Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
J Huazhong Univ Sci Technolog Med Sci ; 35(3): 343-349, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26072071

ABSTRACT

This study examined the mechanism of the inhibitory effect of parthenolide (PTL) on the activity of NF-κB in multiple myeloma (MM). Human multiple myeloma cell line RPMI 8226 cells were treated with or without different concentrations of PTL for various time periods, and then MTT assay was used to detect cell proliferation. Cell cycle and apoptosis were flow cytometrically detected. The level of protein ubiquitination was determined by using immunoprecipitation. Western blotting was employed to measure the level of total protein ubiquitination, the expression of IκB-α in cell plasma and the content of p65 in nucleus. The content of p65 in nucleus before and after PTL treatment was also examined with immunofluorescence. Exposure of RPMI 8226 cells to PTL attenuated the level of ubiquitinated Nemo, increased the expression of IκB-α and reduced the level of p65 in nucleus, finally leading to the decrease of the activity of NF-κB. PTL inhibited cell proliferation, induced apoptosis and blocked cell cycle. Furthermore, the levels of ubiquitinated tumor necrosis factor receptor-associated factor 6 (TRAF6) and total proteins were decreased after PTL treatment. By using Autodock software package, we predicted that PTL could bind to TRAF6 directly and tightly. Taken together, our findings suggest that PTL inhibits the activation of NF-κB signaling pathway via directly binding with TRAF6, thereby suppressing MM cell proliferation and inducing apoptosis.


Subject(s)
Multiple Myeloma/metabolism , NF-kappa B/antagonists & inhibitors , Sesquiterpenes/pharmacology , TNF Receptor-Associated Factor 6/metabolism , Apoptosis , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Humans , Multiple Myeloma/drug therapy , NF-kappa B/blood , Transcription Factor RelA/metabolism , Ubiquitination/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL