Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 132
Filter
Add more filters

Publication year range
1.
Transgenic Res ; 33(3): 99-117, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38684589

ABSTRACT

Golli-myelin basic proteins, encoded by the myelin basic protein gene, are widely expressed in neurons and oligodendrocytes in the central nervous system. Further, prior research has shown that Golli-myelin basic protein is necessary for myelination and neuronal maturation during central nervous system development. In this study, we established Golli-myelin basic protein-floxed mice to elucidate the cell-type-specific effects of Golli-myelin basic protein knockout through the generation of conditional knockout mice (Golli-myelin basic proteinsfl/fl; E3CreN), in which Golli-myelin basic proteins were specifically deleted in cerebellar granule neurons, where Golli-myelin basic proteins are expressed abundantly in wild-type mice. To investigate the role of Golli-myelin basic proteins in cerebellar granule neurons, we further performed histopathological analyses of these mice, with results indicating no morphological changes or degeneration of the major cellular components of the cerebellum. Furthermore, behavioral analysis showed that Golli-myelin basic proteinsfl/fl; E3CreN mice were healthy and did not display any abnormal behavior. These results suggest that the loss of Golli-myelin basic proteins in cerebellar granule neurons does not lead to cerebellar perturbations or behavioral abnormalities. This mouse model could therefore be employed to analyze the effect of Golli-myelin basic protein deletion in specific cell types of the central nervous system, such as other neuronal cells and oligodendrocytes, or in lymphocytes of the immune system.


Subject(s)
Cerebellum , Mice, Knockout , Myelin Basic Protein , Neurons , Animals , Neurons/metabolism , Mice , Cerebellum/metabolism , Cerebellum/growth & development , Myelin Basic Protein/genetics , Myelin Basic Protein/metabolism
2.
Hum Mol Genet ; 30(18): 1762-1772, 2021 08 28.
Article in English | MEDLINE | ID: mdl-34104969

ABSTRACT

A report of a family of Darier's disease with mood disorders drew attention when the causative gene was identified as ATP2A2 (or SERCA2), which encodes a Ca2+ pump on the endoplasmic reticulum (ER) membrane and is important for intracellular Ca2+ signaling. Recently, it was found that loss-of-function mutations of ATP2A2 confer a risk of neuropsychiatric disorders including depression, bipolar disorder and schizophrenia. In addition, a genome-wide association study found an association between ATP2A2 and schizophrenia. However, the mechanism of how ATP2A2 contributes to vulnerability to these mental disorders is unknown. Here, we analyzed Atp2a2 heterozygous brain-specific conditional knockout (hetero cKO) mice. The ER membranes prepared from the hetero cKO mouse brain showed decreased Ca2+ uptake activity. In Atp2a2 heterozygous neurons, decays of cytosolic Ca2+ level were slower than control neurons after depolarization. The hetero cKO mice showed altered behavioral responses to novel environments and impairments in fear memory, suggestive of enhanced dopamine signaling. In vivo dialysis demonstrated that extracellular dopamine levels in the NAc were indeed higher in the hetero cKO mice. These results altogether indicate that the haploinsufficiency of Atp2a2 in the brain causes prolonged cytosolic Ca2+ transients, which possibly results in enhanced dopamine signaling, a common feature of mood disorders and schizophrenia. These findings elucidate how ATP2A2 mutations causing a dermatological disease may exert their pleiotropic effects on the brain and confer a risk for mental disorders.


Subject(s)
Behavior, Animal , Brain/enzymology , Darier Disease , Dopamine/metabolism , Loss of Function Mutation , Sarcoplasmic Reticulum Calcium-Transporting ATPases , Signal Transduction , Animals , Darier Disease/enzymology , Darier Disease/genetics , Dopamine/genetics , Mice , Mice, Knockout , Organ Specificity/genetics , Sarcoplasmic Reticulum Calcium-Transporting ATPases/genetics , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism
3.
Genet Med ; 24(9): 1952-1966, 2022 09.
Article in English | MEDLINE | ID: mdl-35916866

ABSTRACT

PURPOSE: ZMYND8 encodes a multidomain protein that serves as a central interactive hub for coordinating critical roles in transcription regulation, chromatin remodeling, regulation of super-enhancers, DNA damage response and tumor suppression. We delineate a novel neurocognitive disorder caused by variants in the ZMYND8 gene. METHODS: An international collaboration, exome sequencing, molecular modeling, yeast two-hybrid assays, analysis of available transcriptomic data and a knockdown Drosophila model were used to characterize the ZMYND8 variants. RESULTS: ZMYND8 variants were identified in 11 unrelated individuals; 10 occurred de novo and one suspected de novo; 2 were truncating, 9 were missense, of which one was recurrent. The disorder is characterized by intellectual disability with variable cardiovascular, ophthalmologic and minor skeletal anomalies. Missense variants in the PWWP domain of ZMYND8 abolish the interaction with Drebrin and missense variants in the MYND domain disrupt the interaction with GATAD2A. ZMYND8 is broadly expressed across cell types in all brain regions and shows highest expression in the early stages of brain development. Neuronal knockdown of the DrosophilaZMYND8 ortholog results in decreased habituation learning, consistent with a role in cognitive function. CONCLUSION: We present genomic and functional evidence for disruption of ZMYND8 as a novel etiology of syndromic intellectual disability.


Subject(s)
Intellectual Disability , Neurodevelopmental Disorders , Brain/metabolism , Gene Expression Regulation , Humans , Intellectual Disability/genetics , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/metabolism , Protein Domains , Exome Sequencing
4.
N Engl J Med ; 378(11): 1018-1028, 2018 03 15.
Article in English | MEDLINE | ID: mdl-29539279

ABSTRACT

BACKGROUND: In juvenile myoclonic epilepsy, data are limited on the genetic basis of networks promoting convulsions with diffuse polyspikes on electroencephalography (EEG) and the subtle microscopic brain dysplasia called microdysgenesis. METHODS: Using Sanger sequencing, we sequenced the exomes of six members of a large family affected with juvenile myoclonic epilepsy and confirmed cosegregation in all 37 family members. We screened an additional 310 patients with this disorder for variants on DNA melting-curve analysis and targeted real-time DNA sequencing of the gene encoding intestinal-cell kinase ( ICK). We calculated Bayesian logarithm of the odds (LOD) scores for cosegregating variants, odds ratios in case-control associations, and allele frequencies in the Genome Aggregation Database. We performed functional tests of the effects of variants on mitosis, apoptosis, and radial neuroblast migration in vitro and conducted video-EEG studies in mice lacking a copy of Ick. RESULTS: A variant, K305T (c.914A→C), cosegregated with epilepsy or polyspikes on EEG in 12 members of the family affected with juvenile myoclonic epilepsy. We identified 21 pathogenic ICK variants in 22 of 310 additional patients (7%). Four strongly linked variants (K220E, K305T, A615T, and R632X) impaired mitosis, cell-cycle exit, and radial neuroblast migration while promoting apoptosis. Tonic-clonic convulsions and polyspikes on EEG resembling seizures in human juvenile myoclonic epilepsy occurred more often in knockout heterozygous mice than in wild-type mice (P=0.02) during light sleep with isoflurane anesthesia. CONCLUSIONS: Our data provide evidence that heterozygous variants in ICK caused juvenile myoclonic epilepsy in 7% of the patients included in our analysis. Variant ICK affects cell processes that help explain microdysgenesis and polyspike networks observed on EEG in juvenile myoclonic epilepsy. (Funded by the National Institutes of Health and others.).


Subject(s)
Mutation , Myoclonic Epilepsy, Juvenile/genetics , Protein Serine-Threonine Kinases/genetics , Adolescent , Animals , Bayes Theorem , Case-Control Studies , Child , Child, Preschool , Chromosomes, Human, Pair 6 , Disease Models, Animal , Electroencephalography , Female , Heterozygote , Humans , Infant , Infant, Newborn , Male , Malformations of Cortical Development/genetics , Mice , Mice, Knockout , Myoclonic Epilepsy, Juvenile/physiopathology , Sequence Analysis, DNA , Young Adult
5.
Biochem Biophys Res Commun ; 535: 87-92, 2021 01 08.
Article in English | MEDLINE | ID: mdl-33348080

ABSTRACT

Down syndrome (DS, Trisomy 21) is the most common genetic cause of delayed fetal brain development and postnatal intellectual disability. Although delayed fetal brain development might be involved in intellectual disability, no evidence of an association between these abnormal phenotypes has been shown. To identify molecules differentially expressed in both the prenatal forebrain and adult hippocampus of Ts1Cje mice, a mouse model of DS, we employed a transcriptomic analysis. In the present study, we conducted transcriptomic profiling of the hippocampus of adult Ts1Cje mice and compared the results with the previously obtained transcriptomic profile of the prenatal forebrain at embryonic day 14.5. Results showed that the Tbx1 mRNA expression was decreased at both life stages. In addition, the decreased expression of Tbx1 mRNA was confirmed in other DS mouse models, Dp(16)1Yey/+ and Ts1Rhr mice, which carry longer and shorter trisomic regions, respectively. Taken together, these findings suggest that Tbx1 may link the delayed fetal brain development and intellectual disability in DS.


Subject(s)
Brain/embryology , Down Syndrome/genetics , Embryo, Mammalian/metabolism , Gene Expression Regulation, Developmental , T-Box Domain Proteins/genetics , Animals , Disease Models, Animal , Down-Regulation/genetics , Hippocampus/metabolism , Mice, Inbred C57BL , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transcriptome
6.
Epilepsia ; 62(11): 2845-2857, 2021 11.
Article in English | MEDLINE | ID: mdl-34510432

ABSTRACT

OBJECTIVE: Dravet syndrome is a severe developmental and epileptic encephalopathy (DEE) most often caused by de novo pathogenic variants in SCN1A. Individuals with Dravet syndrome rarely achieve seizure control and have significantly elevated risk for sudden unexplained death in epilepsy (SUDEP). Heterozygous deletion of Scn1a in mice (Scn1a+/- ) recapitulates several core phenotypes, including temperature-dependent and spontaneous seizures, SUDEP, and behavioral abnormalities. Furthermore, Scn1a+/- mice exhibit a similar clinical response to standard anticonvulsants. Cholesterol 24-hydroxlase (CH24H) is a brain-specific enzyme responsible for cholesterol catabolism. Recent research has indicated the therapeutic potential of CH24H inhibition for diseases associated with neural excitation, including seizures. METHODS: In this study, the novel compound soticlestat, a CH24H inhibitor, was administered to Scn1a+/- mice to investigate its ability to improve Dravet-like phenotypes in this preclinical model. RESULTS: Soticlestat treatment reduced seizure burden, protected against hyperthermia-induced seizures, and completely prevented SUDEP in Scn1a+/- mice. Video-electroencephalography (EEG) analysis confirmed the ability of soticlestat to reduce occurrence of electroclinical seizures. SIGNIFICANCE: This study demonstrates that soticlestat-mediated inhibition of CH24H provides therapeutic benefit for the treatment of Dravet syndrome in mice and has the potential for treatment of DEEs.


Subject(s)
Epilepsies, Myoclonic , Epilepsy , Piperidines , Pyridines , Seizures, Febrile , Sudden Unexpected Death in Epilepsy , Animals , Cholesterol 24-Hydroxylase/antagonists & inhibitors , Epilepsies, Myoclonic/complications , Epilepsies, Myoclonic/drug therapy , Epilepsies, Myoclonic/genetics , Epilepsy/genetics , Epileptic Syndromes , Mice , Mortality, Premature , Mutation , NAV1.1 Voltage-Gated Sodium Channel/genetics , Piperidines/pharmacology , Pyridines/pharmacology , Seizures/etiology , Seizures/genetics , Seizures, Febrile/drug therapy , Sudden Unexpected Death in Epilepsy/etiology
7.
Epilepsia ; 62(6): 1391-1400, 2021 06.
Article in English | MEDLINE | ID: mdl-33913524

ABSTRACT

OBJECTIVE: Although a number of genes responsible for epilepsy have been identified through Mendelian genetic approaches, and genome-wide association studies (GWASs) have implicated several susceptibility loci, the role of ethnic-specific markers remains to be fully explored. We aimed to identify novel genetic associations with epilepsy in a Japanese population. METHODS: We conducted a GWAS on 1825 patients with a variety of epilepsies and 7975 control individuals. Expression quantitative trait locus (eQTL) analysis of epilepsy-associated single nucleotide polymorphisms (SNPs) was performed using Japanese eQTL data. RESULTS: We identified a novel region, which is ~2 Mb (lead SNP rs149212747, p = 8.57 × 10-10 ), at chromosome 12q24 as a risk for epilepsy. Most of these loci were polymorphic in East Asian populations including Japanese, but monomorphic in the European population. This region harbors 24 transcripts including genes expressed in the brain such as CUX2, ATXN2, BRAP, ALDH2, ERP29, TRAFD1, HECTD4, RPL6, PTPN11, and RPH3A. The eQTL analysis revealed that the associated SNPs are also correlated to differential expression of genes at 12q24. SIGNIFICANCE: These findings suggest that a gene or genes in the CUX2-RPH3A ~2-Mb region contribute to the pathology of epilepsy in the Japanese population.


Subject(s)
Chromosomes, Human, Pair 12/genetics , Epilepsy/genetics , Genome-Wide Association Study , Asian People , Case-Control Studies , Epilepsy/epidemiology , Gene Expression Regulation , Genetic Predisposition to Disease/genetics , Genotype , Humans , Japan/epidemiology , Polymorphism, Single Nucleotide , Quantitative Trait Loci
8.
Neurobiol Dis ; 141: 104954, 2020 07.
Article in English | MEDLINE | ID: mdl-32445790

ABSTRACT

Dravet syndrome is a severe infantile-onset epileptic encephalopathy which begins with febrile seizures and is caused by heterozygous loss-of-function mutations of the voltage-gated sodium channel gene SCN1A. We designed a CRISPR-based gene therapy for Scn1a-haplodeficient mice using multiple guide RNAs (gRNAs) in the promoter regions together with the nuclease-deficient Cas9 fused to transcription activators (dCas9-VPR) to trigger the transcription of SCN1A or Scn1a in vitro. We tested the effect of this strategy in vivo using an adeno-associated virus (AAV) mediated system targeting inhibitory neurons and investigating febrile seizures and behavioral parameters. In both the human and mouse genes multiple guide RNAs (gRNAs) in the upstream, rather than downstream, promoter region showed high and synergistic activities to increase the transcription of SCN1A or Scn1a in cultured cells. Intravenous injections of AAV particles containing the optimal combination of 4 gRNAs into transgenic mice with Scn1a-haplodeficiency and inhibitory neuron-specific expression of dCas9-VPR at four weeks of age increased Nav1.1 expression in parvalbumin-positive GABAergic neurons, ameliorated their febrile seizures and improved their behavioral impairments. Although the usage of transgenic mice and rather modest improvements in seizures and abnormal behaviors hamper direct clinical application, our results indicate that the upregulation of Scn1a expression in the inhibitory neurons can significantly improve the phenotypes, even when applied after the juvenile stages. Our findings also suggest that the decrease in Nav1.1 is directly involved in the symptoms seen in adults with Dravet syndrome and open a way to improve this condition.


Subject(s)
Epilepsies, Myoclonic/genetics , Epilepsies, Myoclonic/physiopathology , Epilepsy/genetics , Epilepsy/physiopathology , NAV1.1 Voltage-Gated Sodium Channel/genetics , NAV1.1 Voltage-Gated Sodium Channel/physiology , Neurons/physiology , Animals , Behavior, Animal , CRISPR-Cas Systems , Disease Models, Animal , Epilepsies, Myoclonic/prevention & control , Epilepsy/prevention & control , Female , GABAergic Neurons/physiology , Genetic Therapy/methods , HEK293 Cells , Humans , Male , Mice, Inbred C57BL , Mice, Transgenic , Phenotype
9.
Int J Mol Sci ; 21(6)2020 Mar 12.
Article in English | MEDLINE | ID: mdl-32178446

ABSTRACT

In Ts1Rhr, a Down syndrome model mouse, the airway ciliary beatings are impaired; that is, decreases in ciliary beat frequency (CBF) and ciliary bend angle (CBA, an index of ciliary beat amplitude)). A resumption to two copies of the Pcp4 gene on the Ts1Rhr trisomic segment (Ts1Rhr:Pcp4+/+/-) rescues the decreases in CBF and CBA that occur in Ts1Rhr. In airway cilia, upon stimulation with procaterol (a ß2-agonist), the CBF increase is slower over the time course than the CBA increase because of cAMP degradation by Ca2+/calmodulin-dependent phosphodiesterase 1 (PDE1) existing in the metabolon regulating CBF. In Ts1Rhr, procaterol-stimulated CBF increase was much slower over the time course than in the wild-type mouse (Wt) or Ts1Rhr:Pcp4+/+/-. However, in the presence of 8MmIBMX (8-methoxymethyl isobutylmethyl xanthine, an inhibitor of PDE1) or calmidazolium (an inhibitor of calmodulin), in both Wt and Ts1Rhr, procaterol stimulates CBF and CBA increases over a similar time course. Measurements of cAMP revealed that the cAMP contents were lower in Ts1Rhr than in Wt or in Ts1Rhr:Pcp4+/+/-, suggesting the activation of PDE1A that is present in Ts1Rhr airway cilia. Measurements of the intracellular Ca2+ concentration ([Ca2+]i) in airway ciliary cells revealed that temperature (increasing from 25 to 37 °C) or 4αPDD (a selective transient receptor potential vanilloid 4 (TRPV4) agonist) stimulates a larger [Ca2+]i increase in Ts1Rhr than in Wt or Ts1Rhr:Pcp4+/+/-. In airway ciliary cells of Ts1Rhr, Pcp4-dose dependent activation of TRPV4 appears to induce an increase in the basal [Ca2+]i. In early embryonic day mice, a basal [Ca2+]i increased by PCP4 expressed may affect axonemal regulatory complexes regulated by the Ca2+-signal in Ts1Rhr, leading to a decrease in the basal CBF and CBA of airway cilia.


Subject(s)
Calcium/metabolism , Cilia/metabolism , Down Syndrome/metabolism , Nerve Tissue Proteins/metabolism , Animals , Calmodulin/metabolism , Cyclic AMP/metabolism , Disease Models, Animal , Epithelial Cells/metabolism , Female , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , TRPV Cation Channels/metabolism , Trachea/metabolism
10.
Hum Mol Genet ; 26(5): 923-931, 2017 03 01.
Article in English | MEDLINE | ID: mdl-28069794

ABSTRACT

Down syndrome is a leading cause of congenital intellectual disability caused by an additional copy of the chromosome 21. Patients display physiological and morphological changes affecting the brain and its function. Previously we showed that Ts1Cje and Ts2Cje, Down syndrome mouse models carrying overlapping trisomic segments of different length, show similar ventriculomegaly and neurogenesis dysfunction leading to the hypothesis of a cause-consequence relationship between these phenotypes. However, we here discovered that Ts1Rhr Down syndrome model, carrying an even shorter trisomic segment, was sufficient to trigger ventricular enlargement and ependymal cilia beating deficiency without affecting neurogenesis. We further found that Pcp4 gene on the Ts1Rhr trisomic segment is expressed in ependymal cells, and its resumption to two copies rescued both ventricular enlargement and cilia dysfunction in Ts1Rhr mice. This work underlines a Pcp4-dependent ciliopathy in Down syndrome brain affecting cerebrospinal fluid flow.


Subject(s)
Cilia/genetics , Down Syndrome/genetics , Hydrocephalus/genetics , Nerve Tissue Proteins/genetics , Animals , Brain/physiopathology , Chromosomes, Human, Pair 21 , Cilia/pathology , Disease Models, Animal , Down Syndrome/pathology , Humans , Hydrocephalus/pathology , Mice , Nerve Tissue Proteins/biosynthesis , Neurogenesis , Phenotype
11.
Hum Mol Genet ; 26(24): 4961-4974, 2017 12 15.
Article in English | MEDLINE | ID: mdl-29040524

ABSTRACT

Genetic studies point to a major role of de novo mutations in neurodevelopmental disorders of intellectual disability, autism spectrum disorders, and epileptic encephalopathy. The STXBP1 gene encodes the syntaxin-binding protein 1 (Munc18-1) that critically controls synaptic vesicle exocytosis and synaptic transmission. This gene harbors a high frequency of de novo mutations, which may play roles in these neurodevelopmental disorders. However, the system and behavioral-level pathophysiological changes caused by these genetic defects remain poorly understood. Constitutional (Stxbp1+/-), dorsal-telencephalic excitatory (Stxbp1fl/+/Emx), or global inhibitory neuron-specific (Stxbp1fl/+/Vgat) mice were subjected to a behavioral test battery examining locomotor activity, anxiety, fear learning, and social interactions including aggression. Furthermore, measurements of local field potentials in multiple regions of the brain were performed. Stxbp1+/- male mice exhibited enhanced aggressiveness and impaired fear learning associated with elevated gamma activity in several regions of the brain including the prefrontal cortex. Stxbp1fl/+/Emx mice showed fear-learning deficits, but neither Stxbp1fl/+/Emx nor Stxbp1fl/+/Vgat mice showed increased aggressiveness. Pharmacological potentiation of the excitatory transmission at active synapses via the systemic administration of ampakine CX516, which enhances the excitatory postsynaptic function, ameliorated the aggressive phenotype of Stxbp1+/- mice. These findings suggest that synaptic impairments of the dorsal telencephalic and subcortical excitatory neurons cause learning deficits and enhanced aggression in Stxbp1+/- mice, respectively. Additionally, normalizing the excitatory synaptic transmission is a potential therapeutic option for managing aggressiveness in patients with STXBP1 mutations.


Subject(s)
Munc18 Proteins/metabolism , Synaptic Transmission/physiology , Aggression/physiology , Animals , Brain/metabolism , Dioxoles/pharmacokinetics , Excitatory Postsynaptic Potentials/physiology , Haploinsufficiency , Intellectual Disability/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Munc18 Proteins/genetics , Munc18 Proteins/physiology , Neurodevelopmental Disorders/metabolism , Neurons/metabolism , Piperidines/pharmacokinetics , Synapses/metabolism
12.
Mol Med ; 25(1): 6, 2019 02 27.
Article in English | MEDLINE | ID: mdl-30813884

ABSTRACT

BACKGROUND: Deleterious variants in the voltage-gated sodium channel type 2 (Nav1.2) lead to a broad spectrum of phenotypes ranging from benign familial neonatal-infantile epilepsy (BFNIE), severe developmental and epileptic encephalopathy (DEE) and intellectual disability (ID) to autism spectrum disorders (ASD). Yet, the underlying mechanisms are still incompletely understood. METHODS: To further elucidate the genotype-phenotype correlation of SCN2A variants we investigated the functional effects of six variants representing the phenotypic spectrum by whole-cell patch-clamp studies in transfected HEK293T cells and in-silico structural modeling. RESULTS: The two variants p.L1342P and p.E1803G detected in patients with early onset epileptic encephalopathy (EE) showed profound and complex changes in channel gating, whereas the BFNIE variant p.L1563V exhibited only a small gain of channel function. The three variants identified in ID patients without seizures, p.R937C, p.L611Vfs*35 and p.W1716*, did not produce measurable currents. Homology modeling of the missense variants predicted structural impairments consistent with the electrophysiological findings. CONCLUSIONS: Our findings support the hypothesis that complete loss-of-function variants lead to ID without seizures, small gain-of-function variants cause BFNIE and EE variants exhibit variable but profound Nav1.2 gating changes. Moreover, structural modeling was able to predict the severity of the variant impact, supporting a potential role of structural modeling as a prognostic tool. Our study on the functional consequences of SCN2A variants causing the distinct phenotypes of EE, BFNIE and ID contributes to the elucidation of mechanisms underlying the broad phenotypic variability reported for SCN2A variants.


Subject(s)
Epilepsy, Benign Neonatal/genetics , Epileptic Syndromes/genetics , Intellectual Disability/genetics , NAV1.2 Voltage-Gated Sodium Channel/physiology , Adolescent , Child , Epilepsy, Benign Neonatal/physiopathology , Epileptic Syndromes/physiopathology , Genetic Association Studies , HEK293 Cells , Humans , Intellectual Disability/physiopathology , Phenotype , Young Adult
13.
Neurobiol Dis ; 112: 24-34, 2018 04.
Article in English | MEDLINE | ID: mdl-29337050

ABSTRACT

Loss of function mutations in the SCN1A gene, which encodes the voltage-gated sodium channel Nav1.1, have been described in the majority of Dravet syndrome patients presenting with epileptic seizures, hyperactivity, autistic traits, and cognitive decline. We previously reported predominant Nav1.1 expression in parvalbumin-expressing (PV+) inhibitory neurons in juvenile mouse brain and observed epileptic seizures in mice with selective deletion of Scn1a in PV+ cells mediated by PV-Cre transgene expression (Scn1afl/+/PV-Cre-TG). Here we investigate the behavior of Scn1afl/+/PV-Cre-TG mice using a comprehensive battery of behavioral tests. We observed that Scn1afl/+/PV-Cre-TG mice display hyperactive behavior, impaired social novelty recognition, and altered spatial memory. We also generated Scn1afl/+/SST-Cre-KI mice with a selective Scn1a deletion in somatostatin-expressing (SST+) inhibitory neurons using an SST-IRES-Cre knock-in driver line. We observed that Scn1afl/+/SST-Cre-KI mice display no spontaneous convulsive seizures and that Scn1afl/+/SST-Cre-KI mice have a lowered threshold temperature for hyperthermia-induced seizures, although their threshold values are much higher than those of Scn1afl/+/PV-Cre-TG mice. We finally show that Scn1afl/+/SST-Cre-KI mice exhibited no noticeable behavioral abnormalities. These observations suggest that impaired Nav1.1 function in PV+ interneurons is critically involved in the pathogenesis of hyperactivity, autistic traits, and cognitive decline, as well as epileptic seizures, in Dravet syndrome.


Subject(s)
Exploratory Behavior/physiology , Interpersonal Relations , NAV1.1 Voltage-Gated Sodium Channel/genetics , Parvalbumins/biosynthesis , Parvalbumins/genetics , Spatial Memory/physiology , Animals , Gene Deletion , Gene Expression Regulation , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , NAV1.1 Voltage-Gated Sodium Channel/deficiency
14.
Neurobiol Dis ; 110: 180-191, 2018 02.
Article in English | MEDLINE | ID: mdl-29223763

ABSTRACT

Mutations and copy number variants affecting DYRK1A gene encoding the dual-specificity tyrosine phosphorylation-regulated kinase 1A are among the most frequent genetic causes of neurodevelopmental disorders including autism spectrum disorder (ASD) associated with microcephaly, febrile seizures and severe speech acquisition delay. Here we developed a mouse model harboring a frame-shift mutation in Dyrk1a resulting in a protein truncation and elimination of its kinase activity site. Dyrk1a+/- mice showed significant impairments in cognition and cognitive flexibility, communicative ultrasonic vocalizations, and social contacts. Susceptibility to hyperthermia-induced seizures was also significantly increased in these mice. The truncation leading to haploinsufficiency of DYRK1A in mice thus recapitulates the syndromic phenotypes observed in human patients and constitutes a useful model for further investigations of the mechanisms leading to ASD, speech delay and febrile seizures.


Subject(s)
Autism Spectrum Disorder/genetics , Disease Models, Animal , Protein Serine-Threonine Kinases/genetics , Protein-Tyrosine Kinases/genetics , Seizures, Febrile/genetics , Animals , Frameshift Mutation , Haploinsufficiency , Mice , Mice, Knockout , Phenotype , Dyrk Kinases
15.
Biochem Biophys Res Commun ; 491(4): 1070-1076, 2017 09 30.
Article in English | MEDLINE | ID: mdl-28784306

ABSTRACT

Nav1.1 and Nav1.2 are the voltage-gated sodium channel pore-forming alpha I and II subunits, encoded by the genes SCN1A and SCN2A. Although mutations of both genes have similarly been described in patients with epilepsy, autism and/or intellectual disability, their expression sites in brain are largely distinct. Nav1.1 was shown to be expressed dominantly in parvalbumin (PV)-positive or somatostatin (SST)-positive inhibitory neurons and in a sparsely-distributed subpopulation of excitatory neurons. In contrast, Nav1.2 has been reported to be dominantly expressed in excitatory neurons. Here we show that Nav1.2 is also expressed in caudal ganglionic eminence (CGE)-derived inhibitory neurons, and expressions of Nav1.1 and Nav1.2 are mutually-exclusive in many of brain regions including neocortex, hippocampus, cerebellum, striatum and globus pallidus. In neocortex at postnatal day 15, in addition to the expression in excitatory neurons we show that Nav1.2 is expressed in reelin (RLN)-positive/SST-negative inhibitory neurons that are presumably single-bouquet cells because of their cortical layer I-limited distribution, and vasoactive intestinal peptide (VIP)-positive neurons that would be multipolar cell because of their layer I/II margin and layer VI distribution. Although Nav1.2 has previously been reported to be expressed in SST-positive cells, we here show that Nav1.2 is not expressed in either of PV-positive or SST-positive inhibitory neurons. PV-positive and SST-positive inhibitory neurons derive from medial ganglionic eminence (MGE) and innervate excitatory neurons, while VIP-positive and RLN-positive/SST-negative inhibitory neurons derive from CGE, innervate on inhibitory neurons and play disinhibitory roles in the neural network. Our results therefore indicate that, while Nav1.1 is expressed in MEG-derived inhibitory neurons, Nav1.2 is expressed in CGE-derived disinhibitory interneurons in addition to excitatory neurons. These findings should contribute to understanding of the pathology of neurodevelopmental diseases caused by SCN2A mutations.


Subject(s)
Interneurons/metabolism , NAV1.1 Voltage-Gated Sodium Channel/biosynthesis , NAV1.2 Voltage-Gated Sodium Channel/biosynthesis , Animals , Mice , Mice, Inbred C57BL , Mice, Transgenic , Reelin Protein
16.
Genet Med ; 19(2): 144-156, 2017 02.
Article in English | MEDLINE | ID: mdl-27467453

ABSTRACT

PURPOSE: EFHC1 variants are the most common mutations in inherited myoclonic and grand mal clonic-tonic-clonic (CTC) convulsions of juvenile myoclonic epilepsy (JME). We reanalyzed 54 EFHC1 variants associated with epilepsy from 17 cohorts based on National Human Genome Research Institute (NHGRI) and American College of Medical Genetics and Genomics (ACMG) guidelines for interpretation of sequence variants. METHODS: We calculated Bayesian LOD scores for variants in coinheritance, unconditional exact tests and odds ratios (OR) in case-control associations, allele frequencies in genome databases, and predictions for conservation/pathogenicity. We reviewed whether variants damage EFHC1 functions, whether efhc1-/- KO mice recapitulate CTC convulsions and "microdysgenesis" neuropathology, and whether supernumerary synaptic and dendritic phenotypes can be rescued in the fly model when EFHC1 is overexpressed. We rated strengths of evidence and applied ACMG combinatorial criteria for classifying variants. RESULTS: Nine variants were classified as "pathogenic," 14 as "likely pathogenic," 9 as "benign," and 2 as "likely benign." Twenty variants of unknown significance had an insufficient number of ancestry-matched controls, but ORs exceeded 5 when compared with racial/ethnic-matched Exome Aggregation Consortium (ExAC) controls. CONCLUSIONS: NHGRI gene-level evidence and variant-level evidence establish EFHC1 as the first non-ion channel microtubule-associated protein whose mutations disturb R-type VDCC and TRPM2 calcium currents in overgrown synapses and dendrites within abnormally migrated dislocated neurons, thus explaining CTC convulsions and "microdysgenesis" neuropathology of JME.Genet Med 19 2, 144-156.


Subject(s)
Calcium-Binding Proteins/genetics , Myoclonic Epilepsy, Juvenile/genetics , Seizures/genetics , Animals , Dendrites/pathology , Exome , Gene Frequency , Humans , Mice , Mice, Knockout , Mutation , Myoclonic Epilepsy, Juvenile/physiopathology , National Human Genome Research Institute (U.S.) , Neurons/pathology , Pedigree , Polymorphism, Single Nucleotide , Seizures/physiopathology , Synapses/pathology , United States
17.
Dev Psychobiol ; 59(1): 39-47, 2017 01.
Article in English | MEDLINE | ID: mdl-27473368

ABSTRACT

Plasticity of the axon initial segment (AIS) is a newly discovered type of structural plasticity that regulates cell excitability. AIS plasticity has been reported to happen during normal development of neocortex and also in a few pathological conditions involving disruption of the inhibition/excitation balance. Here we report on the impact of early environmental interventions on structural plasticity of AIS in the mouse neocortex. C57BL/6 mice were raised in standard or enriched environment (EE) from birth up to the time of experiments and were injected with saline or MK-801 [N-Methyl-D-Aspartate (NMDA) receptor antagonist, 1 mg/kg] on postnatal days (P) 6-10. We used Ankyrin G immunoreactivity to mark the AIS of cortical neurons in two sub-regions of frontal cortex (frontal association area, FrA and secondary motor cortex, M2) and in the secondary visual cortex (V2). In 1-month-old mice, the mean AIS length differed between three areas, with the shortest AISs being observed in V2. Postnatal MK-801 or EE led to shortening of AIS only in the frontal areas. However, exposure to EE restored AIS shortening induced by MK-801. Chronic postnatal MK-801 results in structural plasticity of AIS exclusive to the frontal cortex. EE may modify underlying neuronal mechanisms resulting in restoration of AIS length.


Subject(s)
Axon Initial Segment/physiology , Dizocilpine Maleate/pharmacology , Environment , Excitatory Amino Acid Antagonists/pharmacology , Neocortex/physiology , Neuronal Plasticity/physiology , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Animals , Axon Initial Segment/drug effects , Dizocilpine Maleate/administration & dosage , Excitatory Amino Acid Antagonists/administration & dosage , Mice , Mice, Inbred C57BL , Neocortex/drug effects , Neuronal Plasticity/drug effects
18.
J Hum Genet ; 61(6): 565-9, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26841829

ABSTRACT

Dravet syndrome (DS) is a severe childhood epilepsy typically caused by de novo dominant mutations in SCN1A. Although patients with DS frequently have neurocognitive abnormalities, the precise neural mechanisms responsible for their expression have not been elucidated. There are wide phenotypic differences among individuals with SCN1A mutations, suggesting that factors other than the SCN1A mutation modify the phenotype. Therefore, a well-controlled cellular model system is required to improve our understanding of the mechanisms underlying DS. Here we generated induced pluripotent stem cell (iPSC) lines from an individual with SCN1A mutation mosaicism, and separately cloned iPSC lines both with and without the SCN1A mutation. These clones theoretically have the same genetic backgrounds, except for the SCN1A gene, and should serve as an ideal pair for investigating the pathophysiology caused by SCN1A mutations. Quantitative reverse transcription-PCR and western blot analysis revealed higher tyrosine hydroxylase mRNA and protein expression levels in mutant neurons than in wild-type neurons. Moreover, dopamine concentrations in media collected from mutant neural cultures were higher than those from wild-type neural cultures. Our findings suggest that SCN1A mutation leads to changes in the dopamine system that may contribute to the behavioral abnormalities in DS.


Subject(s)
Cognitive Dysfunction/genetics , Epilepsies, Myoclonic/diagnosis , Epilepsies, Myoclonic/genetics , Genetic Association Studies , Induced Pluripotent Stem Cells/metabolism , Mosaicism , Mutation , NAV1.1 Voltage-Gated Sodium Channel/genetics , Cell Differentiation , DNA Mutational Analysis , Dopamine/metabolism , Epilepsies, Myoclonic/metabolism , Gene Expression , Humans , Induced Pluripotent Stem Cells/cytology , Karyotype , Male , Neurons/cytology , Neurons/metabolism , Pedigree , Tyrosine 3-Monooxygenase/genetics , Tyrosine 3-Monooxygenase/metabolism
19.
Hum Mol Genet ; 22(23): 4784-804, 2013 Dec 01.
Article in English | MEDLINE | ID: mdl-23922229

ABSTRACT

Dravet syndrome is a severe epileptic encephalopathy mainly caused by heterozygous mutations in the SCN1A gene encoding a voltage-gated sodium channel Nav1.1. We previously reported dense localization of Nav1.1 in parvalbumin (PV)-positive inhibitory interneurons in mice and abnormal firing of those neurons in Nav1.1-deficient mice. In the present study, we investigated the physiologic consequence of selective Nav1.1 deletion in mouse global inhibitory neurons, forebrain excitatory neurons or PV cells, using vesicular GABA transporter (VGAT)-Cre, empty spiracles homolog 1 (Emx1)-Cre or PV-Cre recombinase drivers. We show that selective Nav1.1 deletion using VGAT-Cre causes epileptic seizures and premature death that are unexpectedly more severe than those observed in constitutive Nav1.1-deficient mice. Nav1.1 deletion using Emx1-Cre does not cause any noticeable abnormalities in mice; however, the severe lethality observed with VGAT-Cre-driven Nav1.1 deletion is rescued by additional Nav1.1 deletion using Emx1-Cre. In addition to predominant expression in PV interneurons, we detected Nav1.1 in subpopulations of excitatory neurons, including entorhino-hippocampal projection neurons, a subpopulation of neocortical layer V excitatory neurons, and thalamo-cortical projection neurons. We further show that even minimal selective Nav1.1 deletion, using PV-Cre, is sufficient to cause spontaneous epileptic seizures and ataxia in mice. Overall, our results indicate that functional impairment of PV inhibitory neurons with Nav1.1 haploinsufficiency contributes to the epileptic pathology of Dravet syndrome, and show for the first time that Nav1.1 haploinsufficiency in excitatory neurons has an ameliorating effect on the pathology.


Subject(s)
Epilepsies, Myoclonic/genetics , Epilepsies, Myoclonic/physiopathology , NAV1.1 Voltage-Gated Sodium Channel/physiology , Animals , Death, Sudden , Disease Models, Animal , Haploinsufficiency , Interneurons/metabolism , Interneurons/pathology , Mice , Mutation , NAV1.1 Voltage-Gated Sodium Channel/genetics , Neurons/metabolism , Neurons/pathology , Parvalbumins/metabolism
20.
Hum Mol Genet ; 21(1): 175-84, 2012 Jan 01.
Article in English | MEDLINE | ID: mdl-21965301

ABSTRACT

Lafora progressive myoclonus epilepsy (also known as Lafora disease, LD) is an inherited and fatal form of a neurodegenerative disorder characterized by the presence of carbohydrate-rich inclusions called Lafora bodies. LD can be caused by defects in the laforin phosphatase or the malin ubiquitin ligase and the clinical symptoms resulting from these two defects are almost similar. In order to understand the molecular basis of LD pathogenesis and the role of Lafora bodies in neuropathology, we have studied the laforin-deficient mice as a model and show here that Lafora bodies recruit proteasomal subunit, endoplasmic reticulum chaperone GRP78/Bip, autophagic protein p62 and endosomal regulators Rab5 and Rab7. The laforin-deficient brain also reveals the proliferation of enlarged lysosomes, lipofuscin granules, amyloid-ß peptides and increased levels of insoluble form of ubiquitinated protein, indicating a significant impairment in the cellular degradative pathway. Further, abnormal dendrites and increased gliosis, especially at the vicinity of Lafora bodies, were noted in the LD brain. Taken together, our study suggests that the neuropathology in LD is not limited to Lafora bodies, that some of the neuropathological changes in LD are likely to be secondary effects caused by Lafora bodies, and that impairment in the autophagy-endosomal-lysosomal pathways might underlie some of the symptoms in LD.


Subject(s)
Autophagy , Disease Models, Animal , Endosomes/metabolism , Lafora Disease/metabolism , Lafora Disease/physiopathology , Lysosomes/metabolism , Animals , Dual-Specificity Phosphatases/genetics , Dual-Specificity Phosphatases/metabolism , Endoplasmic Reticulum Chaperone BiP , Endosomes/genetics , Endosomes/pathology , Female , Humans , Inclusion Bodies/metabolism , Lafora Disease/genetics , Lafora Disease/pathology , Lysosomes/genetics , Lysosomes/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Protein Tyrosine Phosphatases, Non-Receptor
SELECTION OF CITATIONS
SEARCH DETAIL