine learning tool.

10.
J Sleep Res ; : e14144, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38253963

ABSTRACT

Although studies have shown that light affects sleep in polar populations, the sample size of most studies is small. This meta-analysis provides the first systematic review of the effects of summer glare, spring and fall moderate daylight, and artificial lighting on general sleep problems (sleep duration, efficiency, and delay). This analysis included 18 studies involving 986 participants. We calculated the random effect size via an evidence-based meta-analysis that analysed the effect of bright/auxiliary light on sleep and the effect of three different types of light on sleep compared with conventional light. There was no significant correlation between specific light types and sleep duration. Intense summer light has a negative effect on sleep time and efficiency. Moderate, natural light in spring and autumn effectively delayed sleep but could not improve sleep efficiency. For artificial fill light, neither blue light nor enhanced white light has been found to have a significant effect. In summary, summer light has a detrimental effect on sleep in polar populations, and moderate natural light may be superior to conventional light. However, specific strategies to improve sleep and artificial lighting in polar populations must be explored further.

11.
Bioorg Med Chem Lett ; 103: 129706, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38508325

ABSTRACT

Coronaviruses (CoVs) are responsible for a wide range of illnesses in both animals and human. The main protease (Mpro) of CoVs is an attractive drug target, owing its critical and highly conserved role in viral replication. Here, we developed and refined an enzymatic technique to identify putative Mpro inhibitors from 189 marine chemicals and 46 terrestrial natural products. The IC50 values of Polycarpine (1a), a marine natural substance we studied and synthesized, are 30.0 ± 2.5 nM for SARS-CoV-2 Mpro and 0.12 ± 0.05 µM for PEDV Mpro. Our research further demonstrated that pretreatment with Polycarpine (1a) inhibited the betacoronavirus SARS-CoV-2 and alphacoronavirus PEDV multiplication in Vero-E6 cells. As a result, Polycarpine (1a), a pan-inhibitor of Mpro, will function as an effective and promising antiviral option to combat CoVs infection and as a foundation for further therapeutic research.


Subject(s)
Antiviral Agents , Urochordata , Animals , Chlorocebus aethiops , Humans , Antiviral Agents/pharmacology , Protease Inhibitors/pharmacology , SARS-CoV-2 , Vero Cells
12.
Mol Biol Rep ; 51(1): 415, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38472517

ABSTRACT

Estrogen regulates a wide range of neuronal functions in the brain, such as dendritic spine formation, remodeling of synaptic plasticity, cognition, neurotransmission, and neurodevelopment. Estrogen interacts with intracellular estrogen receptors (ERs) and membrane-bound ERs to produce its effect via genomic and non-genomic pathways. Any alterations in these pathways affect the number, size, and shape of dendritic spines in neurons associated with psychiatric diseases. Increasing evidence suggests that estrogen fluctuation causes changes in dendritic spine density, morphology, and synapse numbers of excitatory and inhibitory neurons differently in males and females. In this review, we discuss the role of estrogen hormone in rodents and humans based on sex differences. First, we explain estrogen role in learning and memory and show that a high estrogen level alleviates the deficits in learning and memory. Secondly, we point out that estrogen produces a striking difference in emotional memories in men and women, which leads them to display sex-specific differences in underlying neuronal signaling. Lastly, we discuss that fluctuations in estrogen levels in men and women are related to neuropsychiatric disorders, including schizophrenia, autism spectrum disorder (ASD), attention deficit hyperactivity disorder (ADHD), bipolar disorder (BPD), major depressive disorder (MDD), substance use disorder (SUD), and anxiety disorders.


Subject(s)
Autism Spectrum Disorder , Depressive Disorder, Major , Humans , Female , Male , Autism Spectrum Disorder/genetics , Sex Characteristics , Depressive Disorder, Major/metabolism , Estrogens/metabolism , Synapses/metabolism , Emotions
13.
J Biochem Mol Toxicol ; 38(4): e23698, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38501767

ABSTRACT

Accumulating evidence confirms that sleep insufficiency is a high risk factor for cognitive impairment, which involves inflammation and synaptic dysfunction. Resveratrol, an agonist of the Sirt1, has demonstrated anti-inflammation and neuroprotective effects in models of Alzheimer's disease, Parkinson's disease, and schizophrenia. However, the beneficial effects of resveratrol on sleep deprivation-induced cognitive deficits and its underlying molecular mechanisms are unclear. In the present study, thirty-two male C57BL/6 J mice were randomly divided into a Control+DMSO group, Control+Resveratrol group, SD+DMSO group, and SD+Resveratrol group. The mice in the SD+Resveratrol group underwent 5 days of sleep deprivation after pretreatment with resveratrol (50 mg/kg) for 2 weeks, while the mice in the SD+DMSO group only underwent sleep deprivation. After sleep deprivation, we evaluated spatial learning and memory function using the Morris water maze test. We used general molecular biology techniques to detect changes in levels of pro-inflammatory cytokines and Sirt1/miR-134 pathway-related synaptic plasticity proteins. We found that resveratrol significantly reversed sleep deprivation-induced learning and memory impairment, elevated interleukin-1ß, interleukin-6, and tumor necrosis factor-α levels, and decreased brain-derived neurotrophic factor, tyrosine kinase receptor B, postsynaptic density protein-95, and synaptophysin levels by activating the Sirt1/miR-134 pathway. In conclusion, resveratrol is a promising agent for preventing sleep deprivation-induced cognitive dysfunction by reducing pro-inflammatory cytokines and improving synaptic function via the Sirt1/miR-134 pathway.


Subject(s)
Cognitive Dysfunction , MicroRNAs , Male , Mice , Animals , Resveratrol/pharmacology , Sleep Deprivation/complications , Sleep Deprivation/metabolism , Sirtuin 1/metabolism , Dimethyl Sulfoxide/metabolism , Dimethyl Sulfoxide/pharmacology , Mice, Inbred C57BL , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/etiology , Cognitive Dysfunction/prevention & control , Hippocampus/metabolism , MicroRNAs/metabolism , Cytokines/metabolism , Cognition
14.
J Asthma ; : 1-9, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38828898

ABSTRACT

OBJECTIVE: We analyzed the impact of different inhalant allergens on T-lymphocyte subsets in patients diagnosed with bronchial asthma. METHODS: The study included 57 bronchial asthma patients and 22 healthy controls. Asthma patients were categorized into dust mite, animal hair, pollen, and mold groups. Flow cytometry was used to measure the cells in the case group and control group. These T-lymphocyte subset markers were evaluated among patients with bronchial asthma caused by different allergens as well as between the case group and control group. RESULTS: Peripheral blood CD4+ T-cells, CD8+ T-cells, CD4/CD8 ratio, and Th17/Treg ratios were all higher in the case group than in the control group (p < 0.05). Peripheral blood T-lymphocyte subsets were compared among the four groups, and it was found that there were statistical differences in the Th17/Treg ratio among the four groups (p < 0.05). There were no significant differences observed among the four groups in terms of CD3+ cells, CD4+ cells, CD8+ cells, Th1 cells, Th2 cells, Th17 cells, Treg cells, Th9 cells, and Th22 cells. Further pairwise comparison was made, and the results suggested that the peripheral blood Th17/Treg ratio in the pollen mixed group was lower than that in the dust mite mixed group, animal hair mixed group, and mold mixed group (p < 0.05). CONCLUSION: Patients with bronchial asthma show varied T-lymphocyte subset responses to different inhalant allergens. Elevated CD4+ T cells and Th17 cells in peripheral blood could indicate asthma risk. However, small sample size may introduce bias to these findings.

15.
Arch Insect Biochem Physiol ; 115(4): e22113, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38628056

ABSTRACT

The efficiency of RNA interference (RNAi) has always limited the research on the phenotype innovation of Lepidoptera insects. Previous studies have found that double-stranded RNA-degrading enzyme (dsRNase) is an important factor in RNAi efficiency, but there have been no relevant reports in butterflies (Papilionoidea). Papilio xuthus is one of the important models in butterflies with an extensive experimental application value. To explore the effect of dsRNase in the RNAi efficiency on butterflies, six dsRNase genes (PxdsRNase 1-6) were identified in P. xuthus genome, and their dsRNA-degrading activities were subsequently detected by ex vivo assays. The result shows that the dsRNA-degrading ability of gut content (<1 h) was higher than hemolymph content (>12 h). We then investigated the expression patterns of these PxdsRNase genes during different tissues and developmental stages, and related RNAi experiments were carried out. Our results show that different PxdsRNase genes had different expression levels at different developmental stages and tissues. The expression of PxdsRNase2, PxdsRNase3, and PxdsRNase6 were upregulated significantly through dsGFP injection, and PxdsRNase genes can be silenced effectively by injecting their corresponding dsRNA. RNAi-of-RNAi studies with PxEbony, which acts as a reporter gene, observed that silencing PxdsRNase genes can increase RNAi efficiency significantly. These results confirm that silencing dsRNase genes can improve RNAi efficiency in P. xuthus significantly, providing a reference for the functional study of insects such as butterflies with low RNAi efficiency.


Subject(s)
Butterflies , Animals , Butterflies/genetics , RNA Interference , RNA, Double-Stranded , Insecta/genetics , Gene Silencing
16.
Appl Opt ; 63(11): 2863-2867, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38856382

ABSTRACT

Using the self-developed fused indium wetting technology and planar waveguide, the uniform heat dissipation of the slab crystal and uniform pumping of the pump light were achieved, respectively. Based on the master oscillator power amplification (MOPA) scheme, the power was then amplified when the seed light source passed through the Nd:YAG slab crystal three times. Additionally, the image transfer system that we added to the amplified optical path achieved high beam quality. Finally, we obtained a rectangular pulsed laser with an output average power of 4461 W, a repetition frequency of 20 kHz, a pulse width of 62 ns, an optical-to-optical conversion efficiency of 26.8%, and a beam quality of ß x=7.0 and ß y=7.7.

17.
BMC Anesthesiol ; 24(1): 105, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38504189

ABSTRACT

OBJECTIVE: Postoperative fasting following thoracoscopic surgery can cause intense thirst and oral discomfort. However, there is currently no research on ultraearly oral hydration (UEOH) in middle-aged or elderly patients after thoracoscopic surgery. The aim of this study was to investigate the effectiveness and safety of UEOH for improving oral discomfort after thoracoscopic surgery. METHODS: This single-center prospective double-blind randomized controlled trial was conducted from April 2022 to November 2023. A total of 64 middle-aged and elderly patients who underwent the first thoracoscopic surgery on the day were enrolled at our institution. Postoperatively, in the Postanesthesia Care Unit (PACU), patients were randomly assigned at a 1:1 ratio to either the UEOH group or the standard care (SC) group. The primary outcome was the patient's thirst score at 6 h after surgery. Secondary outcomes included the incidence of postoperative oral discomfort; pain scores; the occurrence of adverse reactions such as nausea, vomiting, regurgitation and aspiration; anxiety scores on the first postoperative day; the time to first flatus; and recovery satisfaction scores. RESULTS: The demographic and surgical characteristics were similar between the two groups. Patients in the UEOH group had lower thirst scores 6 h after surgery than did those in the SC group(16.1 ± 6.70 vs. 78.4 ± 8.42, P < 0.01). The incidence of postoperative oral discomfort (P < 0.01), anxiety scores on the first postoperative day (P<0.05), and time to first flatus (P<0.05) were better in the UEOH group. Additionally, the incidences of adverse reactions, such as postoperative nausea, vomiting, regurgitation and aspiration, were similar between the two groups (P>0.05). CONCLUSION: For middle-aged and elderly patients undergoing thoracoscopic surgery, the use of a modified UEOH protocol postoperatively can improve thirst and promote gastrointestinal recovery without increasing complications. TRIAL REGISTRATION: This single-center, prospective, RCT has completed the registration of the Chinese Clinical Trial Center at 07/12/2023 with the registration number ChiCTR2300078425.


Subject(s)
Pain, Postoperative , Thirst , Middle Aged , Aged , Humans , Prospective Studies , Flatulence , Postoperative Nausea and Vomiting/epidemiology , Postoperative Nausea and Vomiting/prevention & control , Thoracoscopy , Double-Blind Method
18.
Ophthalmic Res ; 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38897178

ABSTRACT

Introduction To investigate the clinical efficacy of superselective ophthalmic artery thrombolysis for central retinal artery occlusion (CRAO). Methods Retrospective study of CRAO patients who attended the Department of Ophthalmology of Affiliated Hospital of Weifang Medical University from January 2022 to July 2023, 138 CRAO patients with onset time of 1-3 days were selected for the study. Among them, 86 patients refused thrombolytic treatment and chose to adopt traditional treatment, which was categorized as the control group; 52 patients adopted superselective ophthalmic artery thrombolytic treatment, which was categorized as the observation group. The visual acuity of the patients treated with traditional modality on the 4th day after the onset of the disease and the visual acuity of the patients treated with superselective ophthalmic artery thrombolysis on the 1st postoperative day were recorded, and the visual acuity improvement after different modalities of treatment was compared between the two groups. Results In the control group, 77 (89.5%) of the treated patients had no improvement in visual acuity, 9 (10.5%) had improvement, 0 (0.0%) had significant improvement, and the total improvement was 9 (10.5%); in the observation group, 18 (34.6%) of the treated patients had no improvement in visual acuity, 21 (40.4%) had improvement, 13 (25.0%) had significant improvement, and the total improvement was 34 (65.4%). The total improvement rate of treatment in the observation group was 65.4%, which was significantly higher than the 10.5% in the control group, and the difference was statistically significant (P<0.05). Conclusion Superselective ophthalmic artery thrombolysis for patients with CRAO is clinically effective, promotes improvement in patient vision, and has a high safety profile.

19.
Eur Heart J ; 44(29): 2713-2726, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37377039

ABSTRACT

AIMS: The variant p.Arg149Cys in ACTA2, which encodes smooth muscle cell (SMC)-specific α-actin, predisposes to thoracic aortic disease and early onset coronary artery disease in individuals without cardiovascular risk factors. This study investigated how this variant drives increased atherosclerosis. METHODS AND RESULTS: Apoe-/- mice with and without the variant were fed a high-fat diet for 12 weeks, followed by evaluation of atherosclerotic plaque formation and single-cell transcriptomics analysis. SMCs explanted from Acta2R149C/+ and wildtype (WT) ascending aortas were used to investigate atherosclerosis-associated SMC phenotypic modulation. Hyperlipidemic Acta2R149C/+Apoe-/- mice have a 2.5-fold increase in atherosclerotic plaque burden compared to Apoe-/- mice with no differences in serum lipid levels. At the cellular level, misfolding of the R149C α-actin activates heat shock factor 1, which increases endogenous cholesterol biosynthesis and intracellular cholesterol levels through increased HMG-CoA reductase (HMG-CoAR) expression and activity. The increased cellular cholesterol in Acta2R149C/+ SMCs induces endoplasmic reticulum stress and activates PERK-ATF4-KLF4 signaling to drive atherosclerosis-associated phenotypic modulation in the absence of exogenous cholesterol, while WT cells require higher levels of exogenous cholesterol to drive phenotypic modulation. Treatment with the HMG-CoAR inhibitor pravastatin successfully reverses the increased atherosclerotic plaque burden in Acta2R149C/+Apoe-/- mice. CONCLUSION: These data establish a novel mechanism by which a pathogenic missense variant in a smooth muscle-specific contractile protein predisposes to atherosclerosis in individuals without hypercholesterolemia or other risk factors. The results emphasize the role of increased intracellular cholesterol levels in driving SMC phenotypic modulation and atherosclerotic plaque burden.


Subject(s)
Atherosclerosis , Hyperlipidemias , Plaque, Atherosclerotic , Mice , Animals , Plaque, Atherosclerotic/complications , Actins/metabolism , Mice, Knockout, ApoE , Atherosclerosis/etiology , Cholesterol/metabolism , Hyperlipidemias/complications , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Muscle, Smooth/metabolism , Muscle, Smooth/pathology , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , Mice, Inbred C57BL , Mice, Knockout
20.
Environ Toxicol ; 39(6): 3628-3640, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38491797

ABSTRACT

Silicosis is a systemic disease caused by long-term inhalation of free SiO2 and retention in the lungs. At present, it is still the most important occupational health hazard disease in the world. Existing studies have shown that non-coding RNA can also participate in complex fibrosis regulatory networks. However, its role in regulating silicotic fibrosis is still unclear. In this study, we constructed a NR8383/RLE-6TN co-culture system to simulate the pathogenesis of silicosis in vitro. Design of miR-204-3p mimics and inhibitors to overexpress or downregulate miR-204-3p in RLE-6TN cells. Design of short hairpin RNA (sh-RNA) to downregulate MRAK052509 in RLE-6TN cells. The regulatory mechanism of miR-204-3p and LncRNA MRAK052509 on EMT process was studied by Quantitative real-time PCR, Western blotting, Immunofluorescence and Cell scratch test. The results revealed that miR-204-3p affects the occurrence of silica dust-induced cellular EMT process mainly through regulating TGF-ßRΙ, a key molecule of TGF-ß signaling pathway. In contrast, Lnc MRAK052509 promotes the EMT process in epithelial cells by competitively adsorbing miR-204-3p and reducing its inhibitory effect on the target gene TGF-ßRΙ, which may influence the development of silicosis fibrosis. This study perfects the targeted regulation relationship between LncRNA MRAK052509, miR-204-3p and TGF-ßRΙ, and may provide a new strategy for the study of the pathogenesis and treatment of silicosis.


Subject(s)
Epithelial-Mesenchymal Transition , MicroRNAs , RNA, Long Noncoding , Silicon Dioxide , Silicosis , Animals , Humans , Rats , Cell Line , Dust , Epithelial Cells/drug effects , Epithelial Cells/pathology , Epithelial-Mesenchymal Transition/drug effects , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Long Noncoding/genetics , Silicon Dioxide/toxicity , Silicosis/genetics , Silicosis/pathology
SELECTION OF CITATIONS
SEARCH DETAIL