Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Bioconjug Chem ; 31(5): 1344-1353, 2020 05 20.
Article in English | MEDLINE | ID: mdl-32208679

ABSTRACT

Mitochondria are therapeutic targets in many diseases including cancer, metabolic disorders, and neurodegenerative diseases. Therefore, strategies to deliver therapeutics of interest to mitochondria are important for therapeutic development. As delocalized lipophilic cations (DLCs) preferentially accumulate in mitochondria, DLC-conjugation has been utilized to facilitate therapeutic delivery systems with mitochondrial targeting capability. Here we report that upon DLC-conjugation, anionic polymers exhibit significantly improved mitochondrial targeting when compared to cationic polymers and charge-neutral polymers. Considering that the cell membrane generally bears a net negative charge, the observed phenomenon is unexpected. Notably, the DLC-conjugated anionic polymers circumvent endosomal entrapment. The rapid mitochondrial accumulation of DLC-conjugated anionic polymers is likely a membrane-potential-driven process, along with the involvement of the mitochondrial pyruvate carrier. Moreover, the structural variations on the side chain of DLC-conjugated anionic polymers do not compromise the overall mitochondrial targeting capability, widely extending the applicability of anionic macromolecules in therapeutic delivery systems.


Subject(s)
Drug Carriers/chemistry , Drug Carriers/metabolism , Hydrophobic and Hydrophilic Interactions , Mitochondria/metabolism , Polymers/chemistry , Polymers/metabolism , HeLa Cells , Humans , Kinetics , Membrane Potential, Mitochondrial
2.
Tumour Biol ; 40(6): 1010428318779515, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29871587

ABSTRACT

Outcomes of children with high grade neuroblastoma remain poor despite multi-agent chemotherapy regimens. Rhodiola crenulata extracts display anti-neoplastic properties against several cancers including breast cancer, melanoma, and glioblastoma. In this study, we evaluated the anti-neoplastic potential of Rhodiola crenulata extracts on human neuroblastoma cells. Through this work, cell viability and proliferation were evaluated following treatments with ethanol (vehicle control) or Rhodiola crenulata extract in neuroblastoma, NB-1691 or SK-N-AS cells, in vitro. HIF-1 transcriptional activity was evaluated using a dual luciferase assay. Quantitative real-time polymerase chain reaction was utilized to assess the expression of HIF-1 targets. Selected metabolic intermediates were evaluated for their ability to rescue cells from Rhodiola crenulata extract-induced death. Lactate dehydrogenase, pyruvate kinase, and pyruvate dehydrogenase activities and NAD+/NADH levels were assayed in vehicle and Rhodiola crenulata extract-treated cells. The effects of Rhodiola crenulata extracts on metabolism were assessed by respirometry and metabolic phenotyping/fingerprinting. Our results revealed striking cytotoxic effects upon Rhodiola crenulata extract treatment, especially prominent in NB-1691 cells. As a greater response was observed in NB-1691 cells therefore it was used for remaining experiments. Upon Rhodiola crenulata extract treatment, HIF-1 transcriptional activity was increased. This increase in activity correlated with changes in HIF-1 targets involved in cellular metabolism. Serendipitously, we observed that addition of pyruvate protected against the cytotoxic effects of Rhodiola crenulata extracts. Therefore, we focused on the metabolic effects of Rhodiola crenulata extracts on NB-1691 cells. We observed that while the activities of pyruvate kinase and pyruvate dehydrogenase activities were increased, the activity of lactate dehydrogenase activity was decreased upon Rhodiola crenulata extract treatment. We also noted a decline in the total NAD pool following Rhodiola crenulata extract treatment. This correlated with decreased cellular respiration and suppressed utilization of carbon substrates. Through this work, we observed significant cytotoxic effects of Rhodiola crenulata extract treatment upon treatment on NB-1691 cells, a human neuroblastoma cell line with MYCN amplification. Our studies suggest that these cytotoxic effects could be secondary to metabolic effect induced by treatment with Rhodiola crenulata extract.


Subject(s)
Antineoplastic Agents/pharmacology , Cell Respiration/drug effects , Neuroblastoma/metabolism , Phytotherapy/methods , Plant Extracts/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Cytotoxins/pharmacology , Humans , N-Myc Proto-Oncogene Protein/genetics , Neuroblastoma/genetics , Rhodiola
3.
J Cell Physiol ; 232(10): 2750-2765, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28369883

ABSTRACT

Metabolic reprograming is a hallmark of cancer cells. However, the roles of pre-existing differences in normal cells metabolism toward cancer risk is not known. In order to assess pre-existing variations in normal cell metabolism, we have quantified the inter-individual variation in oxidative metabolism of normal primary human mammary epithelial cells (HMECs). We then assessed their response to selected cytokines such as insulin growth factor 1 (IGF1) and tumor necrosis factor alpha (TNFα), which are associated with breast cancer risk. Specifically, we compared the oxidative metabolism of HMECs obtained from women with breast cancer and without cancer. Our data show considerable inter-individual variation in respiratory activities of HMECs from different women. A bioenergetic parameter called pyruvate-stimulated respiration (PySR) was identified as a key distinguishing feature of HMECs from women with breast cancer and without cancer. Samples showing PySR over 20% of basal respiration rate were considered PySR+ve and the rest as PySR-ve . By this criterion, HMECs from tumor-affected breasts (AB) and non-tumor affected breasts (NAB) of cancer patients were mostly PySR-ve (88% and 89%, respectively), while HMECs from non-cancer patients were mostly PySR+ve (57%). This suggests that PySR-ve/+ve phenotypes are individual-specific and are not caused by field effects due to the presence of tumor. The effects of IGF1 and TNFα treatments on HMECs revealed that both suppressed respiration and extracellular acidification. In addition, IGF1 altered PySR-ve/+ve phenotypes. These results reveal individual-specific differences in pyruvate metabolism of normal breast epithelial cells and its association with breast cancer risk.


Subject(s)
Breast Neoplasms/metabolism , Energy Metabolism/drug effects , Epithelial Cells/drug effects , Insulin-Like Growth Factor I/pharmacology , Mammary Glands, Human/drug effects , Tumor Necrosis Factor-alpha/pharmacology , Adult , Aged , Cell Respiration/drug effects , Epithelial Cells/metabolism , Female , Humans , Mammary Glands, Human/metabolism , Metabolomics/methods , Middle Aged , Oxidation-Reduction , Phenotype , Pyruvic Acid/metabolism , Time Factors , Tumor Cells, Cultured , Young Adult
4.
Proc Natl Acad Sci U S A ; 110(14): 5422-7, 2013 Apr 02.
Article in English | MEDLINE | ID: mdl-23513224

ABSTRACT

Facilitated pyruvate transport across the mitochondrial inner membrane is a critical step in carbohydrate, amino acid, and lipid metabolism. We report that clinically relevant concentrations of thiazolidinediones (TZDs), a widely used class of insulin sensitizers, acutely and specifically inhibit mitochondrial pyruvate carrier (MPC) activity in a variety of cell types. Respiratory inhibition was overcome with methyl pyruvate, localizing the effect to facilitated pyruvate transport, and knockdown of either paralog, MPC1 or MPC2, decreased the EC50 for respiratory inhibition by TZDs. Acute MPC inhibition significantly enhanced glucose uptake in human skeletal muscle myocytes after 2 h. These data (i) report that clinically used TZDs inhibit the MPC, (ii) validate that MPC1 and MPC2 are obligatory components of facilitated pyruvate transport in mammalian cells, (iii) indicate that the acute effect of TZDs may be related to insulin sensitization, and (iv) establish mitochondrial pyruvate uptake as a potential therapeutic target for diseases rooted in metabolic dysfunction.


Subject(s)
Cell Respiration/drug effects , Membrane Transport Proteins/metabolism , Metabolic Networks and Pathways/physiology , Mitochondrial Membranes/metabolism , Mitochondrial Proteins/antagonists & inhibitors , Thiazolidinediones/pharmacology , Acrylates/pharmacology , Analysis of Variance , Animals , Anion Transport Proteins , Blotting, Western , Cell Line , Cytochromes c/metabolism , Glucose/metabolism , Humans , Membrane Potential, Mitochondrial/physiology , Mice , Mitochondrial Membrane Transport Proteins , Mitochondrial Proteins/metabolism , Monocarboxylic Acid Transporters , Muscle, Skeletal/metabolism , Rats , Reverse Transcriptase Polymerase Chain Reaction , Solute Carrier Proteins , Thiazolidinediones/metabolism
5.
J Biol Chem ; 289(12): 8312-25, 2014 Mar 21.
Article in English | MEDLINE | ID: mdl-24515115

ABSTRACT

Several flavin-dependent enzymes of the mitochondrial matrix utilize NAD(+) or NADH at about the same operating redox potential as the NADH/NAD(+) pool and comprise the NADH/NAD(+) isopotential enzyme group. Complex I (specifically the flavin, site IF) is often regarded as the major source of matrix superoxide/H2O2 production at this redox potential. However, the 2-oxoglutarate dehydrogenase (OGDH), branched-chain 2-oxoacid dehydrogenase (BCKDH), and pyruvate dehydrogenase (PDH) complexes are also capable of considerable superoxide/H2O2 production. To differentiate the superoxide/H2O2-producing capacities of these different mitochondrial sites in situ, we compared the observed rates of H2O2 production over a range of different NAD(P)H reduction levels in isolated skeletal muscle mitochondria under conditions that favored superoxide/H2O2 production from complex I, the OGDH complex, the BCKDH complex, or the PDH complex. The rates from all four complexes increased at higher NAD(P)H/NAD(P)(+) ratios, although the 2-oxoacid dehydrogenase complexes produced superoxide/H2O2 at high rates only when oxidizing their specific 2-oxoacid substrates and not in the reverse reaction from NADH. At optimal conditions for each system, superoxide/H2O2 was produced by the OGDH complex at about twice the rate from the PDH complex, four times the rate from the BCKDH complex, and eight times the rate from site IF of complex I. Depending on the substrates present, the dominant sites of superoxide/H2O2 production at the level of NADH may be the OGDH and PDH complexes, but these activities may often be misattributed to complex I.


Subject(s)
Hydrogen Peroxide/metabolism , Ketoglutarate Dehydrogenase Complex/metabolism , Mitochondria, Muscle/metabolism , Superoxides/metabolism , Animals , Female , Mitochondria, Muscle/enzymology , Muscle, Skeletal/enzymology , Muscle, Skeletal/metabolism , NAD/metabolism , Oxidation-Reduction , Pyruvate Dehydrogenase Complex/metabolism , Rats , Rats, Wistar
6.
J Mammary Gland Biol Neoplasia ; 18(1): 75-87, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23269521

ABSTRACT

Mitochondrial oxidative metabolism plays a key role in meeting energetic demands of cells by oxidative phosphorylation (OxPhos). Here, we have briefly discussed (a) the dynamic relationship that exists among glycolysis, the tricarboxylic acid (TCA) cycle, and OxPhos; (b) the evidence of impaired OxPhos (i.e. mitochondrial dysfunction) in breast cancer; (c) the mechanisms by which mitochondrial dysfunction can predispose to cancer; and (d) the effects of host and environmental factors that can negatively affect mitochondrial function. We propose that impaired OxPhos could increase susceptibility to breast cancer via suppression of the p53 pathway, which plays a critical role in preventing tumorigenesis. OxPhos is sensitive to a large number of factors intrinsic to the host (e.g. inflammation) as well as environmental exposures (e.g. pesticides, herbicides and other compounds). Polymorphisms in over 143 genes can also influence the OxPhos system. Therefore, declining mitochondrial oxidative metabolism with age due to host and environmental exposures could be a common mechanism predisposing to cancer.


Subject(s)
Breast Neoplasms/metabolism , Mammary Glands, Human/metabolism , Mitochondria/metabolism , Animals , Breast Neoplasms/chemically induced , Carcinogens, Environmental/toxicity , Disease Susceptibility/chemically induced , Disease Susceptibility/metabolism , Environmental Exposure/adverse effects , Female , Humans , Mammary Glands, Animal/drug effects , Mammary Glands, Animal/metabolism , Mammary Glands, Human/drug effects , Mitochondria/drug effects , Oxidative Phosphorylation/drug effects
7.
J Biol Chem ; 286(23): 20297-312, 2011 Jun 10.
Article in English | MEDLINE | ID: mdl-21502317

ABSTRACT

Recently, mitochondria have been suggested to act in tumor suppression. However, the underlying mechanisms by which mitochondria suppress tumorigenesis are far from being clear. In this study, we have investigated the link between mitochondrial dysfunction and the tumor suppressor protein p53 using a set of respiration-deficient (Res(-)) mammalian cell mutants with impaired assembly of the oxidative phosphorylation machinery. Our data suggest that normal mitochondrial function is required for γ-irradiation (γIR)-induced cell death, which is mainly a p53-dependent process. The Res(-) cells are protected against γIR-induced cell death due to impaired p53 expression/function. We find that the loss of complex I biogenesis in the absence of the MWFE subunit reduces the steady-state level of the p53 protein, although there is no effect on the p53 protein level in the absence of the ESSS subunit that is also essential for complex I assembly. The p53 protein level was also reduced to undetectable levels in Res(-) cells with severely impaired mitochondrial protein synthesis. This suggests that p53 protein expression is differentially regulated depending upon the type of electron transport chain/respiratory chain deficiency. Moreover, irrespective of the differences in the p53 protein expression profile, γIR-induced p53 activity is compromised in all Res(-) cells. Using two different conditional systems for complex I assembly, we also show that the effect of mitochondrial dysfunction on p53 expression/function is a reversible phenomenon. We believe that these findings will have major implications in the understanding of cancer development and therapy.


Subject(s)
Electron Transport Complex I/metabolism , Gene Expression Regulation/physiology , Mitochondria/metabolism , Oxidative Phosphorylation , Oxygen Consumption/physiology , Tumor Suppressor Protein p53/metabolism , Animals , Base Sequence , Cell Line , Electron Transport Complex I/genetics , Gamma Rays , Gene Expression Regulation/radiation effects , Mice , Mice, Knockout , Mitochondria/genetics , Molecular Sequence Data , Mutation , Neoplasms/genetics , Neoplasms/metabolism , Oxygen Consumption/radiation effects , Tumor Suppressor Protein p53/genetics
8.
Shock ; 57(4): 553-564, 2022 04 01.
Article in English | MEDLINE | ID: mdl-34506367

ABSTRACT

BACKGROUND: Sepsis-induced cardiomyopathy (SIC) is a major contributing factor for morbidity and mortality in sepsis. Accumulative evidence has suggested that cardiac mitochondrial oxidative phosphorylation is attenuated in sepsis, but the underlying molecular mechanisms remain incompletely understood. METHODS: Adult male mice of 9 to 12 weeks old were subjected to sham or cecal ligation and puncture procedure. Echocardiography in vivo and Langendorff-perfused hearts were used to assess cardiac function 24 h after the procedures. Unbiased proteomics analysis was performed to profile mitochondrial proteins in the hearts of both sham and SIC mice. Seahorse respirator technology was used to evaluate oxygen consumption in purified mitochondria. RESULTS: Of the 665 mitochondrial proteins identified in the proteomics assay, 35 were altered in septic mice. The mitochondrial remodeling involved various energy metabolism pathways including subunits of the electron transport chain, fatty acid catabolism, and carbohydrate oxidative metabolism. We also identified a significant increase of pyruvate dehydrogenase (PDH) kinase 4 (PDK4) and inhibition of PDH activity in septic hearts. Furthermore, compared to sham mice, mitochondrial oxygen consumption of septic mice was significantly reduced when pyruvate was provided as a substrate. However, it was unchanged when PDH was bypassed by directly supplying the Complex I substrate NADH, or by using the Complex II substrate succinate, or using Complex IV substrate, or by providing the beta-oxidation substrate palmitoylcarnitine, neither of which require PDH for mitochondrial oxygen consumption. CONCLUSIONS: These data demonstrate a broad mitochondrial protein remodeling, PDH inactivation and impaired pyruvate-fueled oxidative phosphorylation during SIC, and provide a molecular framework for further exploration.


Subject(s)
Cardiomyopathies , Sepsis , Animals , Cardiomyopathies/etiology , Cardiomyopathies/metabolism , Male , Mice , Mitochondria/metabolism , Mitochondrial Proteins , Myocardium/metabolism , Oxidative Phosphorylation , Proteome/metabolism , Pyruvate Dehydrogenase Complex/metabolism , Pyruvic Acid/metabolism , Sepsis/complications , Sepsis/metabolism
9.
Exp Neurol ; 328: 113282, 2020 06.
Article in English | MEDLINE | ID: mdl-32165258

ABSTRACT

Cell-based respirometers, such as the Seahorse Extracellular Flux Analyzer, are valuable tools to assess the functionality of mitochondria within adherent neurons, as well as other cell types. The Mito Stress Test is the most frequently employed protocol of drug additions to evaluate mitochondrial bioenergetic function. Sequential exposure of cells to an ATP synthase inhibitor such as oligomycin and an uncoupler such as FCCP cause changes in oxygen consumption rate that allow estimation of the cellular efficiency and capacity for mitochondrial ATP synthesis. While a useful first step in assessing whether an experimental treatment or genetic manipulation affects mitochondrial energetics, the Mito Stress Test does not identify specific sites of altered respiratory chain function. This article discusses limitations of the Mito Stress Test, proposes a refined protocol for comparing cell populations that requires independent drug titrations at multiple cell densities, and describes a stepwise series of respirometry-based assays that "map" locations of electron transport deficiency. These include strategies to test for cytochrome c release, to probe the functionality of specific electron transport chain complexes within intact or permeabilized cells, and to measure NADH oxidation by the linked activity of Complexes I, III, and IV. To illustrate utility, we show that although UK5099 and ABT-737 each decrease the spare respiratory capacity of cortical neurons, the stepwise assays reveal different underlying mechanisms consistent with their established drug targets: deficient Complex I substrate supply induced by the mitochondrial pyruvate carrier inhibitor UK5099 and cytochrome c release induced by the anti-apoptotic BCL-2 family protein inhibitor ABT-737.


Subject(s)
Biological Assay , Energy Metabolism , In Vitro Techniques , Mitochondrial Diseases , Animals , Cell Line , Cell Respiration , Humans , Neurons , Rats
10.
Trends Cancer ; 6(8): 688-701, 2020 08.
Article in English | MEDLINE | ID: mdl-32451306

ABSTRACT

Cancer cells survive and adapt to many types of stress including hypoxia, nutrient deprivation, metabolic, and oxidative stress. These stresses are sensed by diverse cellular signaling processes, leading to either degradation of mitochondria or alleviation of mitochondrial stress. This review discusses signaling during sensing and mitigation of stress involving mitochondrial communication with the endoplasmic reticulum, and how retrograde signaling upregulates the mitochondrial stress response to maintain mitochondrial integrity. The importance of the mitochondrial unfolded protein response, an emerging pathway that alleviates cellular stress, will be elaborated with respect to cancer. Detailed understanding of cellular pathways will establish mitochondrial stress response as a key mechanism for cancer cell survival leading to cancer progression and resistance, and provide a potential therapeutic target in cancer.


Subject(s)
Antineoplastic Agents/pharmacology , Mitochondria/pathology , Neoplasms/pathology , Unfolded Protein Response/drug effects , Activating Transcription Factors/metabolism , Antineoplastic Agents/therapeutic use , Cell Survival/drug effects , Chaperonin 60/metabolism , Disease Progression , Drug Resistance, Neoplasm/drug effects , Endoplasmic Reticulum/drug effects , Endoplasmic Reticulum/pathology , Endoplasmic Reticulum Stress/drug effects , Humans , Mitochondria/drug effects , Mitochondrial Proteins/metabolism , Neoplasms/drug therapy , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects
11.
Anal Chem ; 81(16): 6868-78, 2009 Aug 15.
Article in English | MEDLINE | ID: mdl-19555051

ABSTRACT

Respirometry using modified cell culture microplates offers an increase in throughput and a decrease in biological material required for each assay. Plate based respirometers are susceptible to a range of diffusion phenomena; as O(2) is consumed by the specimen, atmospheric O(2) leaks into the measurement volume. Oxygen also dissolves in and diffuses passively through the polystyrene commonly used as a microplate material. Consequently the walls of such respirometer chambers are not just permeable to O(2) but also store substantial amounts of gas. O(2) flux between the walls and the measurement volume biases the measured oxygen consumption rate depending on the actual [O(2)] gradient. We describe a compartment model-based correction algorithm to deconvolute the biological oxygen consumption rate from the measured [O(2)]. We optimize the algorithm to work with the Seahorse XF24 extracellular flux analyzer. The correction algorithm is biologically validated using mouse cortical synaptosomes and liver mitochondria attached to XF24 V7 cell culture microplates, and by comparison to classical Clark electrode oxygraph measurements. The algorithm increases the useful range of oxygen consumption rates, the temporal resolution, and durations of measurements. The algorithm is presented in a general format and is therefore applicable to other respirometer systems.


Subject(s)
Oxygen/metabolism , Algorithms , Animals , Cells, Cultured , Diffusion , Fluorescence , Male , Mice , Mitochondria, Liver/metabolism , Oxygen Consumption , Synaptosomes/metabolism
12.
J Neurosci ; 27(27): 7310-7, 2007 Jul 04.
Article in English | MEDLINE | ID: mdl-17611283

ABSTRACT

Partial inhibition of mitochondrial respiratory complex I by rotenone reproduces aspects of Parkinson's disease in rodents. The hypothesis that rotenone enhancement of neuronal cell death is attributable to oxidative stress was tested in an acute glutamate excitotoxicity model using primary cultures of rat cerebellar granule neurons. As little as 5 nM rotenone increased mitochondrial superoxide (O2*-) levels and potentiated glutamate-induced cytoplasmic Ca2+ deregulation, the first irreversible stage of necrotic cell death. However, the potent cell-permeant O2*- trap manganese tetrakis (N-ethylpyridinium-2yl) porphyrin failed to prevent the effects of the inhibitor. The bioenergetic consequences of rotenone addition were quantified by monitoring cell respiration. Glutamate activation of NMDA receptors used the full respiratory capacity of the in situ mitochondria, and >80% of the glutamate-stimulated respiration was attributable to increased cellular ATP demand. Rotenone at 20 nM inhibited basal and carbonyl cyanide p-trifluoromethoxyphenylhydrazone-stimulated cell respiration and caused respiratory failure in the presence of glutamate. ATP synthase inhibition by oligomycin was also toxic in the presence of glutamate. We conclude that the cell vulnerability in the rotenone model of partial complex I deficiency under these specific conditions is primarily determined by spare respiratory capacity rather than oxidative stress.


Subject(s)
Electron Transport Complex I/antagonists & inhibitors , Glutamic Acid/toxicity , Mitochondria/enzymology , Oxidative Stress/physiology , Rotenone/pharmacology , Animals , Cell Death/drug effects , Cell Death/physiology , Cell Respiration/drug effects , Cell Respiration/physiology , Electron Transport Complex I/metabolism , Excitatory Amino Acid Agonists/toxicity , Mitochondria/drug effects , Oxidative Stress/drug effects , Rats , Rats, Wistar
13.
Gene ; 411(1-2): 69-76, 2008 Mar 31.
Article in English | MEDLINE | ID: mdl-18280061

ABSTRACT

Studies of both survival after sepsis and sperm motility in human populations have shown significant associations with common European mitochondrial DNA haplogroups, and have led to proposals that mitochondria bearing haplogroup H have different bioenergetic capacities than those bearing haplogroup T. However, the validity of such associations assumes that there are no non-random influences of nuclear genes or other factors. Here, we removed the effect of any differences in nuclear genes by constructing transmitochondrial cybrids harbouring mitochondria with either haplogroup H or haplogroup T in cultured A549 human lung carcinoma cells with identical nuclear backgrounds. We compared the bioenergetic capacities and coupling efficiencies of mitochondria isolated from these cells, and of mitochondria retained within the cells, as a critical experimental test of the hypothesis that these haplogroups affect mitochondrial bioenergetics. We found that there were no functionally-important bioenergetic differences between mitochondria bearing these haplogroups, using either isolated mitochondria or mitochondria within cells.


Subject(s)
DNA, Mitochondrial/metabolism , Oxidative Phosphorylation , Oxygen Consumption , White People/genetics , Cell Line, Tumor , Genetic Variation , Haplotypes , Humans , Hybrid Cells , Membrane Potential, Mitochondrial
14.
Front Immunol ; 9: 1284, 2018.
Article in English | MEDLINE | ID: mdl-29930555

ABSTRACT

Recent advances in our understanding of tumor cell mitochondrial metabolism suggest it may be an attractive therapeutic target. Mitochondria are central hubs of metabolism that provide energy during the differentiation and maintenance of immune cell phenotypes. Mitochondrial membranes harbor several enzyme complexes that are involved in the process of oxidative phosphorylation, which takes place during energy production. Data suggest that, among these enzyme complexes, deficiencies in electron transport complex I may differentially affect immune responses and may contribute to the pathophysiology of several immunological conditions. Once activated by T cell receptor signaling, along with co-stimulation through CD28, CD4 T cells utilize mitochondrial energy to differentiate into distinct T helper (Th) subsets. T cell signaling activates Notch1, which is cleaved from the plasma membrane to generate its intracellular form (N1ICD). In the presence of specific cytokines, Notch1 regulates gene transcription related to cell fate to modulate CD4 Th type 1, Th2, Th17, and induced regulatory T cell (iTreg) differentiation. The process of differentiating into any of these subsets requires metabolic energy, provided by the mitochondria. We hypothesized that the requirement for mitochondrial metabolism varies between different Th subsets and may intersect with Notch1 signaling. We used the organic pesticide rotenone, a well-described complex I inhibitor, to assess how compromised mitochondrial integrity impacts CD4 T cell differentiation into Th1, Th2, Th17, and iTreg cells. We also investigated how Notch1 localization and downstream transcriptional capabilities regulation may be altered in each subset following rotenone treatment. Our data suggest that mitochondrial integrity impacts each of these Th subsets differently, through its influence on Notch1 subcellular localization. Our work further supports the notion that altered immune responses can result from complex I inhibition. Therefore, understanding how mitochondrial inhibitors affect immune responses may help to inform therapeutic approaches to cancer treatment.


Subject(s)
Cell Differentiation/drug effects , Cell Differentiation/immunology , Electron Transport Complex I/metabolism , Rotenone/pharmacology , T-Lymphocytes, Helper-Inducer/drug effects , T-Lymphocytes, Helper-Inducer/physiology , Transcription Factors/metabolism , Animals , Biomarkers , Gene Expression Regulation/drug effects , Immunophenotyping , Intracellular Space/metabolism , Lymphocyte Activation/drug effects , Lymphocyte Activation/genetics , Lymphocyte Activation/immunology , Mice , Mitochondria/drug effects , Mitochondria/immunology , Mitochondria/metabolism , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Protein Transport , T-Lymphocyte Subsets/cytology , T-Lymphocyte Subsets/drug effects , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , T-Lymphocytes, Helper-Inducer/cytology , Transcription Factors/genetics
15.
Neurochem Int ; 109: 78-93, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28506826

ABSTRACT

The respiratory chain Complex I deficiencies are the most common cause of mitochondrial diseases. Complex I biogenesis is controlled by 58 genes and at least 47 of these cause mitochondrial disease in humans. Two of these are X-chromosome linked nuclear (nDNA) genes (NDUFA1 and NDUFB11), and 7 are mitochondrial (mtDNA, MT-ND1-6, -4L) genes, which may be responsible for sex-dependent variation in the presentation of mitochondrial diseases. In this study, we describe an X-chromosome linked mouse model (Ndufa1S55A) for systemic partial Complex I deficiency. By homologous recombination, a point mutation T > G within 55th codon of the Ndufa1 gene was introduced. The resulting allele Ndufa1S55A introduced systemic serine-55-alanine (S55A) mutation within the MWFE protein, which is essential for Complex I assembly and stability. The S55A mutation caused systemic partial Complex I deficiency of ∼50% in both sexes. The mutant males (Ndufa1S55A/Y) displayed reduced respiratory exchange ratio (RER) and produced less body heat. They were also hypoactive and ate less. They showed age-dependent Purkinje neurons degeneration. Metabolic profiling of brain, liver and serum from males showed reduced heme levels in mutants, which correlated with altered expressions of Fech and Hmox1 mRNAs in tissues. This is the first genuine X-chromosome linked mouse model for systemic partial Complex I deficiency, which shows age-dependent neurodegeneration. The effect of Complex I deficiency on survival patterns of males vs. females was different. We believe this model will be very useful for studying sex-dependent predisposition to both spontaneous and stress-induced neurodegeneration, cancer, diabetes and other diseases.


Subject(s)
Electron Transport Complex I/deficiency , Electron Transport Complex I/genetics , Genes, X-Linked/genetics , Membrane Proteins/genetics , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/metabolism , Animals , Body Temperature/physiology , Exhalation/physiology , Female , Genetic Predisposition to Disease/genetics , Male , Mice , Mice, 129 Strain , Mice, Transgenic , Pregnancy
16.
Dev Cell ; 40(6): 583-594.e6, 2017 03 27.
Article in English | MEDLINE | ID: mdl-28350990

ABSTRACT

Mitochondrial fission mediated by the GTPase dynamin-related protein 1 (Drp1) is an attractive drug target in numerous maladies that range from heart disease to neurodegenerative disorders. The compound mdivi-1 is widely reported to inhibit Drp1-dependent fission, elongate mitochondria, and mitigate brain injury. Here, we show that mdivi-1 reversibly inhibits mitochondrial complex I-dependent O2 consumption and reverse electron transfer-mediated reactive oxygen species (ROS) production at concentrations (e.g., 50 µM) used to target mitochondrial fission. Respiratory inhibition is rescued by bypassing complex I using yeast NADH dehydrogenase Ndi1. Unexpectedly, respiratory impairment by mdivi-1 occurs without mitochondrial elongation, is not mimicked by Drp1 deletion, and is observed in Drp1-deficient fibroblasts. In addition, mdivi-1 poorly inhibits recombinant Drp1 GTPase activity (Ki > 1.2 mM). Overall, these results suggest that mdivi-1 is not a specific Drp1 inhibitor. The ability of mdivi-1 to reversibly inhibit complex I and modify mitochondrial ROS production may contribute to effects observed in disease models.


Subject(s)
Dynamins/antagonists & inhibitors , Electron Transport Complex I/antagonists & inhibitors , GTP Phosphohydrolases/antagonists & inhibitors , Microtubule-Associated Proteins/antagonists & inhibitors , Mitochondria/metabolism , Mitochondrial Proteins/antagonists & inhibitors , Quinazolinones/pharmacology , Reactive Oxygen Species/metabolism , Animals , COS Cells , Cell Respiration/drug effects , Chlorocebus aethiops , Dynamins/metabolism , Electron Transport Complex I/metabolism , Fibroblasts/metabolism , Fibroblasts/ultrastructure , GTP Phosphohydrolases/metabolism , Humans , Mice , Mice, Knockout , Microtubule-Associated Proteins/metabolism , Mitochondria/drug effects , Mitochondrial Proteins/metabolism , NAD/metabolism , Neurons/metabolism , Oxidation-Reduction/drug effects , Oxygen Consumption/drug effects , Rats, Sprague-Dawley , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism
17.
Free Radic Biol Med ; 90: 261-71, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26627937

ABSTRACT

We have previously reported that neem limonoids (neem) induce multiple cancer cell death pathways. Here we dissect the underlying mechanisms of neem-induced apoptotic cell death in cancer. We observed that neem-induced caspase activation does not require Bax/Bak channel-mediated mitochondrial outer membrane permeabilization, permeability transition pore, and mitochondrial fragmentation. Neem enhanced mitochondrial DNA and mitochondrial biomass. While oxidative phosphorylation (OXPHOS) Complex-I activity was decreased, the activities of other OXPHOS complexes including Complex-II and -IV were unaltered. Increased reactive oxygen species (ROS) levels were associated with an increase in mitochondrial biomass and apoptosis upon neem exposure. Complex-I deficiency due to the loss of Ndufa1-encoded MWFE protein inhibited neem-induced caspase activation and apoptosis, but cell death induction was enhanced. Complex II-deficiency due to the loss of succinate dehydrogenase complex subunit C (SDHC) robustly decreased caspase activation, apoptosis, and cell death. Additionally, the ablation of Complexes-I, -III, -IV, and -V together did not inhibit caspase activation. Together, we demonstrate that neem limonoids target OXPHOS system to induce cancer cell death, which does not require upregulation or activation of proapoptotic Bcl-2 family proteins.


Subject(s)
Apoptosis/drug effects , Azadirachta/chemistry , Limonins/pharmacology , Neoplasms/pathology , Oxidative Phosphorylation , Caspases/metabolism , Cyclin-Dependent Kinase Inhibitor p21/physiology , DNA, Mitochondrial/analysis , Dynamins , Electron Transport Complex I/physiology , GTP Phosphohydrolases/analysis , HCT116 Cells , Humans , Microtubule-Associated Proteins/analysis , Mitochondrial Membrane Transport Proteins/physiology , Mitochondrial Permeability Transition Pore , Mitochondrial Proteins/analysis , Neoplasms/drug therapy , Tumor Suppressor Protein p53/physiology
18.
Biochim Biophys Acta ; 1659(2-3): 160-71, 2004 Dec 06.
Article in English | MEDLINE | ID: mdl-15576048

ABSTRACT

The work from our laboratory on complex I-deficient Chinese hamster cell mutants is reviewed. Several complementation groups with a complete defect have been identified. Three of these are due to X-linked mutations, and the mutated genes for two have been identified. We describe null mutants in the genes for the subunits MWFE (gene: NDUFA1) and ESSS. They represent small integral membrane proteins localized in the Ialpha (Igamma) and Ibeta subcomplexes, respectively [J. Hirst, J. Carroll, I.M. Fearnley, R.J. Shannon, J.E. Walker. The nuclear encoded subunits of complex I from bovine heart mitochondria. Biochim. Biophys. Acta 1604 (7-10-2003) 135-150.]. Both are absolutely essential for assembly and activity of complex I. Epitope-tagged versions of these proteins can be expressed from a poly-cistronic vector to complement the mutants, or to be co-expressed with the endogenous proteins in other hamster cell lines (mutant or wild type), or human cells. Structure-function analyses can be performed with proteins altered by site-directed mutagenesis. A cell line has been constructed in which the MWFE subunit is conditionally expressed, opening a window on the kinetics of assembly of complex I. Its targeting, import into mitochondria, and orientation in the inner membrane have also been investigated. The two proteins have recently been shown to be the targets for a cAMP-dependent kinase [R. Chen, I.M. Fearnley, S.Y. Peak_Chew, J.E. Walker. The phosphorylation of subunits of complex I from bovine heart mitochondria. J. Biol. Chem. xx (2004) xx-xx.]. The epitope-tagged proteins can be cross-linked with other complex I subunits.


Subject(s)
Electron Transport Complex I/deficiency , Electron Transport Complex I/genetics , Amino Acid Sequence , Animals , Cell Line , Cricetinae , Cricetulus , Cross-Linking Reagents , Electron Transport Complex I/metabolism , Mammals/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Molecular Sequence Data , Mutation , Phosphorylation , Protein Subunits , Protein Transport
19.
Stem Cell Res Ther ; 6: 242, 2015 Dec 09.
Article in English | MEDLINE | ID: mdl-26652025

ABSTRACT

INTRODUCTION: Human mesenchymal stem cells (MSCs) are multipotent cells that can differentiate into fat, muscle, bone and cartilage cells. Exposure of subcutaneous abdominal adipose tissue derived AD-MSCs to high glucose (HG) leads to superoxide accumulation and up-regulation of inflammatory molecules. Our aim was to inquire how HG exposure affects MSCs differentiation and whether the mechanism is reversible. METHODS: We exposed human adipose tissue derived MSCs to HG (25 mM) and compared it to normal glucose (NG, 5.5 mM) exposed cells at 7, 10 and 14 days. We examined mitochondrial superoxide accumulation (Mitosox-Red), cellular oxygen consumption rate (OCR, Seahorse) and gene expression. RESULTS: HG increased reactive superoxide (ROS) accumulation noted by day 7 both in cytosol and mitochondria. The OCR between the NG and HG exposed groups however did not change until 10 days at which point OCR of HG exposed cells were reduced significantly. We noted that HG exposure upregulated mRNA expression of adipogenic (PPARG, FABP-4, CREBP alpha and beta), inflammatory (IL-6 and TNF alpha) and antioxidant (SOD2 and Catalase) genes. Next, we used AdSOD2 to upregulate SOD2 prior to HG exposure and thereby noted reduction in superoxide generation. SOD2 upregulation helped reduce mRNA over-expression of PPARG, FABP-4, IL-6 and TNFα. In a series of separate experiments, we delivered the eGFP and SOD2 upregulated MSCs (5 days post ex-vivo transduction) and saline intra-peritoneally (IP) to obese diabetic (db/db) mice. We confirmed homing-in of eGFP labeled MSCs, delivered IP, to different inflamed fat pockets, particularly omental fat. Mice receiving SOD2-MSCs showed progressive reduction in body weight and improved glucose tolerance (GTT) at 4 weeks, post MSCs transplantation compared to the GFP-MSC group (control). CONCLUSIONS: High glucose evokes superoxide generation, OCR reduction and adipogenic differentiation. Mitochondrial superoxide dismutase upregulation quenches excess superoxide and reduces adipocyte inflammation. Delivery of superoxide dismutase (SOD2) using MSCs as a gene delivery vehicle reduces inflammation and improves glucose tolerance in vivo. Suppression of superoxide production and adipocyte inflammation using mitochondrial superoxide dismutase may be a novel and safe therapeutic tool to combat hyperglycemia mediated effects.


Subject(s)
Adiposity/genetics , Diabetes Mellitus, Experimental/therapy , Glucose/metabolism , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Obesity/therapy , Animals , Body Composition , Cells, Cultured , Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Experimental/metabolism , Electron Transport Complex I/metabolism , Glucose Tolerance Test , Humans , Hyperglycemia/genetics , Hyperglycemia/metabolism , Mice , Obesity/genetics , Obesity/metabolism , Oxidative Stress , Oxygen Consumption , Superoxide Dismutase/genetics
20.
Mitochondrion ; 4(1): 1-12, 2004 Jun.
Article in English | MEDLINE | ID: mdl-16120368

ABSTRACT

The MWFE subunit of the mitochondrial NADH-ubiquinone oxidoreductase (complex I) is a small, essential membrane protein of 70 amino acids that is made in the cytosol, imported into mitochondria, and assembled without further proteolytic processing. The experiments identify the first approximately 30 amino acids as a minimal mitochondrial targeting sequence, and establish its orientation in the inner membrane and in complex I. This sequence has a highly conserved glutamate at position 4, which is not typical of a mitochondrial targeting signal. However, it is not essential for MWFE function. Within this sequence there is also a 'stop-transfer' signal. The membrane anchor cannot be replaced by that from another subunit within complex I.

SELECTION OF CITATIONS
SEARCH DETAIL