Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 396
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 155(5): 1154-1165, 2013 Nov 21.
Article in English | MEDLINE | ID: mdl-24267894

ABSTRACT

Marijuana has been used for thousands of years as a treatment for medical conditions. However, untoward side effects limit its medical value. Here, we show that synaptic and cognitive impairments following repeated exposure to Δ(9)-tetrahydrocannabinol (Δ(9)-THC) are associated with the induction of cyclooxygenase-2 (COX-2), an inducible enzyme that converts arachidonic acid to prostanoids in the brain. COX-2 induction by Δ(9)-THC is mediated via CB1 receptor-coupled G protein ßγ subunits. Pharmacological or genetic inhibition of COX-2 blocks downregulation and internalization of glutamate receptor subunits and alterations of the dendritic spine density of hippocampal neurons induced by repeated Δ(9)-THC exposures. Ablation of COX-2 also eliminates Δ(9)-THC-impaired hippocampal long-term synaptic plasticity, working, and fear memories. Importantly, the beneficial effects of decreasing ß-amyloid plaques and neurodegeneration by Δ(9)-THC in Alzheimer's disease animals are retained in the presence of COX-2 inhibition. These results suggest that the applicability of medical marijuana would be broadened by concurrent inhibition of COX-2.


Subject(s)
Cyclooxygenase 2/metabolism , Dronabinol/pharmacology , Memory/drug effects , Signal Transduction , Synapses/drug effects , Animals , Cannabis/chemistry , Cyclooxygenase 2/genetics , Hippocampus/cytology , Hippocampus/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Neuronal Plasticity/drug effects , Neurons/metabolism , Receptor, Cannabinoid, CB1/metabolism
2.
Nucleic Acids Res ; 52(D1): D1315-D1326, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-37870452

ABSTRACT

Human endogenous retroviruses (HERVs), as remnants of ancient exogenous retrovirus infected and integrated into germ cells, comprise ∼8% of the human genome. These HERVs have been implicated in numerous diseases, and extensive research has been conducted to uncover their specific roles. Despite these efforts, a comprehensive source of HERV-disease association still needs to be added. To address this gap, we introduce the HervD Atlas (https://ngdc.cncb.ac.cn/hervd/), an integrated knowledgebase of HERV-disease associations manually curated from all related published literature. In the current version, HervD Atlas collects 60 726 HERV-disease associations from 254 publications (out of 4692 screened literature), covering 21 790 HERVs (21 049 HERV-Terms and 741 HERV-Elements) belonging to six types, 149 diseases and 610 related/affected genes. Notably, an interactive knowledge graph that systematically integrates all the HERV-disease associations and corresponding affected genes into a comprehensive network provides a powerful tool to uncover and deduce the complex interplay between HERVs and diseases. The HervD Atlas also features a user-friendly web interface that allows efficient browsing, searching, and downloading of all association information, research metadata, and annotation information. Overall, the HervD Atlas is an essential resource for comprehensive, up-to-date knowledge on HERV-disease research, potentially facilitating the development of novel HERV-associated diagnostic and therapeutic strategies.


Subject(s)
Endogenous Retroviruses , Knowledge Bases , Virus Diseases , Humans , Virus Diseases/genetics , Virus Diseases/virology , Atlases as Topic , Internet Use
3.
J Cell Mol Med ; 28(8): e18327, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38661437

ABSTRACT

Cartilage defects in the knee are often associated with the progression of degenerative osteoarthritis (OA), and cartilage repair is a useful strategy for managing this disease. However, cartilage repair is challenging because of the unique environment within the tissue. Recently, stem cell-based therapies have shed new light on this issue. In this study, we prepared exosomes (EXOs) from cartilage stem/progenitor cells (CSPCs) and found that treatment with EXOs increased the viability, migration, and proliferation of cultured primary chondrocytes. In a subacute OA rat model, the application of EXOs facilitated cartilage regeneration as evidenced by histological staining. Exosomal protein analysis together with bioinformatics suggested that cyclin-dependent kinase 9 (CDK9) is a key factor for chondrocyte growth and migration. Functional studies confirmed this prediction, that is, inhibiting CDK9 reduced the beneficial effects induced by EXOs in primary chondrocytes; while overexpression of CDK9 recapitulated the EXOs-induced phenotypes. RNA-Seq data showed that a set of genes involved in cell growth and migration were up-regulated by EXOs in chondrocytes. These changes could be partially reproduced by CDK9 overexpression. Overall, our data suggest that EXOs derived from primary CSPCs hold great therapeutic potential for treating cartilage defect-associated disorders such as degenerative OA, and that CDK9 is a key factor in this process.


Subject(s)
Cartilage, Articular , Cell Proliferation , Chondrocytes , Disease Models, Animal , Exosomes , Animals , Exosomes/metabolism , Rats , Chondrocytes/metabolism , Cartilage, Articular/metabolism , Cartilage, Articular/pathology , Stem Cells/metabolism , Stem Cells/cytology , Cell Movement , Rats, Sprague-Dawley , Cyclin-Dependent Kinase 9/metabolism , Cyclin-Dependent Kinase 9/genetics , Osteoarthritis, Knee/metabolism , Osteoarthritis, Knee/pathology , Osteoarthritis, Knee/therapy , Male , Cells, Cultured , Regeneration , Osteoarthritis/pathology , Osteoarthritis/metabolism , Osteoarthritis/therapy
4.
Small ; : e2400238, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38385800

ABSTRACT

The performance of Stimulated Emission Depletion (STED) microscopy depends critically on the fluorescent probe. Ultrasmall Au nanoclusters (Au NCs) exhibit large Stokes shift, and good stimulated emission response, which are potentially useful for STED imaging. However, Au NCs are polydispersed in size, sensitive to the surrounding environment, and difficult to control surface functional group stoichiometry, which results in reduced density and high heterogeneity in the labeling of biological structures. Here, this limitation is overcome by developing a method to encapsulate ultrasmall Au NCs with DNA cages, which yielded monodispersed, and monofunctionalized Au NCs that are long-term stable. Moreover, the DNA-caging also greatly improved the fluorescence quantum yield and photostability of Au NCs. In STED imaging, the DNA-caged Au NCs yielded ≈40 nm spatial resolution and are able to resolve microtubule line shapes with good labeling density and homogeneity. In contrast, without caging, the Au NCs-DNA conjugates only achieved ≈55 nm resolution and yielded spotted, poorly resolved microtubule structures, due to the presence of aggregates. Overall, a method is developed to achieve precise surface functionalization and greatly improve the monodispersity, stability, as well as optical properties of Au NCs, providing a promising class of fluorescent probes for STED imaging.

5.
J Transl Med ; 22(1): 272, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38475878

ABSTRACT

BACKGROUND: In HBV-associated HCC, T cells often exhibit a state of functional exhaustion, which prevents the immune response from rejecting the tumor and allows HCC to progress. Moreover, polymerase-specific T cells exhibit more severe T-cell exhaustion compared to core-specific T cells. However, whether HBV DNA polymerase drives HBV-specific CD8+ T cell exhaustion in HBV-related HCC remains unclear. METHODS: We constructed a Huh7 cell line stably expressing HA-HBV-DNA-Pol and applied co-culture systems to clarify its effect on immune cell function. We also examined how HBV-DNA-Pol modulated PD-L1 expression in HCC cells. In addition, HBV-DNA-Pol transgenic mice were used to elucidate the underlying mechanism of HBV-DNA-Pol/PD-L1 axis-induced T cell exhaustion. RESULTS: Biochemical analysis showed that Huh7 cells overexpressing HBV-DNA-Pol inhibited the proliferation, activation, and cytokine secretion of Jurkat cells and that this effect was dependent on their direct contact. A similar inhibitory effect was observed in an HCC mouse model. PD-L1 was brought to our attention during screening. Our results showed that the overexpression of HBV-DNA-Pol upregulated PD-L1 mRNA and protein expression. PD-L1 antibody blockade reversed the inhibitory effect of Huh7 cells overexpressing HBV-DNA-Pol on Jurkat cells. Mechanistically, HBV-DNA-Pol interacts with PARP1, thereby inhibiting the nuclear translocation of PARP1 and further upregulating PD-L1 expression. CONCLUSIONS: Our findings suggest that HBV-DNA-Pol can act as a regulator of PD-L1 in HCC, thereby directing anti-cancer immune evasion, which further provides a new idea for the clinical treatment of liver cancer.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Mice , Animals , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , Hepatitis B virus/genetics , DNA, Viral , B7-H1 Antigen/metabolism , CD8-Positive T-Lymphocytes , DNA-Directed DNA Polymerase/metabolism
6.
Eur J Nucl Med Mol Imaging ; 51(3): 779-796, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37864593

ABSTRACT

PURPOSE: The study aimed to using multiparametric MRI radiomics to predict glioma tumor residuals (TRFET over MR) derived from incongruent [18F]fluoroethyl-L-tyrosine ([18F]FET) PET/MR imaging. METHODS: One hundred ten patients with gliomas who underwent [18F]FET PET/MR scanning were retrospectively analyzed. The TRFET over MR was identified by the discrepancy-PET that the extent of resection (EOR) based on MRI subtracted the biological tumor volume on PET images. The MRI parameters and radiomics features were extracted based on EOR and selected by the least absolute shrinkage and selection operator to construct radiomics score (Rad-score). The correlation network analysis of all features was analyzed by Spearman's correlation tests. The methods for evaluating the clinical usefulness consisted of the receiver operating characteristic curve, the calibration curve, and decision curve analysis. RESULTS: The Rad-score of the patients with the TRFET over MR was significantly higher than those with the non TRFET over MR (p < 0.001). The Rad-score was significantly correlated with the discrepancy-PET (r = 0.72, p < 0.001), Ki-67 level (r = 0.76, p < 0.001), and epidermal growth factor receptor (EGFR) of gliomas (r = 0.75, p < 0.001), respectively. Moreover, there was a difference of the correlation network analysis between the TRPET over MR group and non TRFET over MR group. The nomogram combing Rad-score and clinical features had the greatest performance in predicting TRFET over MR (AUC = 0.90/0.87, training/testing). There was a significant difference in prognosis (median OS, 17 m vs. 43 m) between patients with TRFET over MR and non TRFET over MR based on nomogram prediction (p < 0.001). CONCLUSION: The nomogram based on MRI radiomics would predict gliomas tumor residuals caused by the absence of 18F-PET PET examination and adjust EOR to improve prognosis.


Subject(s)
Brain Neoplasms , Glioma , Multiparametric Magnetic Resonance Imaging , Humans , Nomograms , Retrospective Studies , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/pathology , Radiomics , Glioma/diagnostic imaging , Glioma/pathology , Magnetic Resonance Imaging , Positron-Emission Tomography , Cell Proliferation
7.
Langmuir ; 40(10): 5137-5150, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38412064

ABSTRACT

Imidazole, being an interesting dinitrogenic five-membered heterocyclic core, has been widely explored during the last several decades for developing various fascinating materials. Among the different domains where imidazole-based materials find wide applications, the area of optoelectronics has seen an overwhelming growth of functional imidazole derivatives developed through remarkable design and synthesis strategies. The present work reports a design approach for integrating bulky donor units at the four terminals of an imidazole core, leading to the development of sterically populated imidazole-based molecular platforms with interesting structural features. Rationally chosen starting substrates led to the incorporation of a bulky donor at the four terminals of the imidazole core. In addition, homo- and cofunctional molecular systems were synthesized through a suitable combination of initial ingredients. Our approach was extended to develop a series of four molecular systems, i.e., Cz3PhI, Cz4I, Cz3PzI, and TPA3CzI, containing carbazole, phenothiazine, and triphenylamine as known efficient donors at the periphery. Given their interesting structural features, three sterically crowded molecules (Cz4I, Cz3PzI, and TPA3CzI) were screened by using DFT and TD-DFT calculations to investigate their potential as hole transport materials (HTMs) for optoelectronic devices. The theoretical studies on several aspects including hole reorganization and exciton binding energies, ionization potential, etc., revealed their potential as possible candidates for the hole transport layer of OLEDs. Single-crystal analysis of Cz3PhI and Cz3PzI established interesting structural features including twisted geometries, which may help attain high triplet energy. Finally, the importance of theoretical predictions was established by fabricating two solution-process green phosphorescent OLED devices using TPA3CzI and Cz3PzI as HTMs. The fabricated devices exhibited good EQE/PE and CE of ∼15%/56 lm/W/58 cd/A and ∼13%/47 lm/W/50 cd/A, respectively, at 100 cd/m2.

8.
Mol Cell Biochem ; 479(4): 1011-1022, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37273040

ABSTRACT

Retinoblastoma (RB) is an intraocular malignancy that is most common in children and rare in adults. Addressing novel biomarkers and therapeutic targets for RB to modulate tumor progression has become a challenge. The aim of the present study was to investigate the function of long non-coding RNAs (LncRNAs) LOXL1-AS1 in RB cell proliferation and metastasis. It was found that LOXL1-AS1 was overexpressed in RB tissues and cells. In order to evaluate cell viability and colony formation potential, the knockdown of LOXL1-AS1 has been established. Knockdown of LOXL1-AS1 was also inhibited cells migration and invasion. In addition, the proportion of cells in the G2/M phase of the sh-LOXL1-AS1 group increased significantly, and the proportion of cells in the sh-NC group decreased significantly. In the xenograft model of RB, the tumors in the sh-LOXL1-AS1 group grow slowly compared to the sh-NC group. Western blot analysis revealed that LOXL1-AS1 can regulate the progression of RB cells through MAPK signaling pathway in vitro and in vivo. These results indicated that LncRNA LOXL1-AS1 promotes proliferation, invasion and inhibits apoptosis of retinoblastoma by regulating MAPK signaling pathway, and might be expected to be a novel basis for clinical diagnosis and treatment.


Subject(s)
RNA, Long Noncoding , Retinal Neoplasms , Retinoblastoma , Humans , Amino Acid Oxidoreductases/genetics , Amino Acid Oxidoreductases/metabolism , Apoptosis/genetics , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Retinal Neoplasms/genetics , Retinoblastoma/genetics , RNA, Long Noncoding/metabolism , Signal Transduction
9.
Cancer Control ; 31: 10732748241253956, 2024.
Article in English | MEDLINE | ID: mdl-38756002

ABSTRACT

PURPOSE: This investigation leveraged the SEER database to delve into the progression patterns of PTC when left untreated. Furthermore, it aimed to devise and authenticate a nomogram for prognosis prediction for such patients. METHODS: We extracted data from the SEER database, focusing on PTC-diagnosed individuals from 2004-2020. To discern disease progression intervals, median survival times across stages were gauged, and the disease progression time was estimated by subtracting the median survival time of a more severe stage from its preceding stage. Prognostic determinants in the training set were pinpointed using both univariate and multivariate Cox regression. Using these determinants, a prognostic nomogram was crafted. RESULTS: In untreated PTC patients, those in stages I and II had a favorable prognosis, with 10-year overall survival rates of 86.34% and 66.03%, respectively. Patients in stages III and IV had a relatively poorer prognosis. The median survival time of stage III, stage IVA, stage IVB and stage IVC patients was 108months, 43 months, 20 months and 8 months, respectively. The deduced progression intervals from stages III-IVC were 65, 23, and 12 months. In the training set, age, tumor stage, gender, and marital status were identified as independent risk factors influencing the prognosis of untreated PTC, and a nomogram was constructed using these variables. CONCLUSION: In the absence of treatment intervention, early-stage PTC progressed slowly with an overall favorable prognosis. However, in mid to advanced-stage PTC, as tumor stage increased, disease progression accelerated, and prognosis gradually worsened. Age, tumor stage, marital status, and gender were independent risk factors influencing the prognosis of untreated PTC, and the nomogram based on these factors demonstrated good prognostic capability.


PurposeThis investigation leveraged the SEER database to delve into the progression patterns of PTC when left untreated. Furthermore, it aimed to devise and authenticate a nomogram for prognosis prediction for such patients.MethodsWe extracted data from the SEER database, focusing on PTC-diagnosed individuals from 2004-2020. To discern disease progression intervals, median survival times across stages were gauged, and the disease progression time was estimated by subtracting the median survival time of a more severe stage from its preceding stage. Prognostic determinants in the training set were pinpointed using both univariate and multivariate Cox regression. Using these determinants, a prognostic nomogram was crafted.ResultsIn untreated PTC patients, those in stages I and II had a favorable prognosis, with ten-year overall survival rates of 86.34% and 66.03%, respectively. Patients in stages III and IV had a relatively poorer prognosis. The median survival time of stage III, stage IVA, stage IVB and stage IVC patients was 108months, 43 months, 20 months and 8 months, respectively. The deduced progression intervals from stages III-IVC were 65, 23, and 12 months. In the training set, age, tumor stage, gender, and marital status were identified as independent risk factors influencing the prognosis of untreated PTC, and a nomogram was constructed using these variables.ConclusionIn the absence of treatment intervention, early-stage PTC progressed slowly with an overall favorable prognosis. However, in mid to advanced-stage PTC, as tumor stage increased, disease progression accelerated, and prognosis gradually worsened. Age, tumor stage, marital status, and gender were independent risk factors influencing the prognosis of untreated PTC, and the nomogram based on these factors demonstrated good prognostic capability.


Subject(s)
Disease Progression , Neoplasm Staging , Nomograms , SEER Program , Thyroid Cancer, Papillary , Humans , Male , Female , SEER Program/statistics & numerical data , Prognosis , Middle Aged , Thyroid Cancer, Papillary/mortality , Thyroid Cancer, Papillary/pathology , Adult , Thyroid Neoplasms/pathology , Thyroid Neoplasms/mortality , Thyroid Neoplasms/epidemiology , Risk Factors , Survival Rate , Aged , Proportional Hazards Models
10.
Inorg Chem ; 63(4): 1954-1961, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38214970

ABSTRACT

Cost-effective and earth-abundant oxygen evolution reaction (OER) electrocatalysts are an incredible research hotspot in numerous energy storage and conversion technology fields. Herein, CoS2/MoS2 nanosheets supported by carbon cloth as a dual-active CC@CoS2/MoS2 heterostructure electrocatalyst is prepared through a simple solvothermal method. The catalyst demonstrates admirable OER performance in 1 M KOH solution with a low overpotential of 243 mV at a current density of 10 mA cm-2 and a minor Tafel slope of 109 mV dec-1, displaying honorable stability after 1000 cyclic voltammetry (CV) cycles and long-term robustness over 60 h. Theoretical calculations further ascertain that the rate-determining step of the electrocatalytic course of the CC@CoS2/MoS2 heterostructure is the conversion *O + OH- → *OOH + e- with a lower energy barrier of 1.49 eV due to the heterojunction established by CoS2 and MoS2, which can promote the OER performance of electrocatalysts. The actual identification of the catalytic mechanism in the heterostructure is conducive to the improvement of electrocatalysis applications in the OER.

11.
Fish Shellfish Immunol ; 149: 109595, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38692381

ABSTRACT

This study aimed to elucidate the effects of dietary fermented products of Bacillus velezensis T23 on the growth, immune response and gut microbiota in Pacific white shrimp (Litopenaeus vannamei). Shrimp were fed with diets containing fermentation products of B. velezensis T23 at levels of (0, 0.05, 0.1, 0.2, 0.3, 0.4, and 0.5 g/kg) for 4 weeks, to assess the influence on shrimp growth. The results showed that 0.3 and 0.4 g/kg T23 supplementation improved shrimp growth and feed utilization. Based on these results we selected these three diets (Control, 0.3T23 and 0.4T23) to assess the effect on immune response and gut microbiota of shrimp. Compared with the control, the 0.3T23 and 0.4T23 groups enhanced lipase and α-amylase activities in the gut significantly. Moreover, the 0.4T23 group decreased TAG and MDA levels in hepatopancreas, ALT and AST levels of serum significantly (P < 0.05). In hepatopancreas, CAT and SOD activities were improved observably and the MDA content was reduced markedly in both T23 groups. The expressions of antimicrobial related genes, Cru and peroxinectin in the 0.3T23 group, and proPO and peroxinectin in the 0.4T23 group were up-regulated remarkably (P < 0.05). Moreover, hepatopancreas of shrimp fed with a diet amended with T23 showed a significant down-regulated expression of nf-kb and tnf-α genes, while expressions of tgf-ß was considerably up-regulated. Furthermore, serum LPS and LBP contents were reduced markedly in T23 groups. Intestinal SOD and CAT were noteworthy higher in T23 groups (P < 0.05). In the intestine of shrimp fed on the diet enriched with T23 the expression of nf-κb and tnf-α exhibited markedly down-regulated, whereas hif1α was up-regulated (P < 0.05). Besides, in the intestine of shrimp grouped under T23, Cru and peroxinectin genes were markedly up-regulated (P < 0.05). Dietary 0.3 g/kg T23 also upregulated the ratio of Rhodobacteraceae to Vibrionaceae in the gut of the shrimp. Taken together, the inclusion of B. velezensis T23 in the diet of shrimp enhanced the growth and feed utilization, enhanced hepatopancreas and intestine health.


Subject(s)
Animal Feed , Bacillus , Diet , Hepatopancreas , Intestines , Penaeidae , Probiotics , Animals , Penaeidae/immunology , Penaeidae/growth & development , Penaeidae/microbiology , Animal Feed/analysis , Diet/veterinary , Hepatopancreas/immunology , Hepatopancreas/metabolism , Probiotics/administration & dosage , Probiotics/pharmacology , Dietary Supplements/analysis , Fermentation , Random Allocation , Gastrointestinal Microbiome/drug effects , Immunity, Innate , Dose-Response Relationship, Drug
12.
J Phys Chem A ; 128(18): 3557-3563, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38666353

ABSTRACT

Azido-tetrazolo tautomerizations between azido N-heteroaromatic compounds and tetrazole-fused energetic materials can produce a new generation of high-energy density compounds. Density functional theory (DFT) computations are performed to explore the relationship between reaction barriers and electron densities of bonding N atoms, i.e., the terminal N1 and heterocyclic N2 atoms, for six reported tautomerizations. The results reveal four linear correlations between reverse reaction barriers (Gr) and the electron densities of N1 and N2 atoms in the product. N1 electron density (ρN1) and N-N bond polarity, as measured by the difference between the electron densities on the two N atoms (ΔρN = ρN1 - ρN2) in products, are inversely proportional to the reverse reaction barriers. They are also proportional to the energy barrier differences between the forward and reverse reactions (ΔG = Gf - Gr). Polar solvents, including DMSO, water, and acetone, can effectively increase the reverse reaction barriers (Gr) by improving the stability of products. This regularity is further confirmed by its application to four additional tautomerizations and can be used to screen out unfavorable azido-tetrazolo tautomerization reactions and increase the success rate of such synthesis.

13.
Biomed Eng Online ; 23(1): 5, 2024 Jan 14.
Article in English | MEDLINE | ID: mdl-38221632

ABSTRACT

BACKGROUND: Breast fibroadenoma poses a significant health concern, particularly for young women. Computer-aided diagnosis has emerged as an effective and efficient method for the early and accurate detection of various solid tumors. Automatic segmentation of the breast fibroadenoma is important and potentially reduces unnecessary biopsies, but challenging due to the low image quality and presence of various artifacts in sonography. METHODS: Human learning involves modularizing complete information and then integrating it through dense contextual connections in an intuitive and efficient way. Here, a human learning paradigm was introduced to guide the neural network by using two consecutive phases: the feature fragmentation stage and the information aggregation stage. To optimize this paradigm, three fragmentation attention mechanisms and information aggregation mechanisms were adapted according to the characteristics of sonography. The evaluation was conducted using a local dataset comprising 600 breast ultrasound images from 30 patients at Suining Central Hospital in China. Additionally, a public dataset consisting of 246 breast ultrasound images from Dataset_BUSI and DatasetB was used to further validate the robustness of the proposed network. Segmentation performance and inference speed were assessed by Dice similarity coefficient (DSC), Hausdorff distance (HD), and training time and then compared with those of the baseline model (TransUNet) and other state-of-the-art methods. RESULTS: Most models guided by the human learning paradigm demonstrated improved segmentation on the local dataset with the best one (incorporating C3ECA and LogSparse Attention modules) outperforming the baseline model by 0.76% in DSC and 3.14 mm in HD and reducing the training time by 31.25%. Its robustness and efficiency on the public dataset are also confirmed, surpassing TransUNet by 0.42% in DSC and 5.13 mm in HD. CONCLUSIONS: Our proposed human learning paradigm has demonstrated the superiority and efficiency of ultrasound breast fibroadenoma segmentation across both public and local datasets. This intuitive and efficient learning paradigm as the core of neural networks holds immense potential in medical image processing.


Subject(s)
Breast Neoplasms , Fibroadenoma , Humans , Female , Fibroadenoma/diagnostic imaging , Learning , Ultrasonography , Ultrasonography, Mammary , Breast Neoplasms/diagnostic imaging , Neural Networks, Computer , Image Processing, Computer-Assisted
14.
Mol Divers ; 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38679675

ABSTRACT

Coronatine-insensitive 1 (COI1) has been identified as a target receptor of plant elicitor coronatine (COR). To discover novel plant elicitor leads, most of the potential molecules among 129 compounds discovered from the ZINC database by docking based virtual screening targeting COI1 were quinoline amides. On this lead basis, 2-benzothiadiazolylquinoline-4-carboxamides were rationally designed and synthesized for bioassay. All target compounds did not show significantly in vitro antifungal activity, compounds 4d, 4e and 4o displayed good in vivo systemic acquired resistance activity for Arabidopsis thaliana against Hyaloperonospora arabidopsidis isolate Noco2 with over 80% of inhibitory rate at the concentration of 50 µM. These results indicate that 2-benzothiadiazolylquinoline-4-carboxamides are promising plant elicitor leads for further study.

15.
Proc Natl Acad Sci U S A ; 118(33)2021 08 17.
Article in English | MEDLINE | ID: mdl-34380733

ABSTRACT

Idiopathic normal pressure hydrocephalus (iNPH) is a common neurological disorder that is characterized by enlarged cerebral ventricles, gait difficulty, incontinence, and dementia. iNPH usually develops after the sixth decade of life in previously asymptomatic individuals. We recently reported that loss-of-function deletions in CWH43 lead to the development of iNPH in a subgroup of patients, but how this occurs is poorly understood. Here, we show that deletions in CWH43 decrease expression of the cell adhesion molecule, L1CAM, in the brains of CWH43 mutant mice and in human HeLa cells harboring a CWH43 deletion. Loss-of-function mutations in L1CAM are a common cause of severe neurodevelopmental defects that include congenital X-linked hydrocephalus. Mechanistically, we find that CWH43 deletion leads to decreased N-glycosylation of L1CAM, decreased association of L1CAM with cell membrane lipid microdomains, increased L1CAM cleavage by plasmin, and increased shedding of cleaved L1CAM in the cerebrospinal fluid. CWH43 deletion also decreased L1CAM nuclear translocation, suggesting decreased L1CAM intracellular signaling. Importantly, the increase in L1CAM cleavage occurred primarily in the ventricular and subventricular zones where brain CWH43 is most highly expressed. Thus, CWH43 deletions may contribute to adult-onset iNPH by selectively downregulating L1CAM in the ventricular and subventricular zone.


Subject(s)
Cerebrospinal Fluid Pressure , Fibrinolysin/metabolism , Hydrocephalus/metabolism , Hydrocephalus/pathology , Membrane Proteins/metabolism , Neural Cell Adhesion Molecule L1/metabolism , Animals , Brain/pathology , Down-Regulation , Gene Deletion , Gene Expression Regulation , HeLa Cells , Humans , Lipids/chemistry , Magnetic Resonance Imaging , Membrane Proteins/genetics , Mice , Neural Cell Adhesion Molecule L1/genetics , Protein Binding , Protein Domains , RNA
16.
Undersea Hyperb Med ; 51(1): 85-92, 2024.
Article in English | MEDLINE | ID: mdl-38615357

ABSTRACT

This study aimed to investigate what factors determine freedivers' maximal static apnea dive time. We correlated some physical/physiological factors with male freedivers' maximum apnea diving duration. Thirty-six experienced male freedivers participated in this study. The divers participated in two days of the experiments. On the first day, apnea diving time, blood oxygen saturation (SpO2), heart rate (HR), blood pressure (BP), stress index, and blood parameters were measured before, during, and after the apnea diving in the pool. On the second day, body composition, lung capacity, resting and maximal oxygen consumption (VO2max), and the Wingate anaerobic power were measured in the laboratory. The data were analyzed with Pearson's Correlation using the SPSS 22 program. The correlation coefficient (R) of determination was set at 0.4, and the level of significance was set at p <0.05. There were positive correlations of diving experience, maximum SpO2, and lung capacity with the maximum apnea time R>0.4, P<0.05). There were negative correlations of BMI, body fat percentage, body fat mass, minimum SpO2, stress index, and total cholesterol with the maximum apnea diving time (R>-0.4, P<0.05). No correlations of age, height, weight, fat-free mass, skeletal muscle mass, HR, BP, blood glucose, beta- hydroxybutyrate, lactate, and hemoglobin levels with the maximum apnea diving time were observed (R<0.4, P>0.05). It is concluded that more experience in freediving, reduced body fat, extended SpO2 range, and increased lung capacity are the performance predictors and beneficial for freedivers to improve their maximum apnea diving performance.


Subject(s)
Apnea , Diving , Humans , Apnea/etiology , 3-Hydroxybutyric Acid , Blood Glucose , Lactic Acid
17.
J Am Chem Soc ; 145(23): 12861-12869, 2023 06 14.
Article in English | MEDLINE | ID: mdl-37276358

ABSTRACT

Targeted protein degradation (TPD) is an emerging technique for protein regulation. Currently, all TPD developed in eukaryotic cells relies on either ubiquitin-proteasome or lysosomal systems, thus are powerless against target proteins in membrane organelles lacking proteasomes and lysosomes, such as mitochondria. Here, we developed a mitochondrial protease targeting chimera (MtPTAC) to address this issue. MtPTAC is a bifunctional small molecule that can bind to mitochondrial caseinolytic protease P (ClpP) at one end and target protein at the other. Mechanistically, MtPTAC activates the hydrolase activity of ClpP while simultaneously bringing target proteins into proximity with ClpP. Taking mitochondrial RNA polymerase (POLRMT) as a model protein, we have demonstrated the powerful proteolytic ability and antitumor application prospects of MtPTAC, both in vivo and in vitro. This is the first modularly designed TPD that can specifically hydrolyze target proteins inside mitochondria.


Subject(s)
Mitochondria , Proteins , Proteolysis , Mitochondria/metabolism , Proteins/metabolism , Proteasome Endopeptidase Complex/metabolism , Ubiquitin/metabolism , Endopeptidases/metabolism
18.
Hum Brain Mapp ; 44(9): 3467-3480, 2023 06 15.
Article in English | MEDLINE | ID: mdl-36988434

ABSTRACT

Alzheimer's disease (AD) is a common neurodegeneration disease associated with substantial disruptions in the brain network. However, most studies investigated static resting-state functional connections, while the alteration of dynamic functional connectivity in AD remains largely unknown. This study used group independent component analysis and the sliding-window method to estimate the subject-specific dynamic connectivity states in 1704 individuals from three data sets. Informative inherent states were identified by the multivariate pattern classification method, and classifiers were built to distinguish ADs from normal controls (NCs) and to classify mild cognitive impairment (MCI) patients with informative inherent states similar to ADs or not. In addition, MCI subgroups with heterogeneous functional states were examined in the context of different cognition decline trajectories. Five informative states were identified by feature selection, mainly involving functional connectivity belonging to the default mode network and working memory network. The classifiers discriminating AD and NC achieved the mean area under the receiver operating characteristic curve of 0.87 with leave-one-site-out cross-validation. Alterations in connectivity strength, fluctuation, and inter-synchronization were found in AD and MCIs. Moreover, individuals with MCI were clustered into two subgroups, which had different degrees of atrophy and different trajectories of cognition decline progression. The present study uncovered the alteration of dynamic functional connectivity in AD and highlighted that the dynamic states could be powerful features to discriminate patients from NCs. Furthermore, it demonstrated that these states help to identify MCIs with faster cognition decline and might contribute to the early prevention of AD.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Machine Learning
19.
J Virol ; 96(21): e0137322, 2022 11 09.
Article in English | MEDLINE | ID: mdl-36226984

ABSTRACT

Zika virus (ZIKV) is transmitted mostly via mosquito bites and no vaccine is available, so it may reemerge. We and others previously demonstrated that neonatal infection of ZIKV results in heart failure and can be fatal. Animal models implicated ZIKV involvement in viral heart diseases. It is unknown whether and how ZIKV causes heart failure in adults. Herein, we studied the effects of ZIKV infection on the heart function of adult A129 mice. First, we found that ZIKV productively infects the rat-, mouse-, or human-originated heart cell lines and caused ubiquitination-mediated degradation of and distortive effects on connexin 43 (Cx43) protein that is important for communications between cardiomyocytes. Second, ZIKV infection caused 100% death of the A129 mice with decreasing body weight, worsening health score, shrugging fur, and paralysis. The viral replication was detected in multiple organs. In searching for the viral effects on heart of the A129 mice, we found that ZIKV infection resulted in the increase of cardiac muscle enzymes, implicating a viral acute myocardial injury. ZIKV-caused heart injury was also demonstrated by electrocardiogram (ECG) showing widened and fragmented QRS waves, prolonged PR interval, and slower heart rate. The intercalated disc (ICD) between two cardiomyocytes was destroyed, as shown by the electronic microscopy, and the Cx43 distribution in the ICDs was less organized in the ZIKV-infected mice compared to that in the phosphate-buffered saline (PBS)-treated mice. Consistently, ZIKV productively infected the heart of A129 mice and decreased Cx43 protein. Therefore, we demonstrated that ZIKV infection caused heart failure, which might lead to fatal sequelae in ZIKV-infected A129 mice. IMPORTANCE Zika virus (ZIKV) is a teratogen causing devastating sequelae to the newborns who suffer a congenital ZIKV infection while it brings about only mild symptoms to the health-competent older children or adults. Mouse models have played an important role in mechanistic and pathogenic studies of ZIKV. In this study, we employed 3 to 4 week-old A129 mice for ZIKV infection. RT-qPCR assays discovered that ZIKV replicated in multiple organs, including the heart. As a result of ZIKV infection, the A129 mice experienced weight loss, health score worsening, paralysis, and deaths. We revealed that the ZIKV infection caused abnormal electrocardiogram presentations, increased cardiac muscle enzymes, downregulated Cx43, and destroyed the gap junction and the intercalated disc between the cardiomyocytes, implicating that ZIKV may cause an acute myocardial injury in A129 mice. Therefore, our data imply that ZIKV infection may jeopardize the immunocompromised population with a severe clinical consequence, such as heart defect.


Subject(s)
Heart Diseases , Heart Failure , Zika Virus Infection , Zika Virus , Infant, Newborn , Child , Animals , Mice , Humans , Rats , Adolescent , Connexin 43 , Myocytes, Cardiac/pathology , Disease Models, Animal , Gap Junctions/pathology , Paralysis
20.
Cancer Cell Int ; 23(1): 273, 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37974212

ABSTRACT

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease that requires precise diagnosis for effective treatment. However, the diagnostic value of carbohydrate antigen 19 - 9 (CA19-9) is limited. Therefore, this study aims to identify novel tumor-associated autoantibodies (TAAbs) for PDAC diagnosis. METHODS: A three-phase strategy comprising discovery, test, and validation was implemented. HuProt™ Human Proteome Microarray v3.1 was used to screen potential TAAbs in 49 samples. Subsequently, the levels of potential TAAbs were evaluated in 477 samples via enzyme-linked immunosorbent assay (ELISA) in PDAC, benign pancreatic diseases (BPD), and normal control (NC), followed by the construction of a diagnostic model. RESULTS: In the discovery phase, protein microarrays identified 167 candidate TAAbs. Based on bioinformatics analysis, fifteen tumor-associated antigens (TAAs) were selected for further validation using ELISA. Ten TAAbs exhibited differentially expressed in PDAC patients in the test phase (P < 0.05), with an area under the curve (AUC) ranging from 0.61 to 0.76. An immunodiagnostic model including three TAAbs (anti-HEXB, anti-TXLNA, anti-SLAMF6) was then developed, demonstrating AUCs of 0.81 (58.0% sensitivity, 86.0% specificity) and 0.78 (55.71% sensitivity, 87.14% specificity) for distinguishing PDAC from NC. Additionally, the model yielded AUCs of 0.80 (58.0% sensitivity, 86.25% specificity) and 0.83 (55.71% sensitivity, 100% specificity) for distinguishing PDAC from BPD in the test and validation phases, respectively. Notably, the combination of the immunodiagnostic model with CA19-9 resulted in an increased positive rate of PDAC to 92.91%. CONCLUSION: The immunodiagnostic model may offer a novel serological detection method for PDAC diagnosis, providing valuable insights into the development of effective diagnostic biomarkers.

SELECTION OF CITATIONS
SEARCH DETAIL