Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Anal Chem ; 82(8): 3315-9, 2010 Apr 15.
Article in English | MEDLINE | ID: mdl-20337430

ABSTRACT

Preparation and analysis of standard VOC (volatile organic compound) gases are needed when developing and evaluating the performance of analytical methods or instruments to detect VOCs. In this study, we designed and developed a simple system for the analysis of VOCs based on their decomposition into CO(2) by a combustion catalyst and their subsequent detection using a solid electrolyte CO(2) sensor. In this sensor, NASICON (Na(3)Si(2)Zr(2)PO(4); Na(+) conductor) and binary carbonate (Li(2)CO(3)-BaCO(3)) were used as the solid electrolyte and the sensing layer, respectively. This developed system proved to be effective in determining the concentrations of standard gases, including VOCs (ethanol, formaldehyde, and toluene), CO, and hydrocarbons in parts per million concentrations (10-500 ppm). The system also could continuously monitor the variations in ethanol vapors prepared by a diffusion method where liquid ethanol was heated at 25 and 50 degrees C. The advantages and limitations of our developed analytical system are also discussed.


Subject(s)
Biosensing Techniques/methods , Carbon Dioxide/chemistry , Electrolytes/chemistry , Gases/chemistry , Volatile Organic Compounds/analysis , Biosensing Techniques/standards , Ethanol/chemistry , Reference Standards , Volatile Organic Compounds/chemistry
2.
ACS Appl Mater Interfaces ; 9(10): 8919-8928, 2017 Mar 15.
Article in English | MEDLINE | ID: mdl-28234460

ABSTRACT

This paper presents a facile hydrolysis reaction and annealing for preparing a novel hierarchical nanoheterostructure via assembly of α-Fe2O3 nanorods onto multiwall carbon nanotubes (MWCNTs) backbones. The as-synthesized nanocomposites were characterized using XRD (X-ray diffraction), FESEM (Field emission scanning electron microscopy), TEM (Transmission electron microscopy), XPS (X-ray photoelectron spectroscopy) and BET (Surface Area and Porosity System). The observations showed uniform α-Fe2O3 nanorods approximately 100-200 nm in length and 50-100 nm in diameter that were hierarchically assembled onto the surface of the MWCNTs. The formation of the heterostructure was investigated by observing the evolution of the microstructure of the products at different reaction times. The X-ray photoelectron spectra (XPS) showed that the ability of the absorbing oxygen was enhanced by the formation of the heterostructure composites. Moreover, as a proof-of-concept presentation, the novel CNTs@α-Fe2O3 hierarchical heterostructure acted as a gas sensitive material. Significantly, the composites exhibited excellent sensing properties for acetone with high sensitivity, exceptional selectivity and good reproducibility. The response of the CNTs@α-Fe2O3 sensor to 100 ppm acetones at 225 °C was nearly 35, which was superior to the single α-Fe2O3 nanorods with a response of 16, and the detection limit of the sensor was 500 ppb. The enhanced properties were mainly attributed to the unique structure and p-n heterojunction between the CNTs and the α-Fe2O3 nanorods.

3.
ACS Appl Mater Interfaces ; 8(10): 6669-77, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26910311

ABSTRACT

CeO2 decorated SnO2 hollow spheres were successfully synthesized via a two-step hydrothermal strategy. The morphology and structures of as-obtained CeO2/SnO2 composites were analyzed by various kinds of techniques. The SnO2 hollow spheres with uniform size around 300 nm were self-assembled with SnO2 nanoparticles and were hollow with a diameter of about 100 nm. The CeO2 nanoparticles on the surface of SnO2 hollow spheres could be clearly observed. X-ray photoelectron spectroscopy results confirmed the existence of Ce(3+) and the increased amount of both chemisorbed oxygen and oxygen vacancy after the CeO2 decorated. Compared with pure SnO2 hollow spheres, such composites revealed excellent enhanced sensing properties to ethanol. When the ethanol concentration was 100 ppm, the sensitivity of the CeO2/SnO2 composites was 37, which was 2.65-times higher than that of the primary SnO2 hollow spheres. The sensing mechanism of the enhanced gas sensing properties was also discussed.

4.
ACS Appl Mater Interfaces ; 6(15): 12031-7, 2014 Aug 13.
Article in English | MEDLINE | ID: mdl-25007348

ABSTRACT

Hierarchical α-Fe2O3/NiO composites with a hollow nanostructure were synthesized by a facile hydrothermal method. The structures and morphologies of the composites were investigated by different kinds of techniques, including X-ray diffraction, field-emission electron scanning microscopy, transmission electron microscopy, and energy dispersive spectroscopy. Hierarchical α-Fe2O3/NiO composites were fabricated by growing the α-Fe2O3 nanorods on the surfaces of porous NiO nanosheets with a thickness of ∼12 nm. The gas sensing properties of hierarchical α-Fe2O3/NiO composites toward toluene were investigated using a static system. The response of α-Fe2O3/NiO composites to 100 ppm toluene was ∼18.68, which was 13.18 times higher than that of pure NiO at 300 °C. The enhanced response can be attributed to heterojunction. Meanwhile, the rapid response and recovery characteristics were observed because of the porous hollow structural characteristics and catalytic actions of α-Fe2O3 and NiO.

SELECTION OF CITATIONS
SEARCH DETAIL