Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Publication year range
1.
J Neurochem ; 168(7): 1193-1214, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38372586

ABSTRACT

Lipids play crucial roles in the susceptibility and brain cellular responses to Alzheimer's disease (AD) and are increasingly considered potential soluble biomarkers in cerebrospinal fluid (CSF) and plasma. To delineate the pathological correlations of distinct lipid species, we conducted a comprehensive characterization of both spatially localized and global differences in brain lipid composition in AppNL-G-F mice with spatial and bulk mass spectrometry lipidomic profiling, using human amyloid-expressing (h-Aß) and WT mouse brains controls. We observed age-dependent increases in lysophospholipids, bis(monoacylglycerol) phosphates, and phosphatidylglycerols around Aß plaques in AppNL-G-F mice. Immunohistology-based co-localization identified associations between focal pro-inflammatory lipids, glial activation, and autophagic flux disruption. Likewise, in human donors with varying Braak stages, similar studies of cortical sections revealed co-expression of lysophospholipids and ceramides around Aß plaques in AD (Braak stage V/VI) but not in earlier Braak stage controls. Our findings in mice provide evidence of temporally and spatially heterogeneous differences in lipid composition as local and global Aß-related pathologies evolve. Observing similar lipidomic changes associated with pathological Aß plaques in human AD tissue provides a foundation for understanding differences in CSF lipids with reported clinical stage or disease severity.


Subject(s)
Alzheimer Disease , Brain , Mass Spectrometry , Mice, Transgenic , Plaque, Amyloid , Animals , Humans , Plaque, Amyloid/pathology , Plaque, Amyloid/metabolism , Mice , Mass Spectrometry/methods , Brain/metabolism , Brain/pathology , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Male , Female , Lipid Metabolism/physiology , Lysophospholipids/metabolism , Aged , Mice, Inbred C57BL , Lipids/analysis , Lipidomics/methods
SELECTION OF CITATIONS
SEARCH DETAIL