Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 92
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nucleic Acids Res ; 52(D1): D835-D849, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-37889051

ABSTRACT

The high cost of large-scale, high-coverage whole-genome sequencing has limited its application in genomics and genetics research. The common approach has been to impute whole-genome sequence variants obtained from a few individuals for a larger population of interest individually genotyped using SNP chip. An alternative involves low-coverage whole-genome sequencing (lcWGS) of all individuals in the larger population, followed by imputation to sequence resolution. To overcome limitations of processing lcWGS data and meeting specific genotype imputation requirements, we developed AGIDB (https://agidb.pro), a website comprising tools and database with an unprecedented sample size and comprehensive variant decoding for animals. AGIDB integrates whole-genome sequencing and chip data from 17 360 and 174 945 individuals, respectively, across 89 species to identify over one billion variants, totaling a massive 688.57 TB of processed data. AGIDB focuses on integrating multiple genotype imputation scenarios. It also provides user-friendly searching and data analysis modules that enable comprehensive annotation of genetic variants for specific populations. To meet a wide range of research requirements, AGIDB offers downloadable reference panels for each species in addition to its extensive dataset, variant decoding and utility tools. We hope that AGIDB will become a key foundational resource in genetics and breeding, providing robust support to researchers.


Subject(s)
Databases, Genetic , Genomics , Polymorphism, Single Nucleotide , Animals , Humans , Genome , Genome-Wide Association Study , Genotype , Sequence Analysis , Internet Use
2.
Plant Physiol ; 194(2): 684-697, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-37850874

ABSTRACT

The molecular mechanisms controlling organ size during plant development ultimately influence crop yield. However, a deep understanding of these mechanisms is still lacking. UBIQUITIN-SPECIFIC PROTEASE14 (UBP14), encoded by DA3, is an essential factor determining organ size in Arabidopsis (Arabidopsis thaliana). Here, we identified two suppressors of the da3-1 mutant phenotype, namely SUPPRESSOR OF da3-1 1 and 2 (SUD1 and SUD2), which encode the E3 ligases MOS4-ASSOCIATED COMPLEX 3A (MAC3A) and MAC3B, respectively. The mac3a-1 and mac3b-1 mutations partially suppressed the high ploidy level and organ size phenotypes observed in the da3-1 mutant. Biochemical analysis showed that MAC3A and MAC3B physically interacted with and ubiquitinated UBP14/DA3 to modulate its stability. We previously reported that UBP14/DA3 acts upstream of the B-type cyclin-dependent kinase CDKB1;1 and maintains its stability to inhibit endoreduplication and cell growth. In this work, MAC3A and MAC3B were found to promote the degradation of CDKB1;1 by ubiquitinating UBP14/DA3. Genetic analysis suggests that MAC3A and MAC3B act in a common pathway with UBP14/DA3 to control endoreduplication and organ size. Thus, our findings define a regulatory module, MAC3A/MAC3B-UBP14-CDKB1;1, that plays a critical role in determining organ size and endoreduplication in Arabidopsis.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Ligases/metabolism , Organ Size , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
3.
Nucleic Acids Res ; 51(2): 619-630, 2023 01 25.
Article in English | MEDLINE | ID: mdl-36546827

ABSTRACT

Jasmonic acid (JA) signaling plays a pivotal role in plant development and defense. MYC2 is a master transcription factor in JA signaling, and was found to be phosphorylated and negatively regulated by MAP kinase and receptor-like kinase. However, the kinases that positively regulate MYC2 through phosphorylation and promote MYC2-mediated activation of JA response have not been identified. Here, we identified CK2 as a kinase that phosphorylates MYC2 and thus regulates the JA signaling. CK2 holoenzyme can interact with MYC2 using its regulatory subunits and phosphorylate MYC2 at multiple sites with its catalytic subunits. Inhibition of CK2 activity in a dominant-negative plant line, CK2mut, repressed JA response. On the other hand, increasing CK2 activity by overexpression of CKB4, a regulatory subunit gene of CK2, enhanced JA response in a MYC2-dependent manner. Substitution of the Ser and Thr residues at phosphorylation sites of MYC2 by CK2 with Ala impaired MYC2 function in activating JA response. Further investigations evidenced that CK2 facilitated the JA-induced increase of MYC2 binding to the promoters of JA-responsive genes in vivo. Our study demonstrated that CK2 plays a positive role in JA signaling, and reveals a previously undiscovered mechanism that regulates MYC2 function.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors , Casein Kinase II , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Cyclopentanes/metabolism , Gene Expression Regulation, Plant , Phosphotransferases/genetics , Casein Kinase II/metabolism
4.
BMC Genomics ; 25(1): 582, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38858624

ABSTRACT

BACKGROUND: Carcass traits are essential economic traits in the commercial pig industry. However, the genetic mechanism of carcass traits is still unclear. In this study, we performed a genome-wide association study (GWAS) based on the specific-locus amplified fragment sequencing (SLAF-seq) to study seven carcass traits on 223 four-way intercross pigs, including dressing percentage (DP), number of ribs (RIB), skin thinkness (ST), carcass straight length (CSL), carcass diagonal length (CDL), loin eye width (LEW), and loin eye thickness (LET). RESULTS: A total of 227,921 high-quality single nucleotide polymorphisms (SNPs) were detected to perform GWAS. A total of 30 SNPs were identified for seven carcass traits using the mixed linear model (MLM) (p < 1.0 × 10- 5), of which 9 SNPs were located in previously reported quantitative trait loci (QTL) regions. The phenotypic variation explained (PVE) by the significant SNPs was from 2.43 to 16.32%. Furthermore, 11 candidate genes (LYPLAL1, EPC1, MATN2, ZFAT, ZBTB10, ZNF704, INHBA, SMYD3, PAK1, SPTBN2, and ACTN3) were found for carcass traits in pigs. CONCLUSIONS: The GWAS results will improve our understanding of the genetic basis of carcass traits. We hypothesized that the candidate genes associated with these discovered SNPs would offer a biological basis for enhancing the carcass quality of pigs in swine breeding.


Subject(s)
Genome-Wide Association Study , Phenotype , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Animals , Swine/genetics , Crosses, Genetic , Meat
5.
New Phytol ; 242(1): 154-169, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38375601

ABSTRACT

Phloem sieve elements (PSE), the primary conduits collaborating with neighboring phloem pole pericycle (PPP) cells to facilitate unloading in Arabidopsis roots, undergo a series of developmental stages before achieving maturation and functionality. However, the mechanism that maintains the proper progression of these differentiation stages remains largely unknown. We identified a gain-of-function mutant altered phloem pole pericycle 1 Dominant (app1D), producing a truncated, nuclear-localized active form of NAC with Transmembrane Motif 1-like (NTL9). This mutation leads to ectopic expression of its downstream target CALLOSE SYNTHASE 8 (CalS8), thereby inducing callose accumulation, impeding SE differentiation, impairing phloem transport, and inhibiting root growth. The app1D phenotype could be reproduced by blocking the symplastic channels of cells within APP1 expression domain in wild-type (WT) roots. The WT APP1 is primarily membrane-tethered and dormant in the root meristem cells but entries into the nucleus in several cells in PPP near the unloading region, and this import is inhibited by blocking the symplastic intercellular transport in differentiating SE. Our results suggest a potential maintenance mechanism involving an APP1-CalS8 module, which induces CalS8 expression and modulates symplastic communication, and the proper activation of this module is crucial for the successful differentiation of SE in the Arabidopsis root.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Glucans , Glucosyltransferases , Arabidopsis/metabolism , Phloem/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism
6.
Genet Sel Evol ; 56(1): 24, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38566006

ABSTRACT

BACKGROUND: Gene flow is crucial for enhancing economic traits of livestock. In China, breeders have used hybridization strategies for decades to improve livestock performance. Here, we performed whole-genome sequencing of a native Chinese Lijiang pig (LJP) breed. By integrating previously published data, we explored the genetic structure and introgression of genetic components from commercial European pigs (EP) into the LJP, and examined the impact of this introgression on phenotypic traits. RESULTS: Our analysis revealed significant introgression of EP breeds into the LJP and other domestic pig breeds in China. Using a haplotype-based approach, we quantified introgression levels and compared EP to LJP and other Chinese domestic pigs. The results show that EP introgression is widely prevalent in Chinese domestic pigs, although there are significant differences between breeds. We propose that LJP could potentially act as a mediator for the transmission of EP haplotypes. We also examined the correlation between EP introgression and the number of thoracic vertebrae in LJP and identified VRTN and STUM as candidate genes for this trait. CONCLUSIONS: Our study provides evidence of introgressed European haplotypes in the LJP breed and describes the potential role of EP introgression on phenotypic changes of this indigenous breed.


Subject(s)
Genetic Introgression , Sus scrofa , Swine/genetics , Animals , Sus scrofa/genetics , Phenotype , Haplotypes , Hybridization, Genetic
7.
J Exp Bot ; 74(15): 4449-4460, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37103989

ABSTRACT

The four-celled stomatal complex consists of a pair of guard cells (GCs) and two subsidiary cells (SCs) in grasses, which supports a fast adjustment of stomatal aperture. The formation and development of SCs are thus important for stomatal functionality. Here, we report a maize lost subsidiary cells (lsc) mutant, with many stomata lacking one or two SCs. The loss of SCs is supposed to have resulted from impeded subsidiary mother cell (SMC) polarization and asymmetrical division. Besides the defect in SCs, the lsc mutant also displays a dwarf morphology and pale and striped newly-grown leaves. LSC encodes a large subunit of ribonucleotide reductase (RNR), an enzyme involved in deoxyribonucleotides (dNTPs) synthesis. Consistently, the concentration of dNTPs and expression of genes involved in DNA replication, cell cycle progression, and SC development were significantly reduced in the lsc mutant compared with the wild-type B73 inbred line. Conversely, overexpression of maize LSC increased dNTP synthesis and promoted plant growth in both maize and Arabidopsis. Our data indicate that LSC regulates dNTP production and is required for SMC polarization, SC differentiation, and growth of maize.


Subject(s)
Arabidopsis , Ribonucleotide Reductases , Zea mays/metabolism , Ribonucleotide Reductases/genetics , Ribonucleotide Reductases/metabolism , Plant Stomata/physiology , Poaceae , Cell Differentiation , Arabidopsis/genetics
8.
Org Biomol Chem ; 21(14): 3014-3019, 2023 04 05.
Article in English | MEDLINE | ID: mdl-36942670

ABSTRACT

The plant hormone (S)-abscisic acid (ABA) is a signalling molecule found in all plants that triggers plants' responses to environmental stressors such as heat, drought, and salinity. Metabolism-resistant ABA analogs that confer longer lasting effects require multi-step syntheses and high costs that prevent their application in crop protection. To solve this issue, we have developed a two-step, efficient and scalable synthesis of (+)-tetralone ABA from (S)-ABA methyl ester. A challenging three-carbon insertion and a bicyclic ring formation on (S)-ABA methyl ester was achieved through a highly regioselective Knoevenagel condensation, cyclization, and oxidation in one-pot. Further we have studied the biological activity and metabolism of (+)-tetralone ABA in planta and found the analog is hydroxylated similarly to ABA. The biologically active hydroxylated tetralone ABA has greater persistence than 8'-hydroxy ABA as cyclization to the equivalent of phaseic acid is prevented by the aromatic ring. (+)-tetralone ABA complemented the growth retardation of an Arabidopsis ABA-deficient mutant more effectively than (+)-ABA. Taken together, this new synthesis allows the production of the potent ABA agonist efficiently on an industrial scale.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Tetralones , Abscisic Acid/pharmacology , Plant Growth Regulators/pharmacology , Plant Growth Regulators/metabolism , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism
9.
Phys Chem Chem Phys ; 25(34): 23306-23313, 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37609832

ABSTRACT

Photocatalytic conversion of carbon dioxide into fuels provides an effective approach to realize carbon resource utilization. However, the photocatalytic efficiency is still relatively low due to the recombination of photogenerated charges. Herein, we have designed Cu-doped SnO2 nanoparticles (Cu-SnO2) using a glucose-involved hydrothermal crystallization method for the photocatalytic reduction of CO2. The rich oxygen vacancies facilitated the separation and transfer of photogenerated charges, and the confined effect of the typical mesoporous structure promoted the adsorption of CO2, especially a high density of grain boundaries (GBs) and the doping of atomic Cu would introduce new active sites to activate CO2 molecules. This elaborately designed catalyst exhibited super and stable photocatalytic conversion activity of CO2-into-CO, with a CO optimal yield of 107 µmol g-1 in 4 h, which was 2.75 times that over pure SnO2. In situ Raman results indicated that the CO2 reduction reaction followed a *COOH pathway on Cu-SnO2. This work provides implications for the construction of a catalyst with rich defects in the field of energy and environmental catalysis.

10.
Int J Mol Sci ; 24(3)2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36768915

ABSTRACT

Stomata are microscopic pores on the plant epidermis that serve as a major passage for the gas and water exchange between a plant and the atmosphere. The formation of stomata requires a series of cell division and cell-fate transitions and some key regulators including transcription factors and peptides. Monocots have different stomatal patterning and a specific subsidiary cell formation process compared with dicots. Cell-to-cell symplastic trafficking mediated by plasmodesmata (PD) allows molecules including proteins, RNAs and hormones to function in neighboring cells by moving through the channels. During stomatal developmental process, the intercellular communication between stomata complex and adjacent epidermal cells are finely controlled at different stages. Thus, the stomata cells are isolated or connected with others to facilitate their formation or movement. In the review, we summarize the main regulation mechanism underlying stomata development in both dicots and monocots and especially the specific regulation of subsidiary cell formation in monocots. We aim to highlight the important role of symplastic connection modulation during stomata development, including the status of PD presence at different cell-cell interfaces and the function of relevant mobile factors in both dicots and monocots.


Subject(s)
Cell Communication , Plant Stomata , Plant Stomata/metabolism , Intercellular Junctions , Plant Epidermis , Plants
11.
BMC Genomics ; 23(1): 594, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35971078

ABSTRACT

BACKGROUND: Carcass backfat thickness (BFT), carcass lean percentage (CLP) and carcass fat percentage (CFP) are important to the commercial pig industry. Nevertheless, the genetic architecture of BFT, CLP and CFP is still elusive. Here, we performed a genome-wide association study (GWAS) based on specific-locus amplified fragment sequencing (SLAF-seq) to analyze seven fatness-related traits, including five BFTs, CLP, and CFP on 223 four-way crossbred pigs. RESULTS: A total of 227, 921 highly consistent single nucleotide polymorphisms (SNPs) evenly distributed throughout the genome were used to perform GWAS. Using the mixed linear model (MLM), a total of 20 SNP loci significantly related to these traits were identified on ten Sus scrofa chromosomes (SSC), of which 10 SNPs were located in previously reported quantitative trait loci (QTL) regions. On SSC7, two SNPs (SSC7:29,503,670 and rs1112937671) for average backfat thickness (ABFT) exceeded 1% and 10% Bonferroni genome-wide significance levels, respectively. These two SNP loci were located within an intron region of the COL21A1 gene, which was a protein-coding gene that played an important role in the porcine backfat deposition by affecting extracellular matrix (ECM) remodeling. In addition, based on the other three significant SNPs on SSC7, five candidate genes, ZNF184, ZNF391, HMGA1, GRM4 and NUDT3 were proposed to influence BFT. On SSC9, two SNPs for backfat thickness at 6-7 ribs (67RBFT) and one SNP for CLP were in the same locus region (19 kb interval). These three SNPs were located in the PGM2L1 gene, which encoded a protein that played an indispensable role in glycogen metabolism, glycolysis and gluconeogenesis as a key enzyme. Finally, one significant SNP on SSC14 for CLP was located within the PLBD2 gene, which participated in the lipid catabolic process. CONCLUSIONS: A total of two regions on SSC7 and SSC9 and eight potential candidate genes were found for fatness-related traits in pigs. The results of this GWAS based on SLAF-seq will greatly advance our understanding of the genetic architecture of BFT, CLP, and CFP traits. These identified SNP loci and candidate genes might serve as a biological basis for improving the important fatness-related traits of pigs.


Subject(s)
Genome-Wide Association Study , Quantitative Trait Loci , Animals , Genome-Wide Association Study/methods , Phenotype , Polymorphism, Single Nucleotide , Sus scrofa/genetics , Swine/genetics , Technology
12.
Plant Biotechnol J ; 20(11): 2135-2148, 2022 11.
Article in English | MEDLINE | ID: mdl-35869808

ABSTRACT

Improving biological nitrogen fixation (BNF) in cereal crops is a long-sought objective; however, no successful modification of cereal crops showing increased BNF has been reported. Here, we described a novel approach in which rice plants were modified to increase the production of compounds that stimulated biofilm formation in soil diazotrophic bacteria, promoted bacterial colonization of plant tissues and improved BNF with increased grain yield at limiting soil nitrogen contents. We first used a chemical screening to identify plant-produced compounds that induced biofilm formation in nitrogen-fixing bacteria and demonstrated that apigenin and other flavones induced BNF. We then used CRISPR-based gene editing targeting apigenin breakdown in rice, increasing plant apigenin contents and apigenin root exudation. When grown at limiting soil nitrogen conditions, modified rice plants displayed increased grain yield. Biofilm production also modified the root microbiome structure, favouring the enrichment of diazotrophic bacteria recruitment. Our results support the manipulation of the flavone biosynthetic pathway as a feasible strategy for the induction of biological nitrogen fixation in cereals and a reduction in the use of inorganic nitrogen fertilizers.


Subject(s)
Nitrogen Fixation , Oryza , Nitrogen Fixation/genetics , Oryza/metabolism , Soil , Gene Editing , Apigenin/metabolism , Fertilizers , Crops, Agricultural , Bacteria/genetics , Nitrogen/metabolism , Edible Grain/metabolism , Biofilms
13.
J Virol ; 95(19): e0101921, 2021 09 09.
Article in English | MEDLINE | ID: mdl-34287044

ABSTRACT

Based on our previous studies, we show that the M gene is critical for the replication and pathogenicity of the chimeric H17 bat influenza virus (Bat09:mH1mN1) by replacing the bat M gene with those from human and swine influenza A viruses. However, the key amino acids of the M1 and/or M2 proteins that are responsible for virus replication and pathogenicity remain unknown. In this study, replacement of the PR8 M gene with the Eurasian avian-like M gene from the A/California/04/2009 pandemic H1N1 virus significantly decreased viral replication in both mammalian and avian cells in the background of the chimeric H17 bat influenza virus. Further studies revealed that M1 was more crucial for viral growth and pathogenicity than M2 and that the amino acid residues M1-41V and M2-27A were responsible for these characteristics in cells and in mice. These key residues of the M1 and M2 proteins identified in this study might be important for influenza virus surveillance and could be used to produce live attenuated vaccines in the future. IMPORTANCE The M1 and M2 proteins influence the morphology, replication, virulence, and transmissibility of influenza viruses. Although a few key residues in the M1 and M2 proteins have been identified, whether other residues of the M1 and M2 proteins are involved in viral replication and pathogenicity remains to be discovered. In the background of the chimeric H17 bat influenza virus, the Eurasian avian-like M gene from the A/California/04/2009 virus significantly decreased viral growth in mammalian and avian cells. Further study showed that M1 was implicated more than M2 in viral growth and pathogenicity in vitro and in vivo and that the key amino acid residues M1-41V and M2-27A were responsible for these characteristics in cells and in mice. These key residues of the M1 and M2 proteins could be used for influenza virus surveillance and live attenuated vaccine applications in the future. These findings provide important contributions to knowledge of the genetic basis of the virulence of influenza viruses.


Subject(s)
Influenza A Virus, H1N1 Subtype/genetics , Orthomyxoviridae Infections/virology , Orthomyxoviridae/growth & development , Orthomyxoviridae/pathogenicity , Viral Matrix Proteins/metabolism , Amino Acids/metabolism , Animals , Cell Line , Chiroptera , Genes, Viral , Humans , Lung/virology , Mice , Orthomyxoviridae/genetics , Reassortant Viruses/genetics , Reassortant Viruses/growth & development , Reassortant Viruses/pathogenicity , Turbinates/virology , Viral Matrix Proteins/chemistry , Viral Matrix Proteins/genetics , Virulence , Virus Replication
14.
Int J Mol Sci ; 23(4)2022 Feb 13.
Article in English | MEDLINE | ID: mdl-35216183

ABSTRACT

The intercellular transport of sugars, nutrients, and small molecules is essential for plant growth, development, and adaptation to environmental changes. Various stresses are known to affect the cell-to-cell molecular trafficking modulated by plasmodesmal permeability. However, the mechanisms of plasmodesmata modification and molecules involved in the phloem unloading process under stress are still not well understood. Here, we show that heat stress reduces the root meristem size and inhibits phloem unloading by inducing callose accumulation at plasmodesmata that connect the sieve element and phloem pole pericycle. Furthermore, we identify the loss-of-function of CALLOSE SYNTHASE 8 (CalS8), which is expressed specifically in the phloem pole pericycle, decreasing the plasmodesmal callose deposition at the interface between the sieve element and phloem pole pericycle and alleviating the suppression at root meristem size by heat stress. Our studies indicate the involvement of callose in the interaction between root meristem growth and heat stress and show that CalS8 negatively regulates the thermotolerance of Arabidopsis roots.


Subject(s)
Arabidopsis/metabolism , Glucans/metabolism , Heat-Shock Response/physiology , Meristem/metabolism , Plant Roots/metabolism , Plant Roots/physiology , Plasmodesmata/metabolism , Arabidopsis/physiology , Arabidopsis Proteins/metabolism , Biological Transport/physiology , Gene Expression Regulation, Plant/physiology , Glucosyltransferases/metabolism , Meristem/physiology , Plant Development/physiology , Plasmodesmata/physiology
15.
Int J Mol Sci ; 23(10)2022 May 19.
Article in English | MEDLINE | ID: mdl-35628487

ABSTRACT

Plasmodesmata (PD) are plant-specific channels connecting adjacent cells to mediate intercellular communication of molecules essential for plant development and defense. The typical PD are organized by the close apposition of the plasma membrane (PM), the desmotubule derived from the endoplasmic reticulum (ER), and spoke-like elements linking the two membranes. The plasmodesmal PM (PD-PM) is characterized by the formation of unique microdomains enriched with sphingolipids, sterols, and specific proteins, identified by lipidomics and proteomics. These components modulate PD to adapt to the dynamic changes of developmental processes and environmental stimuli. In this review, we focus on highlighting the functions of sphingolipid species in plasmodesmata, including membrane microdomain organization, architecture transformation, callose deposition and permeability control, and signaling regulation. We also briefly discuss the difference between sphingolipids and sterols, and we propose potential unresolved questions that are of help for further understanding the correspondence between plasmodesmal structure and function.


Subject(s)
Plasmodesmata , Sphingolipids , Cell Communication/physiology , Cell Membrane/metabolism , Plasmodesmata/metabolism , Sphingolipids/metabolism , Sterols/metabolism
16.
Microb Pathog ; 157: 104992, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34044053

ABSTRACT

Previous studies have shown that chimeric bat influenza viruses can be generated by reverse genetic system. However, the roles of the surface or internal genes of chimeric bat influenza viruses in viral replication and virulence in different host species were still not completely understood. In this study, we generated a chimeric H9N2 bat virus with both HA and NA surface genes from the avian A2093/H9N2 virus and compared its replication and virulence with the chimeric H1N1 bat virus with both HA and NA from the PR8/H1N1 virus in vitro and in mice. The chimeric H1N1 virus showed significantly higher replication in mammalian and avian cells and significantly higher virulence in mice than the chimeric H9N2 virus. Moreover, the chimeric H9N2 virus with the bat influenza internal M gene showed a higher replication in mammalian cells than in avian cells. While the chimeric H9N2 virus with the avian-origin viral M gene displayed a higher replication than that with the bat influenza M gene in avian cells, which likely resulted from increased receptor binding ability to α 2,3 sialic acid linked glycans of the former virus. Our study indicates that bat influenza internal genes are permissive in both mammalian and avian cells, and the bat influenza internal M gene shows more compatibility in mammals than in the avian host. Although the surface genes play more critical roles for viral replication in different host substrates, influenza M gene also potentially impacts on replication, virulence and host tropism.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza A Virus, H9N2 Subtype , Influenza in Birds , Orthomyxoviridae Infections , Animals , Influenza A Virus, H9N2 Subtype/genetics , Mammals , Mice , Orthomyxoviridae Infections/veterinary , Virulence , Virus Replication
17.
J Exp Bot ; 71(9): 2505-2512, 2020 05 09.
Article in English | MEDLINE | ID: mdl-31872215

ABSTRACT

The long-distance translocation of nutrients and mobile molecules between different terminals is necessary for plant growth and development. Plasmodesmata-mediated symplastic trafficking plays an important role in accomplishing this task. To facilitate intercellular transport, plants have evolved diverse plasmodesmata with distinct internal architecture at different cell-cell interfaces along the trafficking route. Correspondingly, different underlying mechanisms for regulating plasmodesmal structures have been gradually revealed. In this review, we highlight recent studies on various plasmodesmal architectures, as well as relevant regulators of their de novo formation and transition, responsible for phloem loading, transport, and unloading specifically. We also discuss the interesting but unaddressed questions relating to, and potential studies on, the adaptation of functional plasmodesmal structures.


Subject(s)
Phloem , Plasmodesmata , Biological Transport , Plant Development , Plants , Plasmodesmata/metabolism
18.
Proc Natl Acad Sci U S A ; 114(25): 6629-6634, 2017 06 20.
Article in English | MEDLINE | ID: mdl-28584126

ABSTRACT

Plants perceive and integrate information from the environment to time critical transitions in their life cycle. Some mechanisms underlying this quantitative signal processing have been described, whereas others await discovery. Seeds have evolved a mechanism to integrate environmental information by regulating the abundance of the antagonistically acting hormones abscisic acid (ABA) and gibberellin (GA). Here, we show that hormone metabolic interactions and their feedbacks are sufficient to create a bistable developmental fate switch in Arabidopsis seeds. A digital single-cell atlas mapping the distribution of hormone metabolic and response components revealed their enrichment within the embryonic radicle, identifying the presence of a decision-making center within dormant seeds. The responses to both GA and ABA were found to occur within distinct cell types, suggesting cross-talk occurs at the level of hormone transport between these signaling centers. We describe theoretically, and demonstrate experimentally, that this spatial separation within the decision-making center is required to process variable temperature inputs from the environment to promote the breaking of dormancy. In contrast to other noise-filtering systems, including human neurons, the functional role of this spatial embedding is to leverage variability in temperature to transduce a fate-switching signal within this biological system. Fluctuating inputs therefore act as an instructive signal for seeds, enhancing the accuracy with which plants are established in ecosystems, and distributed computation within the radicle underlies this signal integration mechanism.


Subject(s)
Arabidopsis/physiology , Germination/physiology , Plant Dormancy/physiology , Seeds/physiology , Abscisic Acid/metabolism , Arabidopsis/metabolism , Gene Expression Regulation, Plant/physiology , Gibberellins/metabolism , Hormones/metabolism , Plant Growth Regulators/metabolism , Seeds/metabolism , Signal Transduction/physiology , Temperature
19.
Molecules ; 25(2)2020 Jan 08.
Article in English | MEDLINE | ID: mdl-31936396

ABSTRACT

BACKGROUND: Natural meroterpenes derived from phloroglucinols and ß-caryophyllene have shown high inhibitory activity against α-glucosidase or cancer cells, however, the chemical diversity of this type of skeletons in Nature is limited. METHODS: To expand the chemical space and explore their inhibitory activities against α-glucosidase (EC 3.2.1.20), we employed ß-caryophyllene and some natural moieties (4-hydroxycoumarins, lawsone or syncarpic acid) to synthesize new types of meroterpene-like skeletons. All the products (including side products) were isolated and characterized by NMR, HR-MS, and ECD. RESULTS: In total, 17 products (representing seven scaffolds) were generated through a one-pot procedure. Most products (12 compounds) showed more potential activity (IC50 < 25 µM) than the positive controls (acarbose and genistein, IC50 58.19, and 54.74 µM, respectively). Compound 7 exhibited the most potent inhibition of α-glucosidase (IC50 3.56 µM) in a mixed-type manner. The CD analysis indicated that compound 7 could bind to α-glucosidase and influence the enzyme's secondary structure. CONCLUSIONS: Compound 7 could serve as a new type of template compound to develop α-glucosidase inhibitors. Full investigation of a biomimic reaction can be used as a concise strategy to explore diverse natural-like skeletons and search for novel lead compounds.


Subject(s)
Biomimetic Materials/chemistry , Glycoside Hydrolase Inhibitors/pharmacology , Polycyclic Sesquiterpenes/pharmacology , Terpenes/pharmacology , Kinetics , Magnetic Resonance Spectroscopy , Terpenes/chemical synthesis , Terpenes/chemistry
20.
J Virol ; 92(17)2018 09 01.
Article in English | MEDLINE | ID: mdl-29899104

ABSTRACT

Duck Tembusu virus (TMUV), like other mosquito-borne flaviviruses, such as Japanese encephalitis virus, West Nile virus, and Bagaza virus, is able to transmit vector-independently. To date, why these flaviviruses can be transmitted without mosquito vectors remains poorly understood. To explore the key molecular basis of flavivirus transmissibility, we compared virus replication and transmissibility of an early and a recent TMUV in ducks. The recent TMUV strain FX2010 replicated systemically and transmitted efficiently in ducks, while the replication of early strain MM1775 was limited and did not transmit among ducks. The TMUV envelope protein and its domain I were responsible for tissue tropism and transmissibility. The mutation S156P in the domain I resulted in disruption of N-linked glycosylation at amino acid 154 of the E protein and changed the conformation of "150 loop" of the E protein, which reduced virus replication in lungs and abrogated transmission in ducks. These data indicate that the 156S in the envelope protein is critical for TMUV tissue tropism and transmissibility in ducks in the absence of mosquitos. Our findings provide novel insights on understanding TMUV transmission among ducks.IMPORTANCE Tembusu virus, similar to other mosquito-borne flaviviruses such as WNV, JEV, and BAGV, can be transmitted without the presence of mosquito vectors. We demonstrate that the envelope protein of TMUV and its amino acid (S) at position 156 is responsible for tissue tropism and transmission in ducks. The mutation S156P results in disruption of N-linked glycosylation at amino acid 154 of the E protein and changes the conformation of "150 loop" of the E protein, which induces limited virus replication in lungs and abrogates transmission between ducks. Our findings provide new knowledge about TMUV transmission among ducks.


Subject(s)
Disease Transmission, Infectious , Ducks , Flavivirus Infections/veterinary , Flavivirus/physiology , Mutation, Missense , Viral Envelope Proteins/metabolism , Viral Tropism , Animals , Flavivirus/genetics , Flavivirus Infections/transmission , Flavivirus Infections/virology , Lung/virology , Mutant Proteins/chemistry , Mutant Proteins/genetics , Mutant Proteins/metabolism , Protein Conformation , Viral Envelope Proteins/chemistry , Viral Envelope Proteins/genetics , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL