Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Int J Mol Sci ; 24(3)2023 Jan 23.
Article in English | MEDLINE | ID: mdl-36768602

ABSTRACT

Colorectal carcinoma (CRC) is a kind of malignant tumor closely related to ulcerative colitis. Xanthone derivatives are one of the most promising therapeutic drugs which have been used in phase I/II clinical trials for cancer therapy. Our previous study indicated that the aerial parts of Gentianella acuta Michx. Hulten (GA) was rich in xanthones and showed a good therapeutic effect on ulcerative colitis in mice, suggesting that GA xanthones might have some therapeutic or ameliorative effects on CRC. However, no relevant study has been reported. This study aims to find the effective substances of GA inhibiting CRC and clarify their mechanism. Solvent extraction, column chromatographic separation, and LC-MS analysis were used to characterize the 70% EtOH extract of GA and track xanthones abundant fraction XF. MTT assay was carried out to clarify the activity of GA fractions; the result showed XF to be the main active fraction. LC-MS analysis was executed to characterize XF, 38 xanthones were identified. Network pharmacology prediction, in vitro activity screening, and molecular docking assay were combined to predict the potential mechanism; the PI3K/Akt/mTOR signaling pathway was found to be most important. Western blot assay on the main active xanthones 1,3,5-trihydroxyxanthone (16), 1,3,5,8-tetrahydroxyxanthone (17), 1,5,8-trihydroxy-3-methoxyxanthone (18), and 1,7-dihydroxy-3,8-dimethoxyxanthone (19) was used to verify the above prediction; these xanthones were found to inhibit the PI3K/Akt/mTOR signaling pathway, and 17 played a significant role among them through Western blot assay using PI3K/AKT/mTOR agonist IGF-1. In conclusion, this study demonstrated that GA xanthones were effective compounds of GA inhibiting CRC by regulating PI3K/Akt/mTOR signaling pathway transduction, at least. Importantly, 1,3,5,8-tetrahydroxyxanthone (17), the most abundant active xanthone in GA, might be a candidate drug for CRC.


Subject(s)
Colitis, Ulcerative , Colorectal Neoplasms , Gentianella , Xanthones , Mice , Animals , Proto-Oncogene Proteins c-akt/metabolism , Gentianella/chemistry , Phosphatidylinositol 3-Kinases/metabolism , Molecular Docking Simulation , Signal Transduction , TOR Serine-Threonine Kinases/metabolism , Xanthones/pharmacology , Xanthones/chemistry , Colorectal Neoplasms/drug therapy , Cell Proliferation
2.
Molecules ; 27(14)2022 Jul 20.
Article in English | MEDLINE | ID: mdl-35889496

ABSTRACT

Punica granatum L. (Punicaceae) is a popular fruit all over the world. Owning to its enriched polyphenols, P. granatum has been widely used in treating inflammation-related diseases, such as cardiovascular diseases and cancer. Twenty polyphenols, containing nine unreported ones, named punicagranins A-I (1-9), along with eleven known isolates (10-20), were obtained from the peels. Their detailed structures were elucidated based on UV, IR, NMR, MS, optical rotation, ECD analyses and chemical evidence. The potential anti-inflammatory activities of all polyphenols were examined on a lipopolysaccharide (LPS)-induced inflammatory macrophages model, which indicated that enhancing nitric oxide (NO) production in response to inflammation stimulated in RAW 264.7 cells was controlled by compounds 1, 3, 5-8, 10, 11, 14 and 16-20 in a concentration-dependent manner. The investigation of structure-activity relationships for tannins 6-8 and 12-20 suggested that HHDP, flavogallonyl and/or gallagyl were key groups for NO production inhibitory activity. Western blotting indicated that compounds 6-8 could down-regulate the phosphorylation levels of proteins p38 MAPK, IKKα/ß, IκBα and NF-κB p65 as well as inhibit the levels of inflammation-related cytokines and mediators, such as IL-6, TNF-α, iNOS and COX-2, at the concentration of 30 µM. In conclusion, polyphenols are proposed to be the potential anti-inflammatory active ingredients in P. granatum peels, and their molecular mechanism is likely related to the regulation of the p38 MAPK and NF-κB signaling pathways.


Subject(s)
Lythraceae , Pomegranate , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Cytokines/metabolism , Inflammation/drug therapy , Inflammation/metabolism , Lipopolysaccharides/pharmacology , Mice , NF-kappa B/metabolism , Nitric Oxide/metabolism , Polyphenols/pharmacology , Polyphenols/therapeutic use , RAW 264.7 Cells , Signal Transduction , p38 Mitogen-Activated Protein Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL