Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 189
Filter
Add more filters

Country/Region as subject
Publication year range
1.
EMBO J ; 42(13): e112998, 2023 07 03.
Article in English | MEDLINE | ID: mdl-37211868

ABSTRACT

Brassinosteroids (BRs) are important plant hormones involved in many aspects of development. Here, we show that BRASSINOSTEROID SIGNALING KINASEs (BSKs), key components of the BR pathway, are precisely controlled via de-S-acylation mediated by the defense hormone salicylic acid (SA). Most Arabidopsis BSK members are substrates of S-acylation, a reversible protein lipidation that is essential for their membrane localization and physiological function. We establish that SA interferes with the plasma membrane localization and function of BSKs by decreasing their S-acylation levels, identifying ABAPT11 (ALPHA/BETA HYDROLASE DOMAIN-CONTAINING PROTEIN 17-LIKE ACYL PROTEIN THIOESTERASE 11) as an enzyme whose expression is quickly induced by SA. ABAPT11 de-S-acylates most BSK family members, thus integrating BR and SA signaling for the control of plant development. In summary, we show that BSK-mediated BR signaling is regulated by SA-induced protein de-S-acylation, which improves our understanding of the function of protein modifications in plant hormone cross talk.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Brassinosteroids/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Salicylic Acid/metabolism , Arabidopsis/metabolism , Plant Growth Regulators/metabolism , Acylation , Gene Expression Regulation, Plant
2.
Plant Cell ; 36(6): 2103-2116, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38445983

ABSTRACT

Bacterial pathogens deliver effectors into host cells to suppress immunity. How host cells target these effectors is critical in pathogen-host interactions. SUMOylation, an important type of posttranslational modification in eukaryotic cells, plays a critical role in immunity, but its effect on bacterial effectors remains unclear in plant cells. In this study, using bioinformatic and biochemical approaches, we found that at least 16 effectors from the bacterial pathogen Pseudomonas syringae pv. tomato DC3000 are SUMOylated by the enzyme cascade from Arabidopsis thaliana. Mutation of SUMOylation sites on the effector HopB1 enhances its function in the induction of plant cell death via stability attenuation of a plant receptor kinase BRASSINOSTEROID INSENSITIVE 1 (BRI1)-ASSOCIATED RECEPTOR KINASE 1. By contrast, SUMOylation is essential for the function of another effector, HopG1, in the inhibition of mitochondria activity and jasmonic acid signaling. SUMOylation of both HopB1 and HopG1 is increased by heat treatment, and this modification modulates the functions of these 2 effectors in different ways in the regulation of plant survival rates, gene expression, and bacterial infection under high temperatures. Therefore, the current work on the SUMOylation of effectors in plant cells improves our understanding of the function of dynamic protein modifications in plant-pathogen interactions in response to environmental conditions.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Heat-Shock Response , Pseudomonas syringae , Sumoylation , Arabidopsis/microbiology , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Cell Death , Cyclopentanes/metabolism , Gene Expression Regulation, Plant , Heat-Shock Response/genetics , Host-Pathogen Interactions , Hot Temperature , Plant Cells/metabolism , Plant Cells/microbiology , Plant Diseases/microbiology , Protein Kinases/genetics , Protein Kinases/metabolism , Pseudomonas syringae/pathogenicity , Pseudomonas syringae/physiology , Signal Transduction
3.
Plant Cell ; 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38924024

ABSTRACT

Abscisic acid (ABA) signaling is crucial for plant responses to various abiotic stresses. The Arabidopsis (Arabidopsis thaliana) transcription factor ABA INSENSITIVE 5 (ABI5) is a central regulator of ABA signaling. ABI5 BINDING PROTEIN 1 (AFP1) interacts with ABI5 and facilitates its 26S-proteasome-mediated degradation, although the detailed mechanism has remained unclear. Here, we report that an ABA-responsive U-box E3 ubiquitin ligase, PLANT U-BOX 35 (PUB35), physically interacts with AFP1 and ABI5. PUB35 directly ubiquitinated ABI5 in a bacterially reconstituted ubiquitination system and promoted ABI5 protein degradation in vivo. ABI5 degradation was enhanced by AFP1 in response to ABA treatment. Phosphorylation of the T201 and T206 residues in ABI5 disrupted the ABI5-AFP1 interaction and affected the ABI5-PUB35 interaction and PUB35-mediated degradation of ABI5 in vivo. Genetic analysis of seed germination and seedling growth showed that pub35 mutants were hypersensitive to ABA as well as to salinity and osmotic stresses, whereas PUB35 overexpression lines were hyposensitive. Moreover, abi5 was epistatic to pub35, whereas the pub35-2 afp1-1 double mutant showed a similar ABA response to the two single mutants. Together, our results reveal a PUB35-AFP1 module involved in fine-tuning ABA signaling through ubiquitination and 26S-proteasome-mediated degradation of ABI5 during seed germination and seedling growth.

4.
EMBO Rep ; 25(2): 489-505, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38177916

ABSTRACT

Small peptides modulate multiple processes in plant cells, but their regulation by post-translational modification remains unclear. ROT4 (ROTUNDIFOLIA4) belongs to a family of Arabidopsis non-secreted small peptides, but knowledge on its molecular function and how it is regulated is limited. Here, we find that ROT4 is S-acylated in plant cells. S-acylation is an important form of protein lipidation, yet so far it has not been reported to regulate small peptides in plants. We show that this modification is essential for the plasma membrane association of ROT4. Overexpression of S-acylated ROT4 results in a dramatic increase in immune gene expression. S-acylation of ROT4 enhances its interaction with BSK5 (BRASSINOSTEROID-SIGNALING KINASE 5) to block the association between BSK5 and PEPR1 (PEP RECEPTOR1), a receptor kinase for secreted plant elicitor peptides (PEPs), thereby activating immune signaling. Phenotype analysis indicates that S-acylation is necessary for ROT4 functions in pathogen resistance, PEP response, and the regulation of development. Collectively, our work reveals an important role for S-acylation in the cross-talk of non-secreted and secreted peptide signaling in plant immunity.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Plants/metabolism , Peptides/metabolism , Acylation , Plant Immunity , Protein Kinases/metabolism
5.
Plant Cell ; 34(10): 3899-3914, 2022 09 27.
Article in English | MEDLINE | ID: mdl-35775944

ABSTRACT

In eukaryotes, the STRUCTURAL MAINTENANCE OF CHROMOSOME 5/6 (SMC5/6) complex is critical to maintaining chromosomal structures around double-strand breaks (DSBs) in DNA damage repair. However, the recruitment mechanism of this conserved complex at DSBs remains unclear. In this study, using Arabidopsis thaliana as a model, we found that SMC5/6 localization at DSBs is dependent on the protein scaffold containing INVOLVED IN DE NOVO 2 (IDN2), CELL DIVISION CYCLE 5 (CDC5), and ALTERATION/DEFICIENCY IN ACTIVATION 2B (ADA2b), whose recruitment is further mediated by DNA-damage-induced RNAs (diRNAs) generated from DNA regions around DSBs. The physical interactions of protein components including SMC5-ADA2b, ADA2b-CDC5, and CDC5-IDN2 result in formation of the protein scaffold. Further analysis indicated that the DSB localization of IDN2 requires its RNA-binding activity and ARGONAUTE 2 (AGO2), indicating a role for the AGO2-diRNA complex in this process. Given that most of the components in the scaffold are conserved, the mechanism presented here, which connects SMC5/6 recruitment and small RNAs, will improve our understanding of DNA repair mechanisms in eukaryotes.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , DNA Breaks, Double-Stranded , DNA Damage/genetics , DNA Repair/genetics , DNA, Plant/metabolism , RNA/genetics , Transcription Factors/metabolism
6.
Plant Cell ; 34(6): 2242-2265, 2022 05 24.
Article in English | MEDLINE | ID: mdl-35262735

ABSTRACT

WRINKLED1 (WRI1) is an important transcription factor that regulates seed oil biosynthesis. However, how WRI1 regulates gene expression during this process remains poorly understood. Here, we found that BLISTER (BLI) is expressed in maturing Arabidopsis thaliana seeds and acts as an interacting partner of WRI1. bli mutant seeds showed delayed maturation, a wrinkled seed phenotype, and reduced oil content, similar to the phenotypes of wri1. In contrast, BLI overexpression resulted in enlarged seeds and increased oil content. Gene expression and genetic analyses revealed that BLI plays a role in promoting the expression of WRI1 targets involved in fatty acid biosynthesis and regulates seed maturation together with WRI1. BLI is recruited by WRI1 to the AW boxes in the promoters of fatty acid biosynthesis genes. BLI shows a mutually exclusive interaction with the Polycomb-group protein CURLY LEAF (CLF) or the chromatin remodeling factor SWITCH/SUCROSE NONFERMENTING 3B (SWI3B), which facilitates gene expression by modifying nucleosomal occupancy and histone modifications. Together, these data suggest that BLI promotes the expression of fatty acid biosynthesis genes by interacting with WRI1 to regulate chromatin dynamics, leading to increased fatty acid production. These findings provide insights into the roles of the WRI1-BLI-CLF-SWI3B module in mediating seed maturation and gene expression.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Chromatin/genetics , Chromatin/metabolism , Fatty Acids/metabolism , Gene Expression Regulation, Plant , Seeds/genetics , Seeds/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
7.
Plant J ; 113(4): 819-832, 2023 02.
Article in English | MEDLINE | ID: mdl-36579923

ABSTRACT

Rosemary (Salvia rosmarinus) is considered a sacred plant because of its special fragrance and is commonly used in cooking and traditional medicine. Here, we report a high-quality chromosome-level assembly of the S. rosmarinus genome of 1.11 Gb in size; the genome has a scaffold N50 value of 95.5 Mb and contains 40 701 protein-coding genes. In contrast to other diploid Labiataceae, an independent whole-genome duplication event occurred in S. rosmarinus at approximately 15 million years ago. Transcriptomic comparison of two S. rosmarinus cultivars with contrasting carnosic acid (CA) content revealed 842 genes significantly positively associated with CA biosynthesis in S. rosmarinus. Many of these genes have been reported to be involved in CA biosynthesis previously, such as genes involved in the mevalonate/methylerythritol phosphate pathways and CYP71-coding genes. Based on the genomes and these genes, we propose a model of CA biosynthesis in S. rosmarinus. Further, comparative genome analysis of the congeneric species revealed the species-specific evolution of CA biosynthesis genes. The genes encoding diterpene synthase and the cytochrome P450 (CYP450) family of CA synthesis-associated genes form a biosynthetic gene cluster (CPSs-KSLs-CYP76AHs) responsible for the synthesis of leaf and root diterpenoids, which are located on S. rosmarinus chromosomes 1 and 2, respectively. Such clustering is also observed in other sage (Salvia) plants, thus suggesting that genes involved in diterpenoid synthesis are conserved in the Labiataceae family. These findings provide new insights into the synthesis of aromatic terpenoids and their regulation.


Subject(s)
Diterpenes , Rosmarinus , Salvia , Rosmarinus/genetics , Rosmarinus/metabolism , Salvia/genetics , Salvia/metabolism , Abietanes/metabolism , Diterpenes/metabolism , Cytochrome P-450 Enzyme System/metabolism , Chromosomes
8.
Plant J ; 114(6): 1301-1318, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36932862

ABSTRACT

Cold stress is a major factor limiting the production and geographical distribution of rice (Oryza sativa) varieties. However, the molecular mechanisms underlying cold tolerance remain to be elucidated. Here, we report that ornithine δ-aminotransferase (OsOAT) contributes to cold tolerance during the vegetative and reproductive development of rice. osoat mutant was identified as a temperature-sensitive male sterile mutant with deformed floral organs and seedlings sensitive to cold stress. Comparative transcriptome analysis showed that OsOAT mutation and cold treatment of the wild-type plant led to similar changes in the global gene expression profiles in anthers. OsOAT genes in indica rice Huanghuazhan (HHZ) and japonica rice Wuyungeng (WYG) are different in gene structure and response to cold. OsOAT is cold-inducible in WYG but cold-irresponsive in HHZ. Further studies showed that indica varieties carry both WYG-type and HHZ-type OsOAT, whereas japonica varieties mostly carry WYG-type OsOAT. Cultivars carrying HHZ-type OsOAT are mainly distributed in low-latitude regions, whereas varieties carrying WYG-type OsOAT are distributed in both low- and high-latitude regions. Moreover, indica varieties carrying WYG-type OsOAT generally have higher seed-setting rates than those carrying HHZ-type OsOAT under cold stress at reproductive stage, highlighting the favorable selection for WYG-type OsOAT during domestication and breeding to cope with low temperatures.


Subject(s)
Oryza , Oryza/metabolism , Plant Breeding , Plant Development , Transaminases/metabolism , Fertility/genetics , Ornithine/metabolism , Cold Temperature
9.
Biochem Biophys Res Commun ; 704: 149668, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38401303

ABSTRACT

Rheumatoid arthritis is an autoimmune disease whose early onset correlates with dysregulated citrullination, a process catalyzed by peptidylarginine deiminase isoform 4 (PADI-4). Here, we report that PADI-4 is a novel target of vitamin B12, a water-soluble vitamin that serves as a cofactor in DNA synthesis and the metabolism of fatty and amino acids. Vitamin B12 preferentially inhibited PADI-4 over PADI-2 with comparable inhibitory activity to the reference compound Cl-amidine in enzymatic inhibition assays, and reduced total cellular citrullination levels including that of histone H3 citrullination mediated by PADI-4. We also demonstrated that hydroxocobalamin, a manufactured form of vitamin B12, significantly ameliorated the severity of collagen type II antibody induced arthritis (CAIA) in mice and diminished gene expression of the rheumatoid inflammatory factors and cytokines IL17A, TNFα, IL-6, COX-II and ANXA2, as well PADI-4. Therefore, the use of vitamin B12 to treat rheumatoid arthritis merits further study.


Subject(s)
Arthritis, Rheumatoid , Vitamin B 12 , Mice , Animals , Protein-Arginine Deiminases/metabolism , Hydrolases/metabolism , Protein-Arginine Deiminase Type 4 , Citrulline/metabolism , Antibodies , Collagen
10.
Plant Physiol ; 191(3): 1871-1883, 2023 03 17.
Article in English | MEDLINE | ID: mdl-36464768

ABSTRACT

Changes in plant auxin levels can be perceived and converted into cellular responses by auxin signal transduction. AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) proteins are auxin transcriptional inhibitors that play important roles in regulating auxin signal transduction. The stability of Aux/IAA proteins is important for transcription initiation and downstream auxin-related gene expression. Here, we report that the Aux/IAA protein IAA17 interacts with the small ubiquitin-related modifier (SUMO) E3 ligase METHYL METHANESULFONATE-SENSITIVE 21 (AtMMS21) in Arabidopsis (Arabidopsis thaliana). AtMMS21 regulated the SUMOylation of IAA17 at the K41 site. Notably, root length was suppressed in plants overexpressing IAA17, whereas the roots of K41-mutated IAA17 transgenic plants were not significantly different from wild-type roots. Biochemical data indicated that K41-mutated IAA17 or IAA17 in the AtMMS21 knockout mutant was more likely to be degraded compared with nonmutated IAA17 in wild-type plants. In conclusion, our data revealed a role for SUMOylation in the maintenance of IAA17 protein stability, which contributes to improving our understanding of the mechanisms of auxin signaling.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , Indoleacetic Acids/metabolism , Plant Roots/genetics , Plant Roots/metabolism , Signal Transduction , Sumoylation , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
11.
Plant Cell ; 33(10): 3235-3249, 2021 10 11.
Article in English | MEDLINE | ID: mdl-34338800

ABSTRACT

Protein S-acylation is an important post-translational modification in eukaryotes, regulating the subcellular localization, trafficking, stability, and activity of substrate proteins. The dynamic regulation of this reversible modification is mediated inversely by protein S-acyltransferases and de-S-acylation enzymes, but the de-S-acylation mechanism remains unclear in plant cells. Here, we characterized a group of putative protein de-S-acylation enzymes in Arabidopsis thaliana, including 11 members of Alpha/Beta Hydrolase Domain-containing Protein 17-like acyl protein thioesterases (ABAPTs). A robust system was then established for the screening of de-S-acylation enzymes of protein substrates in plant cells, based on the effects of substrate localization and confirmed via the protein S-acylation levels. Using this system, the ABAPTs, which specifically reduced the S-acylation levels and disrupted the plasma membrane localization of five immunity-related proteins, were identified respectively in Arabidopsis. Further results indicated that the de-S-acylation of RPM1-Interacting Protein 4, which was mediated by ABAPT8, resulted in an increase of cell death in Arabidopsis and Nicotiana benthamiana, supporting the physiological role of the ABAPTs in plants. Collectively, our current work provides a powerful and reliable system to identify the pairs of plant protein substrates and de-S-acylation enzymes for further studies on the dynamic regulation of plant protein S-acylation.


Subject(s)
Arabidopsis/enzymology , High-Throughput Screening Assays/instrumentation , Hydrolases/chemistry , Plant Cells/enzymology , Plant Proteins/analysis , Acylation
12.
Anesthesiology ; 140(4): 765-785, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38118180

ABSTRACT

BACKGROUND: The role of nerve growth factor (NGF)/tyrosine kinase A receptor (TrKA) signaling, which is activated in a variety of pain states, in regulating membrane-associated δ-opioid receptor (mDOR) expression is poorly understood. The hypothesis was that elevated NGF in bone cancer tumors could upregulate mDOR expression in spinal cord neurons and that mDOR agonism might alleviate bone cancer pain. METHODS: Bone cancer pain (BCP) was induced by inoculating Lewis lung carcinoma cells into the femoral marrow cavity of adult C57BL/6J mice of both sexes. Nociceptive behaviors were evaluated by the von Frey and Hargreaves tests. Protein expression in the spinal dorsal horn of animals was measured by biochemical analyses, and excitatory synaptic transmission was recorded in miniature excitatory synaptic currents. RESULTS: The authors found that mDOR expression was increased in BCP mice (BCP vs. sham, mean ± SD: 0.18 ± 0.01 g vs. mean ± SD: 0.13 ± 0.01 g, n = 4, P < 0.001) and that administration of the DOR agonist deltorphin 2 (Del2) increased nociceptive thresholds (Del2 vs. vehicle, median [25th, 75th percentiles]: 1.00 [0.60, 1.40] g vs. median [25th, 75th percentiles]: 0.40 [0.16, 0.45] g, n = 10, P = 0.001) and reduced miniature excitatory synaptic current frequency in lamina II outer neurons (Del2 vs. baseline, mean ± SD: 2.21 ± 0.81 Hz vs. mean ± SD: 2.43 ± 0.90 Hz, n = 12, P < 0.001). Additionally, NGF expression was increased in BCP mice (BCP vs. sham, mean ± SD: 0.36 ± 0.03 vs. mean ± SD: 0.16 ± 0.02, n = 4, P < 0.001), and elevated NGF was associated with enhanced mDOR expression via TrKA signaling. CONCLUSIONS: Activation of mDOR produces analgesia that is dependent on the upregulation of the NGF/TrKA pathway by increasing mDOR levels under conditions of BCP in mice.


Subject(s)
Analgesia , Bone Neoplasms , Cancer Pain , Rats , Male , Female , Mice , Animals , Cancer Pain/drug therapy , Receptor Protein-Tyrosine Kinases , Rats, Sprague-Dawley , Nerve Growth Factor/metabolism , Mice, Inbred C57BL , Pain , Bone Neoplasms/complications , Spinal Cord Dorsal Horn , Receptors, Opioid
13.
BMC Cardiovasc Disord ; 24(1): 182, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38532333

ABSTRACT

OBJECTIVE: To evaluate the early and mid-term outcomes of open repair in patients with thoracoabdominal aortic aneurysm (TAAA) after thoracic endovascular aortic repair (TEVAR). METHODS: This was a retrospective single center study. Data were retrospectively collected and analyzed for consecutive patients undergoing open TAAA repair (TAAAR) after TEVAR from November 2016 to June 2021. Indications for TAAAR included aneurysm progression due to endoleak, persisted false lumen perfusion, proximal/distal disease progression, and aorta rupture. The risk factor of operative mortality was analyzed by multivariable logistic regression model and the survival was evaluated by Kaplan-Meier. RESULTS: Sixty-three patients who met the inclusion criteria for the study were identified. The mean age at TAAAR was 41 ± 12 years and 43 (68.3%) were male. Marfan syndrome (MFS) was presented in 39 patients (61.9%). 60 (95.2%) patients presented with post-dissection aneurysm and 3 (4.8%) patients with degenerative aneurysm. The extent of TAAA was Crawford I in 9 (14.3%), II in 22 (34.9%), III in 23 (36.5%), and IV in 9 (14.3%). Emergent TAAAR was done in 10 (15.9%) patients, and deep hypothermic circulatory arrest was used in 22 (34.6%). Endograft was explanted in 31 (49.2%). Operative mortality was 11 (17.5%). Stroke, paraplegia, and acute kidney failure occurred in 5 (7.9%), 7 (11.1%), and 6 (9.5%) patients, respectively. Pulmonary complications occurred in 19 (30.2%) patients. The estimated survival was 74.8 ± 4.9% at 5 years. Late reoperations were performed in 2 patients at 2.5 years and 1.3 years, respectively. CONCLUSIONS: In this series of TAAA after TEVAR, TAAAR was related with a high risk of operative mortality and morbidity and the midterm outcomes represented a durable treatment and were respectable.


Subject(s)
Aortic Aneurysm, Thoracic , Aortic Aneurysm, Thoracoabdominal , Blood Vessel Prosthesis Implantation , Endovascular Procedures , Humans , Male , Female , Endovascular Aneurysm Repair , Blood Vessel Prosthesis/adverse effects , Retrospective Studies , Blood Vessel Prosthesis Implantation/adverse effects , Treatment Outcome , Aortic Aneurysm, Thoracic/surgery , Risk Factors , Endovascular Procedures/adverse effects , Postoperative Complications
14.
Cleft Palate Craniofac J ; : 10556656231163398, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36919448

ABSTRACT

OBJECTIVE: Paired box 7 (PAX7) has been considered as a candidate gene for non-syndromic cleft lip with or without palate (NSCL/P). However, there is no research for the XXX, and previous studies concentrated on limited variants. This study aimed to conduct sufficiently dense and powerful scans of variants at PAX7 and explored the roles of variants at PAX7 in NSCL/P among the XXX. DESIGN: Targeted region sequencing was performed to thoroughly screen variations, followed by a two-phase association analysis. 159 NSCL/P cases and 542 controls were analyzed in phase 1. Then in phase 2, the validation study was performed using 1626 cases and 2255 controls. We also explored the roles of variants at PAX7 gene in NSCL/P subtypes. Additionally, indirect associations were found by calculating LD and haplotypes. SETTING: The study was conducted in XXX. PATIENTS, PARTICIPANTS: 159 NSCL/P cases and 542 controls were analyzed in phase 1. Then in phase 2, the validation study was performed using 1626 cases and 2255 controls. INTERVENTIONS: Blood samples were collected. MAIN OUTCOME MEASURES: To explore the association analysis between variants at PAX7 and NSCL/P in XXX. RESULTS: The results showed that rs2236810, rs114882979 and rs2236804 were significantly associated with NSCL/P, which were predicted to have regulatory functions. Besides, variants at PAX7 function differently in the NSCL/P subtypes. We also discovered a PAX7 missense variant, NM_001135254 p.A369 V (NM_002584.2:c.1106C > T). CONCLUSIONS: In summary, we confirmed 3 SNPs at PAX7 were significantly associated with NSCL/P in XXX and identified a missense variant, NM_001135254 p.A369 V (NM_002584.2:c.1106C > T).

15.
Cleft Palate Craniofac J ; : 10556656231157575, 2023 Mar 03.
Article in English | MEDLINE | ID: mdl-36866619

ABSTRACT

The purpose of this study is to analyze the clinical characteristics of patients with Van der Woude syndrome (VWS) and to detect variations in each patient. Finally, the combination of genotype and phenotype can make a clear diagnosis of VWS patients with different phenotype penetrance.Five Chinese VWS pedigree were enrolled. Whole exome sequencing of the proband was performed, and the potential pathogenic variation was further verified by Sanger sequencing in the patient and their parents. The human mutant IRF6 coding sequence was generated from the human full-length IRF6 plasmid by site-directed mutagenesis and cloned into the GV658 vector, RT-qPCR and Western blot were used to detect the expression of IRF6.We found one de novo nonsense variation (p. Gln118Ter) and three novel missense variations (p. Gly301Glu, p. Gly267Ala, and p. Glu404Gly) co-segregated with VWS. RT-qPCR analysis revealed that p. Glu404Gly significantly reduced the expression level of IRF6 mRNA. Western blot of cell lysates confirmed that IRF6 p. Glu404Gly abundance levels were lower than those for IRF6 wild type.This discovery of the novel variation (IRF6 p. Glu404Gly) expands the spectrum of known variations in VWS in Chinese humans. Genetic results combined with clinical phenotypes and differential diagnosis points from other diseases can make a definitive diagnosis and provide genetic counseling for families.

16.
J Integr Plant Biol ; 65(3): 692-702, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36282496

ABSTRACT

Heat stress (HS) has serious negative effects on plant development and has become a major threat to agriculture. A rapid transcriptional regulatory cascade has evolved in plants in response to HS. Nuclear Factor-Y (NF-Y) complexes are critical for this mechanism, but how NF-Y complexes are regulated remains unclear. In this study, we identified NF-YC10 (NF-Y subunit C10), a central regulator of the HS response in Arabidopsis thaliana, as a substrate of SUMOylation, an important post-translational modification. Biochemical analysis showed that the SUMO ligase SIZ1 (SAP AND MIZ1 DOMAIN-CONTAINING LIGASE1) interacts with NF-YC10 and enhances its SUMOylation during HS. The SUMOylation of NF-YC10 facilitates its interaction with and the nuclear translocation of NF-YB3, in which the SUMO interaction motif (SIM) is essential for its efficient association with NF-YC10. Further functional analysis indicated that the SUMOylation of NF-YC10 and the SIM of NF-YB3 are critical for HS-responsive gene expression and plant thermotolerance. These findings uncover a role for the SIZ1-mediated SUMOylation of NF-YC10 in NF-Y complex assembly under HS, providing new insights into the role of a post-translational modification in regulating transcription during abiotic stress responses in plants.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Thermotolerance , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Sumoylation , Ligases/genetics , Ligases/metabolism , Gene Expression Regulation, Plant
17.
New Phytol ; 235(1): 173-187, 2022 07.
Article in English | MEDLINE | ID: mdl-35347735

ABSTRACT

Chloroplasts are hypersensitive to heat stress (HS). SUMOylation, a critical post-translational modification, is conservatively involved in HS responses. However, the functional connection between SUMOylation and chloroplasts under HS remains to be studied. The bioinformatics, biochemistry, and cell biology analyses were used to detect the SUMOylation statuses of Arabidopsis nuclear-encoded chloroplast proteins and the effect of SUMOylation on subcellular localization of these proteins under HS. PSBR, a subunit of photosystem II, was used as an example for a detailed investigation of functional mechanisms. After a global SUMOylation site prediction of nuclear-encoded chloroplast proteins, biochemical data showed that most of the selected candidates are modified by SUMO3 in the cytoplasm. The chloroplast localization of these SUMOylation targets under long-term HS is partially maintained by the SUMO ligase AtSIZ1. The HS-induced SUMOylation on PSBR contributes to the maintenance of its chloroplast localization, which is dependent on its chloroplast importation efficiency correlated to phosphorylation. The complementation analysis provided evidence that SUMOylation is essential for the physiological function of PSBR under HS. Our study illustrated a general regulatory mechanism of SUMOylation in maintaining the chloroplast protein importation during HS and provided hints for further investigation on protein modifications associated with plant organelles under stress conditions.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Chloroplast Proteins/metabolism , Heat-Shock Response , Nuclear Proteins/metabolism , Sumoylation
18.
Microb Pathog ; 163: 105391, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34999247

ABSTRACT

OBJECTIVES: The aim of this study was to explore the antibiofilm and antivirulence efficacy of benzylaniline 4k against MRSA. METHODS: The clinical MRSA strains were identified and used to evaluate their potential to form biofilm using crystal violet assay. The minimal inhibitory concentration (MIC) was determined using broth microdilution method. The expression of genes was detected using quantitative real-time PCR (qRT-PCR). Rabbit blood hemolytic assay was used to observe the inhibitory ability of alpha-hemolysin (Hla). RESULTS: Compound 4k showed potent antibacterial activity against 16 clinical MRSA with an MIC50 of 1.25 mg/L and MIC90 of 2.25 mg/L. The value of minimum biofilm eradication concentration (MBEC) against MRSA2858 biofilm was of 1.5 mg/L, close to its MIC, superior to those of vancomycin and erythromycin. Compound 4k eradicated the formation of biofilm through inhibiting the gene expression of branched-chain fatty acid synthesis, down-regulating the expression of quorum-sensing (QS) regulatory genes (norA, agrA, icaA, hla), decreasing the level of hemolysis in a dose-dependent manner, and inhibiting rabbit blood hemolysis by 86.9% at a concentration of 1.25 mg/L. In a mouse model of abdominal infection, compound 4k was more effective than vancomycin in reducing bacterial load. CONCLUSIONS: These results suggested that compound 4k could be developed as promising an anti-MRSA agent through affecting quorum-sensing system.


Subject(s)
Aniline Compounds , Methicillin-Resistant Staphylococcus aureus , Animals , Anti-Bacterial Agents/pharmacology , Biofilms , Enoyl-(Acyl-Carrier-Protein) Reductase (NADH)/antagonists & inhibitors , Fatty Acid Synthase, Type II/antagonists & inhibitors , Genes, Regulator , Methicillin-Resistant Staphylococcus aureus/genetics , Mice , Microbial Sensitivity Tests , Quorum Sensing , Rabbits
19.
Phys Chem Chem Phys ; 25(1): 870-877, 2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36512393

ABSTRACT

Large perpendicular magnetic anisotropy energy (MAE) and flexible regulation of the magnitude and direction of MAE have great potential for application in information storage devices. Here, utilizing first-principles calculations, we investigated the magnetic properties of free and MgO(001) supported RumIrn clusters (RumIrn@MgO(m + n = 3)). The results indicate that the MAE of mixed clusters increases with the number of Ir atoms due to Ir having a strong coupling between the non-degenerate dxy and dx2-y2 states. The MAE of free Ir3 is -8.18 meV with the easy magnetization direction parallel to the x-axis, while the MAE of supported Ir3 on the MgO substrate increases by a factor of 2.6, and the easy magnetization axis of the structure is shifted to a direction perpendicular to the substrate surface. This change in MAE is due to the significant enhancement in the coupling between the non-degenerate dyz and dx2-y2 states near the Fermi level of Ir3 atoms. Moreover, Ir3@MgO possesses high thermodynamic stability. These results give a new method for manipulating MAE and the direction of easy magnetization, which has great potential for application in magnetic nanodevices.

20.
BMC Anesthesiol ; 22(1): 197, 2022 06 24.
Article in English | MEDLINE | ID: mdl-35751029

ABSTRACT

BACKGROUND: Laryngeal mask airways have been widely used in clinical practice. The aim of this study was to investigate whether the remifentanil requirement for facilitation of i-gel insertion in Parkinson's disease (PD) patients undergoing deep brain stimulation (DBS) surgery was different from that in non-PD (NPD) patients undergoing intracranial surgery. STUDY DESIGN: An up-and-down sequential allocation trial. METHODS: Male patients aged between 40 and 64 years old were enrolled. The first patient in each group (PD and NPD) group received an effect-site concentration (Ce) of remifentanil (Minto pharmacokinetic model) of 4.0 ng.ml-1 during a target-controlled infusion (TCI) of 3.5 µg.ml-1 propofol (Marsh pharmacokinetic model). The next dose of remifentanil was determined by the response of the previous patient. The Ce of remifentanil required for i-gel insertion in 50% of patients (EC50) was estimated by the modified Dixon's up-and-down method and by probit analysis. RESULTS: The PD group included 24 patients and the NPD group included 23. The EC50 of remifentanil for i-gel insertion during a TCI of 3.5 µg.ml-1 propofol estimated by the modified Dixon's up-and-down method in PD patients (2.38 ± 0.65 ng.ml-1) was significantly lower than in NPD patients (3.21 ± 0.49 ng.ml-1) (P = 0.03). From the probit analysis, the EC50 and EC95 (effective Ce in 95% of patients) of remifentanil were 1.95 (95% CI 1.52-2.36) ng.ml-1 and 3.12 (95% CI 2.53-5.84) ng.ml-1 in PD patients and 2.85 (95% CI 2.26-3.41) ng.ml-1 and 4.57 (95% CI 3.72-8.54) ng.ml-1 in NPD patients, respectively. CONCLUSIONS: The remifentanil requirement for successful i-gel insertion is reduced in male PD patients undergoing DBS implantation during propofol TCI induction. Clinicians should closely monitor the remifentanil requirement in patients with PD. TRIAL REGISTRATION: Registered at http://www.chictr.org.cn ( ChiCTR1900021760 ).


Subject(s)
Parkinson Disease , Propofol , Adult , Anesthetics, Intravenous/pharmacology , Brain , Humans , Male , Middle Aged , Parkinson Disease/therapy , Piperidines/pharmacology , Propofol/pharmacokinetics , Remifentanil
SELECTION OF CITATIONS
SEARCH DETAIL