Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 128
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Neurobiol Dis ; 173: 105839, 2022 10 15.
Article in English | MEDLINE | ID: mdl-35988875

ABSTRACT

Small fibre neuropathy (SFN) is an initial pathology of diabetic polyneuropathy (DPN). Serum lipopolysaccharide binding protein levels are positively correlated with the pain threshold in the foot, suggesting that the abundance of gut Gram-negative bacilli, which are a source of lipopolysaccharides, may be involved in the development of DPN. Furthermore, the abundance of the gut and oral microbiota is assumed to be involved in the pathogenesis of diabetes. Nevertheless, the association between SFN and the microbiota has not been clarified. A total of 1056 individuals were recruited in the 2018 Iwaki Health Promotion Project. Pain sensation was evaluated based on the pain threshold from intraepidermal electrical stimulation (PINT). Patients with PINT scores <0.15 mA were categorized into the low-PINT group (n = 718); otherwise, they were categorized into the high-PINT group (n = 283). Furthermore, each group was divided into the subjects with or without glucose tolerance based on HbA1c levels, fasting blood glucose levels and diabetic history. Principal coordinate analysis and α- and ß-diversity of the microbiota were evaluated. The correlation between clinical and microbiota data was examined. Oral microbiota diversity showed no structural differences according to PINT scores, whereas principal coordinate analysis and α- and ß-diversity revealed significant structural differences in gut microbiota (p < 0.01, p < 0.05 and p < 0.05, respectively), even after the participants with glucose intolerance were excluded (p < 0.01, p < 0.05 and p < 0.05, respectively). The relative abundance of the genus Bacteroides was significantly lower in high-PINT participants compared with low-PINT participants (10 ± 6.7% vs. 11.3 ± 7.0%, p < 0.01), even after the exclusion of subjects with diabetes and impaired fasting glucose (10.0 ± 6.5% vs. 11.2 ± 6.9%, p < 0.05). In univariate linear regression analyses, PINT was significantly correlated with metabolic syndrome parameters, eGFR, uric acid level and the abundance of Bacteroides. The correlation between Bacteroides and PINT scores remained significant after adjustment for multiple factors (ß = -0.07181, p < 0.05). Changes of bacterial diversity and a low abundance of gut Bacteroides were correlated with elevated PINT scores in the Japanese population. This correlation may represent a new therapeutic option for SFN.


Subject(s)
Diabetic Neuropathies , Gastrointestinal Microbiome , Humans , Bacteroides , Blood Glucose , Glycated Hemoglobin , Japan , Lipopolysaccharides , Pain Threshold , Uric Acid
2.
Neurobiol Dis ; 155: 105392, 2021 07.
Article in English | MEDLINE | ID: mdl-34000416

ABSTRACT

Inflammation and oxidative stress contribute to the pathophysiology of diabetic neuropathy. According to recent evidence, the modulation of macrophage polarization in peripheral nerves represents a potential therapeutic target for diabetic neuropathy. Xanthine oxidase, which is a form of xanthin oxidoreductase, is the rate-limiting enzyme that catalyzes the degradation of hypoxanthine and xanthine into uric acid. Activation of xanthine oxidase promotes oxidative stress and macrophage activation. A preclinical study reported the beneficial effects of xanthine oxidase inhibitors on peripheral nerve dysfunction in experimental models of diabetes. However, the detailed mechanisms remain unknown. In this study, we examined the effect of the xanthine oxidase inhibitor topiroxostat on macrophage polarization and peripheral neuropathy in an obese diabetic model, db/db mice. First, the effects of xanthine oxidase inhibitors on cultured macrophages and dorsal root ganglion neurons exposed to xanthine oxidase were assessed. Furthermore, five-week-old db/db mice were administered the xanthine oxidase inhibitors topiroxostat [1 mg/kg/day (dbT1) or 2 mg/kg/day (dbT2)] or febuxostat [1 mg/kg (dbF)]. Glucose metabolism and body weight were evaluated during the experimental period. At 4 and 8 weeks of treatment, peripheral nerve functions such as nerve conduction velocities, thermal thresholds and pathology of skin and sciatic nerves were evaluated. The mRNA expression of molecules related to inflammation and oxidative stress was also measured in sciatic nerves. Untreated db/db mice and the nondiabetic db strain (db/m) were studied for comparison. An in vitro study showed that topiroxostat suppressed macrophage activation and proinflammatory but not anti-inflammatory polarization, and prevented the reduction in neurite outgrowth from neurons exposed to xanthine oxidase. Neuropathic changes exemplified by delayed nerve conduction and reduced intraepidermal nerve fiber density developed in db/db mice. These deficits were significantly prevented in the treated group, most potently in dbT2. Protective effects were associated with the suppression of macrophage infiltration, cytokine expression, and oxidative stress in the sciatic nerve and decreased plasma xanthine oxidoreductase activity. Our results revealed the beneficial effects of the xanthine oxidase inhibitor topiroxostat on neuropathy development in a mouse model of type 2 diabetes. The suppression of proinflammatory macrophage activation and oxidative stress-induced damage were suggested to be involved in this process.


Subject(s)
Diabetes Mellitus, Experimental/drug therapy , Enzyme Inhibitors/therapeutic use , Nitriles/therapeutic use , Obesity/drug therapy , Pyridines/therapeutic use , Xanthine Oxidase/antagonists & inhibitors , Animals , Cell Survival/drug effects , Cell Survival/physiology , Cells, Cultured , Diabetes Mellitus, Experimental/enzymology , Enzyme Inhibitors/pharmacology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Nitriles/pharmacology , Obesity/enzymology , Pyridines/pharmacology , RAW 264.7 Cells , Treatment Outcome , Xanthine Oxidase/metabolism
3.
Int J Mol Sci ; 22(21)2021 Oct 28.
Article in English | MEDLINE | ID: mdl-34769147

ABSTRACT

Pancreatic stellate cells (PSCs) mainly consist of cancer-associating fibroblasts in pancreatic ductal adenocarcinoma (PDAC). The receptor for advanced glycation end products (RAGE) is implicated in the pathophysiology of diabetic complications. Here, we studied the implication of RAGE in PSC activation in PDAC. The activation of cultured mouse PSCs was evaluated by qPCR. The induction of epithelial mesenchymal transition (EMT) in PDAC cell lines was assessed under stimulation with culture supernatant from activated PSCs. A total of 155 surgically resected PDAC subjects (83 nondiabetic, 18 with ≦3-years and 54 with >3-years history of diabetes) were clinicopathologically evaluated. A high-fat diet increased the expression of activated markers in cultured PSCs, which was abrogated by RAGE deletion. Culture supernatant from activated PSCs facilitated EMT of PDAC cells with elevation of TGF-ß and IL-6, but not from RAGE-deleted PSCs. Diabetic subjects complicated with metabolic syndrome, divided by cluster analysis, showed higher PSC activation and RAGE expression. In such groups, PDAC cells exhibited an EMT nature. The complication of metabolic syndrome with diabetes significantly worsened disease-free survival of PDAC subjects. Thus, RAGE in PSCs can be viewed as a new promoter and a future therapeutic target of PDAC in diabetic subjects with metabolic syndrome.


Subject(s)
Carcinoma, Pancreatic Ductal/metabolism , Diabetes Mellitus, Type 2/metabolism , Pancreatic Neoplasms/metabolism , Pancreatic Stellate Cells/metabolism , Receptor for Advanced Glycation End Products/metabolism , Actins/metabolism , Animals , Carcinoma, Pancreatic Ductal/complications , Diabetes Mellitus, Type 2/complications , Diet, High-Fat/adverse effects , Epithelial-Mesenchymal Transition , Glycation End Products, Advanced/metabolism , Humans , Mice, Inbred C57BL , Pancreatic Intraductal Neoplasms/metabolism , Pancreatic Neoplasms/complications , Primary Cell Culture
4.
Int J Mol Sci ; 21(21)2020 Nov 05.
Article in English | MEDLINE | ID: mdl-33167536

ABSTRACT

Normal-high HbA1c levels are a risk factor for attenuated pain sensation in normoglycemic subjects. It is unclear, however, what mechanisms underlie the pathogenesis of attenuated pain sensation in such a population. We, therefore, explored the relationship between oxidative stress (OS) and pain sensation in a rural Japanese population. A population-based study of 894 individuals (average age 53.8 ± 0.5 years) and 55 subjects with impaired fasting glucose (IFG) were enrolled in this study. Individuals with diabetes were excluded. Relationships between pain threshold induced by intraepidermal electrical stimulation (PINT) and clinico-hematological parameters associated with OS were evaluated. Univariate linear regression analyses revealed age, BMI, HbA1c, the OS biomarker urine 8-hydroxy-2'-deoxyguanosine (8-OHdG), systolic blood pressure, and decreased Achilles tendon reflex on the PINT scores. Adjustments for age, gender, and multiple clinical measures confirmed a positive correlation between PINT scores and urine 8-OHdG (ß = 0.09, p < 0.01). Urine 8-OHdG correlated positively with higher HbA1c levels and age in the normoglycemic population. Unlike in the normoglycemic population, both inflammation and OS were correlated with elevated PINT scores in IFG subjects. OS may be a major contributing factor to elevated PINT scores in a healthy Japanese population.


Subject(s)
Glycated Hemoglobin/metabolism , Oxidative Stress/physiology , Pain Threshold/physiology , Adult , Biomarkers/blood , Blood Glucose/metabolism , Blood Pressure , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/metabolism , Female , Glycated Hemoglobin/physiology , Humans , Japan , Male , Middle Aged , Pain Threshold/ethnology , Prediabetic State/blood , Prediabetic State/metabolism , Risk Factors
5.
J Neurochem ; 144(6): 710-722, 2018 03.
Article in English | MEDLINE | ID: mdl-29238976

ABSTRACT

The increased glucose flux into the polyol pathway via aldose reductase (AR) is recognized as a major contributing factor for the pathogenesis of diabetic neuropathy, whereas little is known about the functional significance of AR in the peripheral nervous system. Spontaneously immortalized Schwann cell lines established from long-term cultures of AR-deficient and normal C57BL/6 mouse dorsal root ganglia and peripheral nerves can be useful tools for studying the physiological and pathological roles of AR. These cell lines, designated as immortalized knockout AR Schwann cells 1 (IKARS1) and 1970C3, respectively, demonstrated distinctive Schwann cell phenotypes, such as spindle-shaped morphology and immunoreactivity to S100, p75 neurotrophin receptor, and vimentin, and extracellular release of neurotrophic factors. Conditioned media obtained from these cells promoted neuronal survival and neurite outgrowth of cultured adult mouse dorsal root ganglia neurons. Microarray and real-time RT-PCR analyses revealed significantly down-regulated mRNA expression of polyol pathway-related enzymes, sorbitol dehydrogenase and ketohexokinase, in IKARS1 cells compared with those in 1970C3 cells. In contrast, significantly up-regulated mRNA expression of aldo-keto reductases (AKR1B7 and AKR1B8) and aldehyde dehydrogenases (ALDH1L2, ALDH5A1, and ALDH7A1) was detected in IKARS1 cells compared with 1970C3 cells. Exposure to reactive aldehydes (3-deoxyglucosone, methylglyoxal, and 4-hydroxynonenal) significantly up-regulated the mRNA expression of AKR1B7 and AKR1B8 in IKARS1 cells, but not in 1970C3 cells. Because no significant differences in viability between these two cell lines after exposure to these aldehydes were observed, it can be assumed that the aldehyde detoxification is taken over by AKR1B7 and AKR1B8 in the absence of AR.


Subject(s)
Aldehyde Reductase/metabolism , Aldehydes/metabolism , Polymers/metabolism , Schwann Cells/metabolism , Aldehyde Reductase/genetics , Animals , Cell Culture Techniques , Cell Line , Cell Survival , Culture Media, Conditioned , Female , Ganglia, Spinal/cytology , Male , Mice, Inbred C57BL , Mice, Knockout , Neurons , Peripheral Nerves/cytology , RNA, Messenger/metabolism , Signal Transduction , Up-Regulation
6.
Biochem Biophys Res Commun ; 503(2): 963-969, 2018 09 05.
Article in English | MEDLINE | ID: mdl-29935186

ABSTRACT

Recently, we reported the presence of distinct cell clusters named acinar-like cell clusters touching Langerhans islets with thin interstitial surrounding (ATLANTIS) in human pancreas. A morphological study in humans demonstrated that ATLANTIS and islet cell clusters are found together in the microenvironment enclosed by a common basement membrane, and ATLANTIS releases vesicles containing Regenerating gene protein (REG Iα) to islet cell clusters. We examined 1) the presence or absence of ATLANTIS in homozygous Reg I (mouse homologue of human REG Iα) deficient (Reg I-/-) and wild-type mice, and 2) the possible role of ATLANTIS in the regeneration of beta cell clusters after encephalomyocarditis (EMC) virus (D-variant) infection in Reg I-/- and wild-type mice. ATLANTIS was found in both wild-type and Reg I-/- mice. In both groups, mean blood glucose increased transiently to greater than 14.0 mmol/L at 5 days after EMC virus infection and recovered to baseline at 12 days. At 12 days after EMC virus infection, lower BrdU labeling indices were observed in islet beta cells of Reg I-/- mice compared to wild-type mice. Beta cell volume 12 days after EMC virus infection in Reg I-/- mice did not differ from that of wild-type mice. These results suggest that Reg I, which is released from ATLANTIS to islet beta cell clusters, has a crucial role in beta cell regeneration in EMC virus-induced diabetes. The presence of mechanism(s) other than that mediated by Reg I in beta cell restoration after destruction by EMC virus was also suggested.


Subject(s)
Cardiovirus Infections/complications , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/virology , Insulin-Secreting Cells/cytology , Lithostathine/metabolism , Pancreas/cytology , Animals , Cell Count , Cell Proliferation , Cells, Cultured , Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Experimental/pathology , Encephalomyocarditis virus/isolation & purification , Gene Deletion , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/pathology , Insulin-Secreting Cells/virology , Lithostathine/genetics , Male , Mice , Mitosis , Pancreas/metabolism , Pancreas/pathology , Pancreas/virology
7.
J Neurochem ; 136(4): 859-870, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26603140

ABSTRACT

Incretin-related therapy was found to be beneficial for experimental diabetic neuropathy, but its mechanism is obscure. The purpose of this study is to explore the mechanism through which dipeptidyl peptidase IV inhibitor, vildagliptin (VG), influences neuropathy in diabetic rodents. To this end, non-obese type 2 diabetic Goto-Kakizaki rats (GK) and streptozotocin (STZ)-induced diabetic mice were treated with VG orally. Neuropathy was evaluated by nerve conduction velocity (NCV) in both GK and STZ-diabetic mice, whereas calcitonin-gene-related peptide expressions, neuronal cell size of dorsal root ganglion (DRG) and intraepidermal nerve fiber density were examined in GK. DRG from GK and STZ-diabetic mice served for the analyses of GLP-1 and insulin signaling. As results, VG treatment improved glucose intolerance and increased serum insulin and GLP-1 in GK accompanied by the amelioration of delayed NCV and neuronal atrophy, reduced calcitonin-gene-related peptide expressions and intraepidermal nerve fiber density. Diet restriction alone did not significantly influence these measures. Impaired GLP-1 signals such as cAMP response element binding protein, protein kinase B/Akt (PKB/Akt) and S6RP in DRG of GK were restored in VG-treated group, but the effect was equivocal in diet-treated GK. Concurrently, decreased phosphorylation of insulin receptor substrate 2 in GK was corrected by VG treatment. Consistent with the effect on GK, VG treatment improved NCV in diabetic mice without influence on hyperglycemia. DRG of VG-treated diabetic mice were characterized by correction of GLP-1 signals and insulin receptor substrate 2 phosphorylation without effects on insulin receptor ß expression. The results suggest close association of neuropathy development with impaired signaling of insulin and GLP-1 in diabetic rodents. Diabetic neurons are resistant to insulin and such insulin resistance may contribute to development of neuropathy. DPP-IV inhibitor, vildagliptin, corrected insulin resistance and improved neuropathy irrespective of blood glucose via augmented action of GLP-1.

8.
Curr Diab Rep ; 16(9): 86, 2016 09.
Article in English | MEDLINE | ID: mdl-27485630

ABSTRACT

Diabetic polyneuropathy (DPN) is the most common complication that emerges early in patients who have diabetes. Curative treatment for overt or symptomatic DPN has not been established, requiring much effort to explore new modalities. Thus, the use of various kinds of stem cells as a potential therapeutic option for DPN is of particular interest. The beneficial effects were proposed to be attributed to either cytokine released from transplanted stem cells or the differentiation of stem cells to substitute the damaged peripheral nerve. Furthermore, based on the concept that humoral factors secreted from stem cells play a pivotal role in tissue regeneration, the utilization of conditioned medium derived from the stem cell culture serves as a novel tool for regenerative therapy. However, many questions have not been yet answered to determine whether stem cell therapy is essential in clinical application of DPN. In this report, we review the current status of preclinical studies on stem cell therapy for DPN and discuss future prospects.


Subject(s)
Diabetic Neuropathies/therapy , Stem Cell Transplantation , Animals , Culture Media, Conditioned/pharmacology , Diabetic Neuropathies/physiopathology , Disease Models, Animal , Humans , Skin Ulcer/pathology , Skin Ulcer/therapy , Stem Cell Transplantation/adverse effects , Wound Healing/drug effects
9.
Muscle Nerve ; 54(4): 756-62, 2016 10.
Article in English | MEDLINE | ID: mdl-26970072

ABSTRACT

INTRODUCTION: Hypertension is identified as a risk factor for development of polyneuropathy. In this study we examined nerve conduction and morphological alteration of peripheral nerves in spontaneously hypertensive rats (SHR). METHODS: Motor nerve conduction velocity (MNCV) in the sciatic-tibial nerve and sensory nerve conduction velocity (SNCV) in the sural nerve were measured. Pathological investigations included spinal cord, dorsal root ganglion, and hindlimb nerves in SHR and Wistar-Kyoto rats (WKY) aged 4-64 weeks. RESULTS: Blood pressure was significantly higher in SHR than WKY animals at 4 weeks and elevated further with aging. MNCV and SNCV were significantly slower in SHR compared with WKY after age 24 weeks. Prominent morphological changes in SHR nerves included axonal atrophy and myelin splitting. SHR also had endoneurial microangiopathy with reduplication of basement membrane. CONCLUSIONS: SHR showed slowed nerve conduction velocity and pathological abnormalities of hindlimb nerves. Sustained severe hypertension may cause axonal atrophy and endoneurial microangiopathy. Muscle Nerve 54: 756-762, 2016.


Subject(s)
Hypertension/pathology , Hypertension/physiopathology , Polyneuropathies/pathology , Polyneuropathies/physiopathology , Animals , Blood Pressure/physiology , Electrophysiological Phenomena/physiology , Heart Rate/physiology , Male , Rats , Rats, Inbred SHR , Rats, Inbred WKY
10.
Pathol Int ; 65(4): 157-69, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25708009

ABSTRACT

There emerges a world epidemic of diabetes, afflicting over 3.8 billion people globally. The socio-economic burden of this disorder is tremendous and there is an urgent need to solve the problems incurred from this disorder and to establish an efficient way of prevention and treatment. Fundamental pathology of diabetes has been too diverse to reach a simple etiology and the mechanisms of how the lesions specific to diabetes develop are yet to be clear. Nevertheless, there has been slow but significant advancement in the understanding of the disease based on characterization of the salient features of pathological lesions in human diabetic subjects. Progressive decline of islet ß cells associated with increased α cell volume density was found to account for clinical manifestation of hypoinsulinemia and hyperglucagonemia in type 2 diabetes. Concurrently, signs of complications represented by distal nerve fiber loss in the skin commences from the beginning of this disease. Thus the pathological studies disclosed the major attributes in this disorder targeting the islet of pancreas and epidermal nerve, both of which were discovered by Paul Langerhans more than 140 years ago. In this review, I attempt to summarize the progress in pathology of diabetes which Langerhans opened this field.


Subject(s)
Diabetes Mellitus, Type 2/pathology , Diabetic Neuropathies/pathology , Islets of Langerhans/pathology , Diabetes Mellitus, Type 2/history , History, 19th Century , Humans
SELECTION OF CITATIONS
SEARCH DETAIL