Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 253
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nat Immunol ; 15(9): 846-55, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25086775

ABSTRACT

Alternative (M2) activation of macrophages driven via the α-chain of the receptor for interleukin 4 (IL-4Rα) is important for immunity to parasites, wound healing, the prevention of atherosclerosis and metabolic homeostasis. M2 polarization is dependent on fatty acid oxidation (FAO), but the source of the fatty acids that support this metabolic program has not been clear. We found that the uptake of triacylglycerol substrates via the scavenger receptor CD36 and their subsequent lipolysis by lysosomal acid lipase (LAL) was important for the engagement of elevated oxidative phosphorylation, enhanced spare respiratory capacity (SRC), prolonged survival and expression of genes that together define M2 activation. Inhibition of lipolysis suppressed M2 activation during infection with a parasitic helminth and blocked protective responses to this pathogen. Our findings delineate a critical role for cell-intrinsic lysosomal lipolysis in M2 activation.


Subject(s)
CD36 Antigens/immunology , Fatty Acids/metabolism , Interleukin-4/immunology , Lipolysis/immunology , Lysosomes/immunology , Macrophage Activation/immunology , Macrophages/immunology , Oxidative Phosphorylation , Signal Transduction/immunology , Sterol Esterase/immunology , Animals , Cell Respiration , Helminthiasis, Animal/immunology , Humans , Mice , Oxygen Consumption , Receptors, Interleukin-4/immunology , Transcriptome
2.
Immunity ; 44(2): 303-15, 2016 Feb 16.
Article in English | MEDLINE | ID: mdl-26885857

ABSTRACT

Recruitment of monocytic myeloid-derived suppressor cells (MDSCs) and differentiation of tumor-associated macrophages (TAMs) are the major factors contributing to tumor progression and metastasis. We demonstrated that differentiation of TAMs in tumor site from monocytic precursors was controlled by downregulation of the activity of the transcription factor STAT3. Decreased STAT3 activity was caused by hypoxia and affected all myeloid cells but was not observed in tumor cells. Upregulation of CD45 tyrosine phosphatase activity in MDSCs exposed to hypoxia in tumor site was responsible for downregulation of STAT3. This effect was mediated by the disruption of CD45 protein dimerization regulated by sialic acid. Thus, STAT3 has a unique function in the tumor environment in controlling the differentiation of MDSC into TAM, and its regulatory pathway could be a potential target for therapy.


Subject(s)
Hypoxia/immunology , Leukocyte Common Antigens/metabolism , Macrophages/immunology , Phosphoric Monoester Hydrolases/metabolism , STAT3 Transcription Factor/metabolism , Animals , Cell Differentiation , Cell Movement , Cells, Cultured , Dimerization , Female , Leukocyte Common Antigens/genetics , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Myeloid Cells/immunology , Phosphoric Monoester Hydrolases/genetics , STAT3 Transcription Factor/genetics , Sialic Acids/metabolism , Tumor Microenvironment
3.
Chemistry ; : e202401395, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802980

ABSTRACT

Phase transitions in molecular solids involve synergistic changes in chemical and electronic structures, leading to diversification in physical and chemical properties. Despite the pivotal role of hydrogen bonds (H-bonds) in many phase-transition materials, it is rare and challenging to chemically regulate the dynamics and to elucidate the structure-property relationship. Here, four high-spin CoII com-pounds were isolated and systematically investigated by modifying the ligand terminal groups (X = S, Se) and substituents (Y = Cl, Br). S-Cl and Se-Br undergo a reversible structural phase transition near room temperature, triggering the rotation of 15-crown-5 guests and the swing between syn- and anti-conformation of NCX- ligands, accompanied by switchable magnetism. Conversely, S-Br and Se-Cl retain stability in ordered and disordered phases, respectively. H-bonds geometric analysis and ab initio calculations reveal that the electronegativity of X and Y affects the strength of NY-ap-H···X interactions. Entropy-driven structural phase transitions occur when the H-bond strength is appropriate; otherwise, the phase stays unchanged if it is too strong or weak. This work highlights a phase transition driven by H-bond strength complementarity - pairing strong acceptor with weak donor and vice versa, which offers a straightforward and effective approach for designing phase-transition molecular solids from a chemical perspective.

4.
Biomacromolecules ; 25(3): 1923-1932, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38394470

ABSTRACT

Fatty acid cellulose esters (FACE) are common cellulose-based thermoplastics, and their thermoplasticity is determined by both the contents and the lengths of the side chains. Herein, various FACE were synthesized by the ball-milling esterification of cellulose and fatty acyl chlorides containing 10-18 carbons, and their structures and thermoplasticity were thoroughly studied. The results showed that FACE with high degrees of substitution (DS) and low melting flow temperatures (Tf) were achieved as the chain lengths of the fatty acyl chlorides were reduced. In particular, a cellulose decanoate with a DS of 1.85 and a Tf of 186 °C was achieved by feeding 3 mol of decanoyl chloride per mole anhydroglucose units of cellulose. However, cellulose stearate (DS = 1.53) synthesized by the same protocols cannot melt even at 250 °C. More interestingly, the fatty acyl chlorides with 10 and 12 carbons resulted in FACE with superior toughness (elongation at break up to 94.4%). In contrast, due to their potential crystallization of the fatty acyl groups with 14-18 carbons, the corresponding FACE showed higher tensile strength and Young's modulus than the others. This study provides some theoretical basis for the mechanochemical synthesis of thermoplastic FACE with designated properties.


Subject(s)
Chlorides , Esters , Esters/chemistry , Feasibility Studies , Esterification , Cellulose/chemistry
5.
Nanotechnology ; 35(17)2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38252998

ABSTRACT

Silicon solar cell is the most mature photovoltaic conversion device, and in order to further improve the performance of the device, application of downshifting films has become a research hotspot. In this paper, CsPbBr3perovskite quantum dot/EVA composite adhesive film was prepared by melting method with CsPbBr3perovskite quantum dot film under solution processing as masterbatch and EVA particles as excipient. The effect of synthesis conditions on the luminescence properties of the composite films were thoroughly studied. The optimized CsPbBr3perovskite quantum dot/EVA composite adhesive film has excellent performance, and its light transmission reaches 85%. The CsPbBr3perovskite quantum dot/EVA composite adhesive film absolutely improves the efficiency of silicon solar cells by 1.08%, which is much higher than that of pure EVA adhesive film (0.63%). In addition, the device efficiencies have almost no change after 30 d in the air, maintaining the working stability of the device and contributing to industrial applications. This study provides a novel, industrial and low-cost synthesis route for the synthesis of CsPbBr3perovskite quantum dot/EVA composite adhesive film, which is expected to have broad application.

6.
Molecules ; 29(4)2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38398616

ABSTRACT

Phytopathogenic fungi cause plant diseases and economic losses in agriculture. To efficiently control plant pathogen infections, a total of 19 spirotryprostatin A derivatives and 26 spirooxindole derivatives were designed, synthesized, and tested for their antifungal activity against ten plant pathogens. Additionally, the intermediates of spirooxindole derivatives were investigated, including proposing a mechanism for diastereoselectivity and performing amplification experiments. The bioassay results demonstrated that spirotryprostatin A derivatives possess good and broad-spectrum antifungal activities. Compound 4d exhibited excellent antifungal activity in vitro, equal to or higher than the positive control ketoconazole, against Helminthosporium maydis, Trichothecium roseum, Botrytis cinerea, Colletotrichum gloeosporioides, Fusarium graminearum, Alternaria brassicae, Alternaria alternate, and Fusarium solan (MICs: 8-32 µg/mL). Compound 4k also displayed remarkable antifungal activity against eight other phytopathogenic fungi, including Fusarium oxysporium f. sp. niveum and Mycosphaerella melonis (MICs: 8-32 µg/mL). The preliminary structure-activity relationships (SARs) were further discussed. Moreover, molecular docking studies revealed that spirotryprostatin A derivatives anchored in the binding site of succinate dehydrogenase (SDH). Therefore, these compounds showed potential as natural compound-based chiral fungicides and hold promise as candidates for further enhancements in terms of structure and properties.


Subject(s)
Antifungal Agents , Benzopyrans , Fungicides, Industrial , Nitriles , Oxindoles , Piperazines , Spiro Compounds , Antifungal Agents/chemistry , Molecular Docking Simulation , Structure-Activity Relationship , Fungicides, Industrial/pharmacology
7.
Angew Chem Int Ed Engl ; : e202404271, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38700507

ABSTRACT

Integrating controllable spin states into single-molecule magnets (SMMs) enables precise manipulation of magnetic interactions at a molecular level, but remains a synthetic challenge. Herein, we developed a 3d-4f metallacrown (MC) magnet [DyNi5(quinha)5(Clsal)2(py)8](ClO4) ⋅ 4H2O (H2quinha=quinaldichydroxamic acid, HClsal=5-chlorosalicylaldehyde) wherein a square planar NiII is stabilized by chemical stacking. Thioacetal modification was employed via post-synthetic ligand substitutions and yielded [DyNi5(quinha)5(Clsaldt)2(py)8](ClO4) ⋅ 3H2O (HClsaldt=4-chloro-2-(1,3-dithiolan-2-yl)phenol). Thanks to the additional ligations of thioacetal onto the NiII site, coordination-induced spin state switching (CISSS) took place with spin state altering from low-spin S=0 to high-spin S=1. The synergy of CISSS effect and magnetic interactions results in distinct energy splitting and magnetic dynamics. Magnetic studies indicate prominent enhancement of reversal barrier from 57 cm-1 to 423 cm-1, along with hysteresis opening and an over 200-fold increment in coercive field at 2 K. Ab initio calculations provide deeper insights into the exchange models and rationalize the relaxation/tunnelling pathways. These results demonstrate here provide a fire-new perspective in modulating the magnetization relaxation via the incorporation of controllable spin states and magnetic interactions facilitated by the CISSS approach.

8.
Opt Express ; 31(7): 11142-11155, 2023 Mar 27.
Article in English | MEDLINE | ID: mdl-37155756

ABSTRACT

Single-photon devices such as switches, beam splitters, and circulators are fundamental components to construct photonic integrated quantum networks. In this paper, two V-type three-level atoms coupled to a waveguide are proposed to simultaneously realize these functions as a multifunctional and reconfigurable single-photon device. When both the two atoms are driven by the external coherent fields, the difference in the phases of the coherent driving induces the photonic Aharonov-Bohm effect. Based on the photonic Aharonov-Bohm effect and setting the two-atom distance to match the constructive or destructive interference conditions among photons travelling along different paths, a single-photon switch is achieved since the incident single photon can be controlled from complete transmission to complete reflection by adjusting the amplitudes and phases of the driving fields. When properly changing the amplitudes and phases of the driving fields, the incident photons are split equally into multiple components as a beam splitter operated with different frequencies. Meanwhile, the single-photon circulator with reconfigurable circulation directions can also be obtained.

9.
Nanotechnology ; 35(3)2023 Nov 03.
Article in English | MEDLINE | ID: mdl-37852217

ABSTRACT

Self-powered photodetectors that do not require external power support are expected to play a key role in future photodetectors due to their low power characteristics, but achieving high responsivity remains a challenge. 2D van der Waals heterojunctions are a promising technology for high-performance self-powered photodetectors due to their excellent optical and electrical properties. Here, we fabricate a self-powered photodetector based on In2Se3/WSe2/ReS2van der Waals heterojunction self-powered photodetector. Due to the presence of ReS2layer, photocurrent is enhanced as a result of the increase in light absorption efficiency and the effective region for generating photogenerated carriers. The built-in electric field is enhanced by a negative 'back-gate voltage' along the p-n junction vertical direction generated by the electrons in the photo-generated electrons accumulation layer. Accordingly, the optical responsivity and the photoresponse speed of this heterojunction self-powered photodetector are greatly boosted. The proposed self-powered photodetector based on the In2Se3/WSe2/ReS2heterojunction exhibits a high responsivity of 438 mA W-1, which is 17 times higher compared to the In2Se3/WSe2photodetector, a self-powered current (1.1 nA) that is an order of magnitude higher than that of the In2Se3/WSe2photodetector, and a fast response time that is 250% faster. Thus the self-powered photodetector with a stronger built-in electric field and a wider depletion zone can provide a new technological support for the fabrication of high responsivity, low power consumption and high speed self-powered photodetectors based on van der Waals heterojunctions.

10.
J Immunol ; 206(9): 2088-2100, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33879580

ABSTRACT

Preserving appropriate function and metabolism in regulatory T (Treg) cells is crucial for controlling immune tolerance and inflammatory responses. Yet how Treg cells coordinate cellular metabolic programs to support their functional specification remains elusive. In this study, we report that BATF couples the TH2-suppressive function and triglyceride (TG) metabolism in Treg cells for controlling allergic airway inflammation and IgE responses. Mice with Treg-specific ablation of BATF developed an inflammatory disorder characterized by TH2-type dominant responses and were predisposed to house dust mite-induced airway inflammation. Loss of BATF enabled Treg cells to acquire TH2 cell-like characteristics. Moreover, BATF-deficient Treg cells displayed elevated levels of cellular TGs, and repressing or elevating TGs, respectively, restored or exacerbated their defects. Mechanistically, TCR/CD28 costimulation enhanced expression and function of BATF, which sustained IRF4 activity to preserve Treg cell functionality. Thus, our studies reveal that BATF links Treg cell functional specification and fitness of cellular TGs to control allergic responses, and suggest that therapeutic targeting of TG metabolism could be used for the treatment of allergic disease.


Subject(s)
Hypersensitivity , T-Lymphocytes, Regulatory , Animals , Basic-Leucine Zipper Transcription Factors/genetics , Mice , Mice, Knockout , Pyroglyphidae , Triglycerides
11.
BMC Oral Health ; 23(1): 724, 2023 10 07.
Article in English | MEDLINE | ID: mdl-37803318

ABSTRACT

PURPOSE: This study aimed to investigate the relevance of cerebral endothelial cell adhesion molecule (CERCAM) expression to head and neck squamous cell carcinoma (HNSCC) prognosis and immune infiltration by macrophage M2 polarization. METHODS: Timer, UALCAN and HPA databases was used to analyze the differences in mRNA and protein levels of CERCAM expression in HNSCC. The Timer database was also applied to analyze the correlation between CERCAM in HNSCC and immune infiltration. TCGA-HNSCC database was applied to analyze the correlation between CERCAM expression levels and clinicopathological features, and its diagnostic and prognostic value in HNSCC was also assessed. The cBioPortal and MethSurv databases were then applied to analyze the genetic variation and methylation status of CERCAM. In vitro cellular assays were performed to provide evidence that CERCAM promotes malignant biological behavior of tumors and promotes macrophage M2 polarization in tumors. Finally, underlying pathophysiological mechanisms of CERCAM involvement in the development of HNSCC were predicted using a bioinformatics approach. RESULTS: CERCAM is significantly overexpressed in HNSCC and correlates with poor prognostic levels and has good performance in predicting survival status in HNSCC patients. Cox regression analysis indicates that CERCAM expression levels are independent risk factors for predicting OS, DSS, and PFI. CERCAM promotes tumor malignant biological behavior and promotes macrophage M2 polarization immune infiltration in HNSCC. In addition, CERCAM promotes tumor cell adhesion in head and neck squamous carcinoma and promotes tumor progression through several oncogenic signaling pathways. CONCLUSION: CERCAM may serve as a new diagnostic and prognostic biomarker in HNSCC and is a promising therapeutic target for HNSCC.


Subject(s)
Head and Neck Neoplasms , Humans , Squamous Cell Carcinoma of Head and Neck , Prognosis , Head and Neck Neoplasms/genetics , Macrophages , Biomarkers
12.
Angew Chem Int Ed Engl ; 62(46): e202312685, 2023 Nov 13.
Article in English | MEDLINE | ID: mdl-37779343

ABSTRACT

Spin crossover (SCO) materials with new architectures will expand and enrich the research in the SCO field. Here, we report two metal-organic frameworks (MOFs) containing tetradentate organic ligands and hexatopic linkers [Ag8 X8 (CN)6 ]6- (X=Br and I), which represents the first SCO MOF with clusters as building blocks. The silver halide cluster can be further removed after reacting with lithium tetracyanoquinodimethan (LiTCNQ). Such post-synthetic modification (PSM) is realized via single-crystal to single-crystal (SCSC) transformation from urk to nbo topology. Accordingly, the spin state and fluorescence properties are greatly modified by cluster deconstruction. Therefore, these achievements will provide new ideas for the design of new SCO systems and the development of PSM methods.

13.
Am J Pathol ; 191(2): 353-367, 2021 02.
Article in English | MEDLINE | ID: mdl-33159889

ABSTRACT

Utilization of proper preclinical models accelerates development of immunotherapeutics and the study of the interplay between human malignant cells and immune cells. Lysosomal acid lipase (LAL) is a critical lipid hydrolase that generates free fatty acids and cholesterol. Ablation of LAL suppresses immune rejection and allows growth of human lung cancer cells in lal-/- mice. In the lal-/- lymph nodes, the percentages of both T- and B-regulatory cells (Tregs and Bregs, respectively) are increased, with elevated expression of programmed death-ligand 1 and IL-10, and decreased expression of interferon-γ. Levels of enzymes in the glucose and glutamine metabolic pathways are elevated in Tregs and Bregs of the lal-/- lymph nodes. Pharmacologic inhibitor of pyruvate dehydrogenase, which controls the transition from glycolysis to the citric acid cycle, effectively reduces Treg and Breg elevation in the lal-/- lymph nodes. Blocking the mammalian target of rapamycin or reactivating peroxisome proliferator-activated receptor γ, an LAL downstream effector, reduces lal-/- Treg and Breg elevation and PD-L1 expression in lal-/- Tregs and Bregs, and improves human cancer cell rejection. Treatment with PD-L1 antibody also reduces Treg and Breg elevation in the lal-/- lymph nodes and improves human cancer cell rejection. These observations conclude that LAL-regulated lipid metabolism is essential to maintain antitumor immunity.


Subject(s)
B-Lymphocytes, Regulatory/immunology , Neoplasms, Experimental/immunology , Sterol Esterase/deficiency , T-Lymphocytes, Regulatory/immunology , Tumor Escape/immunology , Animals , Disease Models, Animal , Heterografts , Homeostasis/immunology , Humans , Lymph Nodes/immunology , Mice , Mice, Knockout , Neoplasm Transplantation , Sterol Esterase/immunology
14.
Inorg Chem ; 61(24): 9047-9054, 2022 Jun 20.
Article in English | MEDLINE | ID: mdl-35678748

ABSTRACT

Linkage isomers involving changes in the bonding mode of ambidentate ligands have potential applications in data storage, molecular machines, and motors. However, the observation of the cyanide-linkage-isomerism-induced spin change (CLIISC) effect characterized by single-crystal X-ray diffraction remains a considerable challenge. Meanwhile, the high-spin and low-spin states can be reversibly switched in spin-crossover (SCO) compounds, which provide the potential for applications to data storage, switches, and sensors. Here, a new perovskite-type SCO framework (PPN)[Fe{Ag(CN)2}3] (PPN+ = bis(trisphenylphosphine)iminium cation) is synthesized, which displays the unprecedented aging and temperature dependences of hysteretic multistep SCO behaviors near room temperature. Moreover, the thermal-induced cyanide linkage isomerization from FeII-N≡C-AgI to FeII-C≡N-AgI is revealed by single-crystal X-ray diffraction, Raman, and Mössbauer spectra, which is associated with a transition from the mixed spin state to the low-spin state and a dramatic volume shrinkage. Considering the wide use of cyanogen in magnetic systems, the association of CLIISC and SCO opens a new dimension to modulate the spin state and realize a colossal negative thermal expansion.

15.
Oral Dis ; 28(6): 1468-1483, 2022 Sep.
Article in English | MEDLINE | ID: mdl-34048116

ABSTRACT

OBJECTIVES: To estimate the prevalence of extra-glandular lesions in patients with immunoglobulin G4-related sialadenitis (IgG4-RS). METHODS: Six electronic databases (PubMed, EMBASE, Science Direct, Scopus, Web of Science, and China National Knowledge Infrastructure) were systematically searched from the date of inception of each database to March 2021. The Strengthening the Reporting of Observational Studies in Epidemiology statement was used to conduct methodological quality assessment, and a random-effect meta-analysis model was applied to estimate the prevalence. Publication bias was visually assessed using a funnel plot and calculated via Begg's and Egger's tests. The Stata 15 software was used to perform data analysis. RESULTS: A total of 43 articles comprising 1,864 patients with IgG4-RS were considered to be eligible for this study. The pooled prevalence of extra-salivary gland lesions in IgG4-RS was 76.53% with a confidence interval (CI) of (69.39%, 83.04%). A higher prevalence was associated with studies published before or during 2015 (84.38%, CI [74.23%, 92.58%]) than those published after 2015 (68.55%, CI [58.44%, 77.88%]). Lacrimal gland involvement (54.68%, CI [45.61%, 63.60%]) and lymph node swelling (56.96%, CI [48.16%, 65.56%]) were the most frequent lesions. CONCLUSIONS: Extra-glandular lesions were common in patients with IgG4-RS. More high-quality prospective studies with less heterogeneity are required to determine the accurate prevalence.


Subject(s)
Sialadenitis , Humans , Immunoglobulin G , Prevalence , Prospective Studies , Salivary Glands/pathology , Sialadenitis/epidemiology , Sialadenitis/pathology
16.
Sensors (Basel) ; 22(17)2022 Aug 30.
Article in English | MEDLINE | ID: mdl-36080992

ABSTRACT

In real industrial scenarios, intelligent fault diagnosis based on data-driven methods has been widely researched in the past decade. However, data scarcity is widespread in fault diagnosis tasks owning to the difficulties in collecting adequate data. As a result, there is an increasing demand for both researchers and engineers for fault identification with scarce data. To address this issue, an innovative domain-adaptive prototype-recalibrated network (DAPRN) based on a transductive learning paradigm and prototype recalibration strategy (PRS) is proposed, which has the potential to promote the generalization ability from the source domain to target domain in a few-shot fault diagnosis. Within this scheme, the DAPRN is composed of a feature extractor, a domain discriminator, and a label predictor. Concretely, the feature extractor is jointly optimized by the minimization of few-shot classification loss and the maximization of domain-discriminative loss. The cosine similarity-based label predictor, which is promoted by the PRS, is exploited to avoid the bias of naïve prototypes in the metric space and recognize the health conditions of machinery in the meta-testing process. The efficacy and advantage of DAPRN are validated by extensive experiments on bearing and gearbox datasets compared with seven popular and well-established few-shot fault diagnosis methods. In practical application, the proposed DAPRN is expected to solve more challenging few-shot fault diagnosis scenarios and facilitate practical fault identification problems in modern manufacturing.


Subject(s)
Learning , Machine Learning , Intelligence
17.
Zhongguo Yi Liao Qi Xie Za Zhi ; 46(6): 634-637, 2022 Nov 30.
Article in Zh | MEDLINE | ID: mdl-36597390

ABSTRACT

OBJECTIVE: To design a sitting walking aid with intelligent shock absorption, high safety, alarm and heart rate monitoring device. METHODS: Aluminum alloy bracket is used as the main body of the walker. U-shaped soft arm bracket and L-shaped handle are arranged at the top, and universal wheel and anti-slip floor mat are arranged at the bottom. The shock-absorbing seat is connected to the geared motor through a hydraulic rod, and the seat is equipped with GPS, alarm device and heart rate monitoring device, and the finite element software Abaqus 2021 is used to analyze the force of the shock absorbing seat. RESULTS: The main body of the walker is light and easy to carry, with strong bearing capacity. The U-shaped soft arm rest and L-shaped handle can increase the sense of user experience. The combination of universal wheel and anti-slip floor mat can make the user safe and labor-saving. When the user wants to sit down and rest, the switch can be adjusted to drive the shock absorbing seat to turn over and support the elderly to sit down slowly through the deceleration motor, so as to realize the safe and independent rest, and the shock absorbing seat can withstand the corresponding stress. CONCLUSIONS: The intelligent shock-absorbing sitting and standing walker saves manpower, is safe and reliable, and meets market demand and user needs.


Subject(s)
Mechanical Phenomena , Sitting Position , Humans , Aged , Standing Position
18.
Breast Cancer Res ; 23(1): 39, 2021 03 24.
Article in English | MEDLINE | ID: mdl-33761981

ABSTRACT

BACKGROUND: Transforming growth factor beta1 (TGFB1) is a multi-functional cytokine that regulates mammary gland development and cancer progression through endocrine, paracrine and autocrine mechanisms. TGFB1 also plays roles in tumour development and progression, and its increased expression is associated with an increased breast cancer risk. Macrophages are key target cells for TGFB1 action, also playing crucial roles in tumourigenesis. However, the precise role of TGFB-regulated macrophages in the mammary gland is unclear. This study investigated the effect of attenuated TGFB signalling in macrophages on mammary gland development and mammary cancer susceptibility in mice. METHODS: A transgenic mouse model was generated, wherein a dominant negative TGFB receptor is activated in macrophages, in turn attenuating the TGFB signalling pathway specifically in the macrophage population. The mammary glands were assessed for morphological changes through wholemount and H&E analysis, and the abundance and phenotype of macrophages were analysed through immunohistochemistry. Another cohort of mice received carcinogen 7,12-dimethylbenz(a)anthracene (DMBA), and tumour development was monitored weekly. Human non-neoplastic breast tissue was also immunohistochemically assessed for latent TGFB1 and macrophage marker CD68. RESULTS: Attenuation of TGFB signalling resulted in an increase in the percentage of alveolar epithelium in the mammary gland at dioestrus and an increase in macrophage abundance. The phenotype of macrophages was also altered, with inflammatory macrophage markers iNOS and CCR7 increased by 110% and 40%, respectively. A significant decrease in DMBA-induced mammary tumour incidence and prolonged tumour-free survival in mice with attenuated TGFB signalling were observed. In human non-neoplastic breast tissue, there was a significant inverse relationship between latent TGFB1 protein and CD68-positive macrophages. CONCLUSIONS: TGFB acts on macrophage populations in the mammary gland to reduce their abundance and dampen the inflammatory phenotype. TGFB signalling in macrophages increases mammary cancer susceptibility potentially through suppression of immune surveillance activities of macrophages.


Subject(s)
Macrophages/metabolism , Mammary Neoplasms, Experimental/metabolism , Signal Transduction , Transforming Growth Factor beta1/metabolism , 9,10-Dimethyl-1,2-benzanthracene/adverse effects , Animals , Disease Susceptibility , Disease-Free Survival , Epithelial Cells/metabolism , Estrous Cycle , Female , Humans , Inflammation , Mammary Glands, Animal/growth & development , Mammary Glands, Animal/metabolism , Mammary Glands, Animal/pathology , Mammary Glands, Human/growth & development , Mammary Glands, Human/metabolism , Mammary Glands, Human/pathology , Mammary Neoplasms, Experimental/chemically induced , Mammary Neoplasms, Experimental/pathology , Mice , Mice, Transgenic , Receptor, Transforming Growth Factor-beta Type I/genetics , Receptor, Transforming Growth Factor-beta Type I/metabolism , Smad2 Protein/metabolism
19.
Hippocampus ; 31(9): 935-956, 2021 09.
Article in English | MEDLINE | ID: mdl-33960056

ABSTRACT

Neuron-restrictive silencing factor (NRSF) is a zinc-finger transcription factor that regulates expression of a diverse set of genes. However, NRSF function in brain development still remains elusive. In the present study, we generated NRSF-conditional knockout (NRSF-cKO) mice by hGFAP-Cre/loxp system to study the effect of NRSF deficiency on brain development. Results showed that NRSF conditional knockout caused a smaller hippocampus and a thinner granule cell layer (GCL) in mice. Moreover, the reduction and disarrangement of GFAP+ cells in subgranular zone (SGZ) of NRSF-cKO mice was accompanied with the decreased number of premature neurons, neural stem cells (NSCs) and neural progenitor cells (NPCs), as well as compromising the majority of mitotically active cells. The analysis of postnatal development of hippocampus indicated the existence of an abnormality at postnatal day (P) 8, rather than at P1, in NRSF-cKO mice, although the densities of Ki67+ cells with mitotic ability in dentate gyrus were relatively unaffected at P1 and P8. Meanwhile, NRSF deficiency led to abnormal organization of SGZ at P8 during postnatal development. RNA-Seq analysis revealed 79 deregulated genes in hippocampus of NRSF-cKO mice at P8, which were involved in p53 signal transduction, neuron migration and negative regulation of cell proliferation, etc. The deregulation of p53 pathway in NRSF-cKO mice at P1 and P8 was evidenced, of which p21/Cdkn1a was accumulated in a portion of NSCs and NPCs in hippocampus during postnatal development. Together, these results, for the first time, revealed that NRSF could significantly influence the postnatal development of hippocampus, especially the formation of SGZ.


Subject(s)
Neural Stem Cells , Neurons , Animals , Dentate Gyrus , Hippocampus , Mice , Neural Stem Cells/physiology , Neurogenesis/physiology , Neurons/physiology
20.
J Immunol ; 202(3): 991-1002, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30567728

ABSTRACT

Early detection of lung cancer offers an important opportunity to decrease mortality while it is still treatable and curable. Thirteen secretory proteins that are Stat3 downstream gene products were identified as a panel of biomarkers for lung cancer detection in human sera. This panel of biomarkers potentially differentiates different types of lung cancer for classification. Among them, the transthyretin (TTR) concentration was highly increased in human serum of lung cancer patients. TTR concentration was also induced in the serum, bronchoalveolar lavage fluid, alveolar type II epithelial cells, and alveolar myeloid cells of the CCSP-rtTA/(tetO)7-Stat3C lung tumor mouse model. Recombinant TTR stimulated lung tumor cell proliferation and growth, which were mediated by activation of mitogenic and oncogenic molecules. TTR possesses cytokine functions to stimulate myeloid cell differentiation, which are known to play roles in tumor environment. Further analyses showed that TTR treatment enhanced the reactive oxygen species production in myeloid cells and enabled them to become functional myeloid-derived suppressive cells. TTR demonstrated a great influence on a wide spectrum of endothelial cell functions to control tumor and immune cell migration and infiltration. TTR-treated endothelial cells suppressed T cell proliferation. Taken together, these 13 Stat3 downstream inducible secretory protein biomarkers potentially can be used for lung cancer diagnosis, classification, and as clinical targets for lung cancer personalized treatment if their expression levels are increased in a given lung cancer patient in the blood.


Subject(s)
Endothelial Cells/immunology , Gene Expression Regulation, Neoplastic , Lung Neoplasms/immunology , Prealbumin/immunology , Alveolar Epithelial Cells/immunology , Animals , Biomarkers, Tumor/blood , Bronchoalveolar Lavage Fluid/chemistry , Cell Movement , Cell Proliferation , Disease Models, Animal , Humans , Lung Neoplasms/classification , Melanoma, Experimental , Mice , Mice, Inbred C57BL , Mice, Transgenic , Myeloid Cells/immunology , Neoplasms, Experimental/immunology , Prealbumin/pharmacology , Recombinant Proteins/pharmacology , STAT3 Transcription Factor/genetics
SELECTION OF CITATIONS
SEARCH DETAIL