Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 678
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Proc Natl Acad Sci U S A ; 120(6): e2216933120, 2023 Feb 07.
Article in English | MEDLINE | ID: mdl-36716361

ABSTRACT

Sluggish CO2 reduction reaction (CO2RR) and evolution reaction (CO2ER) kinetics at cathodes seriously hamper the applications of Li-CO2 batteries, which have attracted vast attention as one kind of promising carbon-neutral technology. Two-dimensional transition metal dichalcogenides (TMDs) have shown great potential as the bidirectional catalysts for CO2 redox, but how to achieve a high exposure of dual active sites of TMDs with CO2RR/CO2ER activities remains a challenge. Herein, a bidirectional catalyst that vertically growing MoS2 on Co9S8 supported by carbon paper (V-MoS2/Co9S8@CP) has been designed with abundant edge as active sites for both CO2RR and CO2ER, improves the interfacial conductivity, and modulates the electron transportation pathway along the basal planes. As evidenced by the outstanding energy efficiency of 81.2% and ultra-small voltage gap of 0.68 V at 20 µA cm-2, Li-CO2 batteries with V-MoS2/Co9S8@CP show superior performance compared with horizontally growing MoS2 on Co9S8 (H-MoS2/Co9S8@CP), MoS2@CP, and Co9S8@CP. Density functional theory calculations help reveal the relationship between performance and structure and demonstrate the synergistic effect between MoS2 edge sites and Co9S8. This work provides an avenue to understand and realize rationally designed electronic contact of TMDs with specified crystal facets, but more importantly, provides a feasible guide for the design of high-performance cathodic catalyst materials in Li-CO2 batteries.

2.
Proc Natl Acad Sci U S A ; 120(32): e2305567120, 2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37527348

ABSTRACT

When a water drop is placed on a hot solid surface, it either undergoes explosive contact boiling or exhibits a stable state. In the latter case, the drop floats over an insulating layer of vapor generated by rapid vaporization of water at the surface/drop interface; this is known as the Leidenfrost state. Here, we discuss a previously unrecognized steady state in which a water drop "stands" on a hot smooth surface. In this state, the drop stabilizes itself with partial adhesion on the hot surface, leading to unique deformation and rotation behavior reminiscent of Sufi whirling-a form of spinning dance. Our analysis of this standing Leidenfrost state reveals the underlying mechanisms that drive the drop's stable partial adhesion and subsequent deformation with rotation. The heat-transfer efficiency of this standing state is up to 390% greater than that of the traditional floating Leidenfrost state.

3.
Plant J ; 117(4): 1264-1280, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37964640

ABSTRACT

Rosa roxburghii and Rosa sterilis, two species belonging to the Rosaceae family, are widespread in the southwest of China. These species have gained recognition for their remarkable abundance of ascorbate in their fresh fruits, making them an ideal vitamin C resource. In this study, we generated two high-quality chromosome-scale genome assemblies for R. roxburghii and R. sterilis, with genome sizes of 504 and 981.2 Mb, respectively. Notably, we present a haplotype-resolved, chromosome-scale assembly for diploid R. sterilis. Our results indicated that R. sterilis originated from the hybridization of R. roxburghii and R. longicuspis. Genome analysis revealed the absence of recent whole-genome duplications in both species and identified a series of duplicated genes that possibly contributing to the accumulation of flavonoids. We identified two genes in the ascorbate synthesis pathway, GGP and GalLDH, that show signs of positive selection, along with high expression levels of GDP-d-mannose 3', 5'-epimerase (GME) and GDP-l-galactose phosphorylase (GGP) during fruit development. Furthermore, through co-expression network analysis, we identified key hub genes (MYB5 and bZIP) that likely regulate genes in the ascorbate synthesis pathway, promoting ascorbate biosynthesis. Additionally, we observed the expansion of terpene synthase genes in these two species and tissue expression patterns, suggesting their involvement in terpenoid biosynthesis. Our research provides valuable insights into genome evolution and the molecular basis of the high concentration of ascorbate in these two Rosa species.


Subject(s)
Rosa , Rosa/genetics , Rosa/metabolism , Ascorbic Acid/metabolism , Genes, Plant , Chromosomes , Evolution, Molecular
4.
FASEB J ; 38(1): e23345, 2024 01.
Article in English | MEDLINE | ID: mdl-38038978

ABSTRACT

The tripartite interaction motif (TRIM) family of proteins is known for their antiviral activity through different mechanisms, such as interfering with viral components, regulating immune responses, and participating in autophagy-mediated defense pathways. In this study, we investigated the role of tripartite interaction motif 26 (TRIM26), which is encoded by a major histocompatibility complex (MHC) gene, in regulating Epstein-Barr virus (EBV) infection of nasopharyngeal epithelial cells. We found that TRIM26 expression was induced upon EBV infection and that it indirectly targeted EphA2, a crucial epithelial receptor for EBV entry. Our results showed that TRIM26 interacted with heat shock protein 90-beta (HSP-90ß) and promoted its polyubiquitination, which led to its degradation via the proteasome pathway. This, in turn, affected EphA2 integrity and suppressed EBV infection. These findings suggest that TRIM26 could be a valuable target for developing therapeutic interventions against EBV infection and its associated pathogenesis.


Subject(s)
Epstein-Barr Virus Infections , Humans , Epstein-Barr Virus Infections/metabolism , Herpesvirus 4, Human/physiology , Epithelial Cells/metabolism , Ubiquitination , Protein Domains , Tripartite Motif Proteins/genetics , Tripartite Motif Proteins/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
5.
Nature ; 565(7741): 631-635, 2019 01.
Article in English | MEDLINE | ID: mdl-30700869

ABSTRACT

Proton-exchange-membrane fuel cells (PEMFCs) are attractive next-generation power sources for use in vehicles and other applications1, with development efforts focusing on improving the catalyst system of the fuel cell. One problem is catalyst poisoning by impurity gases such as carbon monoxide (CO), which typically comprises about one per cent of hydrogen fuel2-4. A possible solution is on-board hydrogen purification, which involves preferential oxidation of CO in hydrogen (PROX)3-7. However, this approach is challenging8-15 because the catalyst needs to be active and selective towards CO oxidation over a broad range of low temperatures so that CO is efficiently removed (to below 50 parts per million) during continuous PEMFC operation (at about 353 kelvin) and, in the case of automotive fuel cells, during frequent cold-start periods. Here we show that atomically dispersed iron hydroxide, selectively deposited on silica-supported platinum (Pt) nanoparticles, enables complete and 100 per cent selective CO removal through the PROX reaction over the broad temperature range of 198 to 380 kelvin. We find that the mass-specific activity of this system is about 30 times higher than that of more conventional catalysts consisting of Pt on iron oxide supports. In situ X-ray absorption fine-structure measurements reveal that most of the iron hydroxide exists as Fe1(OH)x clusters anchored on the Pt nanoparticles, with density functional theory calculations indicating that Fe1(OH)x-Pt single interfacial sites can readily react with CO and facilitate oxygen activation. These findings suggest that in addition to strategies that target oxide-supported precious-metal nanoparticles or isolated metal atoms, the deposition of isolated transition-metal complexes offers new ways of designing highly active metal catalysts.

6.
Nano Lett ; 24(21): 6425-6432, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38747348

ABSTRACT

Two-dimensional semiconductor materials with vertical dipoles are promising photocatalysts as vertical dipoles not only promote the electron-hole separation but also enhance the carrier redox ability. However, the influence of vertical dipoles on carrier recombination in such materials, especially the competing relationship between vertical dipoles and band gaps, is not yet clear. Herein, first-principles calculations and nonadiabatic molecular dynamics simulations were combined to clarify the influence of band gap and vertical dipole on the carrier lifetime in Janus MoSSe monolayer. By comparing with the results of MoS2 and MoSe2 as well as exploring the carrier lifetime of MoSSe under strain regulation, it has been demonstrated that the vertical dipole, rather than the band gap, is the dominant factor affecting the carrier lifetime. Strikingly, a linear relationship between the carrier lifetime and vertical dipole is revealed. These findings have important implications for the design of high-performance photocatalysts and optoelectronic devices.

7.
Nano Lett ; 24(15): 4433-4438, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38564276

ABSTRACT

Twisted bilayer graphene (TBG) has the natural merits of tunable flat bands and localized states distributed as a triangular lattice. However, the application of this state remains obscure. By density functional theory (DFT) and pz orbital tight-binding model calculations, we investigate the tip-shaped electrostatic potential of top valence electrons of TBG at half filling. Adsorption energy scanning of molecules above the TBG reveals that this tip efficiently attracts molecules selectively to AA-stacked or AB-stacked regions. Tip shapes can be controlled by their underlying electronic structure, with electrons of low bandwidth exhibiting a more localized feature. Our results indicate that TBG tips offer applications in noninvasive and nonpolluting measurements in scanning probe microscopy and theoretical guidance for 2D material-based probes.

8.
Nano Lett ; 24(12): 3710-3718, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38484178

ABSTRACT

Two-dimensional (2D) van der Waals (vdW) heterostructures have attracted widespread attention in photocatalysis. Herein, we employ a novel strategy utilizing first-principles high-throughput inverse design of 2D Z-scheme heterojunctions for photocatalysis. This approach is anchored in high-throughput screening conditions, which are fundamentally based on the characteristics of carrier mechanisms influenced significantly by Z-scheme heterojunctions. A pivotal element of our screening process is the integration of the indirect-to-direct bandgap transition with momentum-matching band alignment in k-space, guiding us to combine two 2D indirect bandgap monolayers into direct Z-scheme heterojunctions characterized by pronounced interlayer excitons. Various stacking modes introduce extra and distinct degrees of freedom that can be useful for tuning the properties of heterostructures, encompassing factors such as components, stacking patterns, and sequences. We demonstrate that various stacking modes can facilitate the indirect-to-direct bandgap transition and the emergence of interlayer excitons. These findings provide exciting opportunities for designing Z-scheme heterojunctions in photocatalysis.

9.
Nano Lett ; 24(17): 5317-5323, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38635037

ABSTRACT

Exploring high-efficiency photocatalysts for selective CO2 reduction is still challenging because of the limited charge separation and surface reactions. In this study, a noble-metal-free metallic VSe2 nanosheet was incorporated on g-C3N4 to serve as an electron capture and transfer center, activating surface active sites for highly efficient and selective CO2 photoreduction. Quasi in situ X-ray photoelectron spectroscopy (XPS), soft X-ray absorption spectroscopy (sXAS), and femtosecond transient absorption spectroscopy (fs-TAS) unveiled that VSe2 could capture electrons, which are further transferred to the surface for activating active sites. In situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and density functional theory (DFT) calculations revealed a kinetically feasible process for the formation of a key intermediate and confirmed the favorable production of CO on the VSe2/PCN (protonated C3N4) photocatalyst. As an outcome, the optimized VSe2/PCN composite achieved 97% selectivity for solar-light-driven CO2 conversion to CO with a high rate of 16.3 µmol·g-1·h-1, without any sacrificial reagent or photosensitizer. This work offers new insights into the photocatalyst design toward highly efficient and selective CO2 conversion.

10.
Nano Lett ; 24(10): 3213-3220, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38426819

ABSTRACT

Rational design of well-defined active sites is crucial for promoting sluggish oxygen reduction reactions. Herein, leveraging the surfactant-oriented and solvent-ligand effects, we develop a facile self-assembly strategy to construct a core-shell catalyst comprising a high-index Pt shell encapsulating a PtCu3 intermetallic core with efficient oxygen-reduction performance. Without undergoing a high-temperature route, the ordered PtCu3 is directly fabricated through the accelerated reduction of Cu2+, followed by the deposition of the remaining Pt precursor onto its surface, forming high-index steps oriented by the steric hindrance of surfactant. This approach results in a high half-wave potential of 0.911 V versus reversible hydrogen electrode, with negligible deactivation even after 15000-cycle operation. Operando spectroscopies identify that this core-shell catalyst facilitates the conversion of oxygen-involving intermediates and ensures antidissolution ability. Theoretical investigations rationalize that this improvement is attributed to reinforced electronic interactions around high-index Pt, stabilizing the binding strength of rate-determining OHads species.

11.
Nano Lett ; 24(5): 1650-1659, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38265360

ABSTRACT

Precision nanoengineering of porous two-dimensional structures has emerged as a promising avenue for finely tuning catalytic reactions. However, understanding the pore-structure-dependent catalytic performance remains challenging, given the lack of comprehensive guidelines, appropriate material models, and precise synthesis strategies. Here, we propose the optimization of two-dimensional carbon materials through the utilization of mesopores with 5-10 nm diameter to facilitate fluid acceleration, guided by finite element simulations. As proof of concept, the optimized mesoporous carbon nanosheet sample exhibited exceptional electrocatalytic performance, demonstrating high selectivity (>95%) and a notable diffusion-limiting disk current density of -3.1 mA cm-2 for H2O2 production. Impressively, the electrolysis process in the flow cell achieved a production rate of 14.39 mol gcatalyst-1 h-1 to yield a medical-grade disinfectant-worthy H2O2 solution. Our pore engineering research focuses on modulating oxygen reduction reaction activity and selectivity by affecting local fluid transport behavior, providing insights into the mesoscale catalytic mechanism.

12.
Phys Chem Chem Phys ; 26(22): 15831-15843, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38787657

ABSTRACT

High performance computing (HPC) is renowned for its capacity to tackle complex problems. Meanwhile, quantum computing (QC) provides a potential way to accurately and efficiently solve quantum chemistry problems. The emerging field of quantum-centric high performance computing (QCHPC), which merges these two powerful technologies, is anticipated to enhance computational capabilities for solving challenging problems in quantum chemistry. The implementation of QCHPC for quantum chemistry requires interdisciplinary research and collaboration across multiple fields, including quantum chemistry, quantum physics, computer science and so on. This perspective provides an introduction to the quantum algorithms that are suitable for deployment in QCHPC, focusing on conceptual insights rather than technical details. Parallel strategies to implement these algorithms on quantum-centric supercomputers are discussed. We also summarize high performance quantum emulating simulators, which are considered a viable tool to explore QCHPC. We conclude with challenges and outlooks in this field.

13.
J Phys Chem A ; 128(10): 1925-1937, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38430107

ABSTRACT

K-means clustering, as a classic unsupervised machine learning algorithm, is the key step to select the interpolation sampling points in interpolative separable density fitting (ISDF) decomposition for hybrid functional electronic structure calculations. Real-valued K-means clustering for accelerating the ISDF decomposition has been demonstrated for large-scale hybrid functional enabled ab initio molecular dynamics (hybrid AIMD) simulations within plane-wave basis sets where the Kohn-Sham orbitals are real-valued. However, it is unclear whether such K-means clustering works for complex-valued Kohn-Sham orbitals. Here, we propose an improved weight function defined as the sum of the square modulus of complex-valued Kohn-Sham orbitals in K-means clustering for hybrid AIMD simulations. Numerical results demonstrate that the K-means algorithm with a new weight function yields smoother and more delocalized interpolation sampling points, resulting in smoother energy potential, smaller energy drift, and longer time steps for hybrid AIMD simulations compared to the previous weight function used in the real-valued K-means algorithm. In particular, we find that this improved algorithm can obtain more accurate oxygen-oxygen radial distribution functions in liquid water molecules and a more accurate power spectrum in crystal silicon dioxide compared to the previous K-means algorithm. Finally, we describe a massively parallel implementation of this ISDF decomposition to accelerate large-scale complex-valued hybrid AIMD simulations containing thousands of atoms (2,744 atoms), which can scale up to 5,504 CPU cores on modern supercomputers.

14.
J Phys Chem A ; 128(10): 1913-1924, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38439159

ABSTRACT

Density functional perturbation theory (DFPT) is a crucial tool for accurately describing lattice dynamics. The adaptively compressed polarizability (ACP) method reduces the computational complexity of DFPT calculations from O(N4) to O(N3) by combining the interpolative separable density fitting (ISDF) algorithm. However, the conventional QR factorization with column pivoting (QRCP) algorithm, used for selecting the interpolation points in ISDF, not only incurs a high cubic-scaling computational cost, O(N3), but also leads to suboptimal convergence. This convergence issue is particularly pronounced when considering the complex interplay between the external potential and atomic displacement in ACP-based DFPT calculations. Here, we present a machine learning K-means clustering algorithm to select the interpolation points in ISDF, which offers a more efficient quadratic-scaling O(N2) alternative to the computationally intensive cubic-scaling O(N3) QRCP algorithm. We implement this efficient K-means-based ISDF algorithm to accelerate plane-wave DFPT calculations in KSSOLV, which is a MATLAB toolbox for performing Kohn-Sham density functional theory calculations within plane waves. We demonstrate that this K-means algorithm not only offers comparable accuracy to QRCP in ISDF but also achieves better convergence for ACP-based DFPT calculations. In particular, K-means can remarkably reduce the computational cost of selecting the interpolation points by nearly 2 orders of magnitude compared to QRCP in ISDF.

15.
Nano Lett ; 23(19): 9126-9132, 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37781926

ABSTRACT

Developing an efficient method to reversibly control materials' spin order is urgently needed but challenging in spintronics. Though various physical field control methods have been advancing, the chemical control of spin is little exploited. Here, we propose a chemical means for such spin manipulation, i.e., utilizing the well-known lactim-lactam tautomerization to reversibly modulate the magnetic phase transition in two-dimensional (2D) organometallic lattices. The proposal is verified by theoretically designing several 2D organometallic frameworks with antiferromagnetic to ferrimagnetic spin order transformation modulated by lactim-lactam tautomerization on organic linkers. The transition originates from the change in spin states of organic linkers (from singlet to doublet) via tautomerization. Such a transition further switches materials' electronic structures from normal semiconductors with zero spin polarization to bipolar magnetic semiconductors with valence and conduction band edges 100% spin polarized in opposite spin channels. Moreover, the magnitude of magnetic anisotropy energy also enhances by 5- to 9-fold.

16.
Nano Lett ; 23(6): 2332-2338, 2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36897107

ABSTRACT

Two-dimensional (2D) materials with intrinsic room-temperature ferromagnetism have gathered tremendous interest as promising candidates for next-generation spintronics. Here, on the basis of first-principles calculations, we report a family of stable 2D iron silicide (FeSix) alloys via dimensional reduction of their bulk counterparts. Our results demonstrate that 2D Fe4Si2-hex, Fe4Si2-orth, Fe3Si2, and FeSi2 nanosheets are lattice-dynamically and thermally stable, confirmed by the calculated phonon spectra and Born-Oppenheimer dynamic simulation up to 1000 K. 2D FeSix nanosheets are ferromagnetic metals with estimated Curie temperatures ranging from 547 to 971 K due to strong direct exchange interaction between Fe sites. In addition, the electronic properties of 2D FeSix alloys can be maintained on silicon substrates, providing an ideal platform for spintronics applications in the nanoscale.

17.
Nano Lett ; 23(2): 541-549, 2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36594815

ABSTRACT

Aqueous Zn batteries (AZBs) are a promising energy storage technology, due to their high theoretical capacity, low redox potential, and safety. However, dendrite growth and parasitic reactions occurring at the surface of metallic Zn result in severe instability. Here we report a new method to achieve ultrafine Zn nanograin anodes by using ethylene glycol monomethyl ether (EGME) molecules to manipulate zinc nucleation and growth processes. It is demonstrated that EGME complexes with Zn2+ to moderately increase the driving force for nucleation, as well as adsorbs on the Zn surface to prevent H-corrosion and dendritic protuberances by refining the grains. As a result, the nanoscale anode delivers high Coulombic efficiency (ca. 99.5%), long-term cycle life (over 366 days and 8800 cycles), and outstanding compatibility with state-of-the-art cathodes (ZnVO and AC) in full cells. This work offers a new route for interfacial engineering in aqueous metal-ion batteries, with significant implications for the commercial future of AZBs.

18.
J Am Chem Soc ; 145(14): 7869-7878, 2023 Apr 12.
Article in English | MEDLINE | ID: mdl-36926870

ABSTRACT

Two-dimensional (2D) semiconductors (SCs) integrated with two or more functions are the cornerstone for constructing multifunctional nanodevices but remain largely limited. Here, by tuning the spin state of organic linkers and the symmetry/topology of crystal lattices, we predict a class of unprecedented multifunctional SCs in 2D Cr(II) five-membered heterocyclic metal organic frameworks that simultaneously possess auxetic effect, room-temperature ferrimagnetism, chiral ferroelectricity (FE), electrically reversible spin polarization, and topological nodal lines/points. Taking 2D Cr(TDZ)2 (TDZ = 1.2.5-thiadiazole) as an exemplification, the auxetic effect is produced by the antitetra-chiral lattice structure. The high temperature ferrimagnetism originates from the strong d-p direct magnetic exchange interaction between Cr cations and TDZ doublet radical anions. Meanwhile, the clockwise-counterclockwise alignment of TDZ's dipoles results in unique 2D chiral FE with atomic-scale vortex-antivortex states. 2D Cr(TDZ)2 is an intrinsic bipolar magnetic SC where half-metallic conduction with switchable spin-polarization direction can be induced by applying a gate voltage. In addition, the symmetry of the little group C4 of the lattice structure endows 2D Cr(TDZ)2 with topological nodal lines and a quadratic nodal point in the Brillouin zone near the Fermi level.

19.
J Am Chem Soc ; 2023 Apr 04.
Article in English | MEDLINE | ID: mdl-37014727

ABSTRACT

Because of their theoretically predicted intriguing properties, it is interesting to embed periodic 585-ringed divacancies into graphene nanoribbons (GNRs), but it remains a great challenge. Here, we develop an on-surface cascade reaction from periodic hydrogenated divacancies to alternating 585-ringed divacancies and Ag atoms via intramolecular cyclodehydrogenation in a seven-carbon-wide armchair GNR on the Ag(111) surface. Combining scanning tunneling microscopy/spectroscopy and noncontact atomic force microscopy combined with first-principles calculations, we in-situ-monitor the evolution of the distinct structural and electronic properties in the reaction intermediates. The observation of embedded Ag atoms and further nudged elastic band calculations provide unambiguous evidence for Ag adatom-mediated C-H activation in the intramolecular cyclodehydrogenation pathway, where the strain-induced self-limiting effect contributes to the formation of the GNR superlattice with alternating 585-ringed divacancies and Ag atoms, which shows a band gap of about 1.4 eV. Our findings open an avenue to introducing periodic impurities of single metal atoms and nonhexagonal rings in on-surface synthesis, which may provide a novel route for multifunctional graphene nanostructures.

20.
J Am Chem Soc ; 145(18): 10126-10135, 2023 May 10.
Article in English | MEDLINE | ID: mdl-37097709

ABSTRACT

Cyclodehydrogenation reactions in the on-surface synthesis of graphene nanoribbons (GNRs) usually involve a series of Csp2-Csp2 and/or Csp2-Csp3 couplings and just happen on uncovered metal or metal oxide surfaces. It is still a big challenge to extend the growth of second-layer GNRs in the absence of necessary catalytic sites. Here, we demonstrate the direct growth of topologically nontrivial GNRs via multistep Csp2-Csp2 and Csp2-Csp3 couplings in the second layer by annealing designed bowtie-shaped precursor molecules over one monolayer on the Au(111) surface. After annealing at 700 K, most of the polymerized chains that appear in the second layer covalently link to the first-layer GNRs that have partially undergone graphitization. Following annealing at 780 K, the second-layer GNRs are formed and linked to the first-layer GNRs. Benefiting from the minimized local steric hindrance of the precursors, we suggest that the second-layer GNRs undergo domino-like cyclodehydrogenation reactions that are remotely triggered at the link. We confirm the quasi-freestanding behaviors in the second-layer GNRs by measuring the quasiparticle energy gap of topological bands and the tunable Kondo resonance from topological end spins using scanning tunneling microscopy/spectroscopy combined with first-principles calculations. Our findings pave the avenue to diverse multilayer graphene nanostructures with designer quantum spins and topological states for quantum information science.

SELECTION OF CITATIONS
SEARCH DETAIL